湯盛顯,李亮
基于Mohr-Coulomb準(zhǔn)則的應(yīng)變軟化淺埋隧道圍巖彈塑性解
湯盛顯,李亮
(中南大學(xué)土木工程學(xué)院,湖南 長沙 410075)
針對(duì)軟化圍巖淺埋隧道開挖問題,提出一種彈塑性半解析解,確定半無限空間下塑性區(qū)范圍和應(yīng)力位移分布。具體的方法分為:對(duì)Verruijt等提出的彈性解進(jìn)行修正,結(jié)合彈塑性交界面上應(yīng)力連續(xù)原則,得到塑性區(qū)外邊界上應(yīng)力和應(yīng)變;采用Zou等提出的逐步半徑增量法從外向內(nèi)推導(dǎo)塑性區(qū)應(yīng)力應(yīng)變;若計(jì)算出的塑性區(qū)內(nèi)邊界徑向應(yīng)變等于隧道壁應(yīng)變,則可以確定塑性區(qū),應(yīng)力和位移,利用數(shù)值模擬解驗(yàn)證本文方法的可靠性。研究結(jié)果表明:淺埋隧道不同方向的塑性區(qū)半徑不同,拱頂方向最大,拱底方向最小。
淺埋隧道;軟化圍巖;半無限空間;彈塑性解;逐步半徑增量法
圍巖的應(yīng)力與位移計(jì)算是穩(wěn)定性分析的重要內(nèi)容,目前已取得了不少研究成果。但這些研究大多針對(duì)深埋隧道,即忽略了地表邊界條件的影響,將圍巖視為無限介質(zhì),地應(yīng)力均勻分布。而對(duì)淺埋
隧道進(jìn)行分析時(shí),不能忽視地表的影響,地應(yīng)力也不是均勻分布,因此求解難度較大,成果相對(duì)匱乏。對(duì)深埋隧道的分析不但考慮了彈性模型還考慮了理想彈塑性模型,彈?脆?塑模型和應(yīng)變軟化模型,而針對(duì)淺埋隧道,大多基于圍巖完全彈性假設(shè),采用鏡像法、雙極坐標(biāo)法、復(fù)變函數(shù)法等方法進(jìn)行分析<[1?6]。Sagaseta[4]通過源匯法簡化了半空間隧道開挖的彈性解,得到了彈性假設(shè)條件下的位移及應(yīng)力解答。Verruijt[6]利用Sagaseta提出的源?匯法,計(jì)算推導(dǎo)得到了地表半無限彈性空間考慮土體壓縮對(duì)土體產(chǎn)生的位移解。Strack等[5]采用復(fù)變函數(shù)理論系統(tǒng)地給出了半無限彈性平面的圓孔擴(kuò)張隱式解。王巖等[7]采用雙極坐標(biāo)法,推導(dǎo)出基于廣義Hoek? Brown強(qiáng)度準(zhǔn)則的半無限空間內(nèi)圓形隧道圍巖的彈塑性解析解,但是該解答并未考慮圍巖應(yīng)變軟化特性。大量研究表明應(yīng)變軟化模型更能準(zhǔn)確地描述巖土體性質(zhì)[8?15]。為此,本文對(duì)考慮圍巖軟化特性下淺埋隧道應(yīng)力和位移的變化規(guī)律及塑性區(qū)分布進(jìn)行分析。
在Mohr-Coulomb準(zhǔn)則中,有:
式中:r為小主應(yīng)力;p為塑性剪應(yīng)變。
當(dāng)圍巖內(nèi)在支護(hù)力i低于臨界值ic時(shí),塑性區(qū)將會(huì)形成。對(duì)于M?C準(zhǔn)則巖土體,
在早期的研究中,隧道圍巖的力學(xué)分析往往采用理想彈塑性模型,即材料屈服后,應(yīng)力不再增加,應(yīng)變卻持續(xù)增加。后續(xù)的研究表明,巖土體屈服后,強(qiáng)度系數(shù)會(huì)有所折減,因此彈?脆?塑模型被提出。之后的實(shí)驗(yàn)及理論分析又發(fā)現(xiàn),巖土體從彈性到塑性會(huì)經(jīng)歷一個(gè)逐漸軟化的過程。Alonso等[12]提出軟弱參數(shù),并用塑性偏應(yīng)變表征應(yīng)變軟化系數(shù),通過應(yīng)變軟化系數(shù)來表示該軟化過程。巖體應(yīng)力與各種強(qiáng)度參數(shù)隨應(yīng)變軟化系數(shù)的變化曲線如圖1所示。
圖1 應(yīng)變軟化過程
根據(jù)應(yīng)變軟化模型,強(qiáng)度參數(shù)可以通過應(yīng)變軟化系數(shù)進(jìn)行描述。
式中:代表圍巖的強(qiáng)度參數(shù);和分別表示圍巖的峰值和殘余強(qiáng)度。
Verruijt等[16]運(yùn)用鏡像法推導(dǎo)出淺埋隧道圍巖的應(yīng)力位移,求解過程基于圍巖完全彈性假設(shè),因此該解答可用于求解彈性區(qū)應(yīng)力位移分布。為此,將塑性區(qū)和隧道視為一個(gè)半徑為p徑向應(yīng)變?yōu)閜的柱孔,那么該柱孔以外區(qū)域(即彈性區(qū))的計(jì)算點(diǎn)(,)的應(yīng)力位移可用修正后的Verruijt解求出,
圖2 淺埋隧道彈性區(qū)解
將屈服方程與平衡方程結(jié)合,即得到第個(gè)圓環(huán)內(nèi)邊界上的徑向和環(huán)向應(yīng)力:
根據(jù)Hooke定律,第環(huán)內(nèi)邊界彈性應(yīng)變?yōu)椋?/p>
根據(jù)塑性區(qū)相容方程和塑性勢函數(shù),環(huán)向和徑向塑性應(yīng)變增量為:
第環(huán)內(nèi)邊界的應(yīng)變軟化系數(shù)為:
建立以隧道為中心的極坐標(biāo),得到極坐標(biāo)系下彈性區(qū)徑向和環(huán)向應(yīng)力:
在彈塑性交界面上,因圍巖徑向應(yīng)力連續(xù), 那么
式中:σre為彈塑性交界面上彈性區(qū)的應(yīng)力;σrp為彈塑性交界面上塑性區(qū)的應(yīng)力。
假定p已知,可利用式(20)求得對(duì)應(yīng)的p。將p和p帶入式(7)~(9),得到彈性區(qū)應(yīng)力位移,繼而得到彈塑性交界面的徑向應(yīng)力和地應(yīng)力。運(yùn)用有限差分法對(duì)塑性區(qū)應(yīng)力應(yīng)變從外向內(nèi)進(jìn)行求解,得到塑性區(qū)應(yīng)力位移。
本文采用塑性半徑逐步增加0.001 m的方法不斷改變假定的塑性半徑,以隧道壁應(yīng)變0為邊界條件。當(dāng)推導(dǎo)出的塑性區(qū)第環(huán)內(nèi)邊界徑向應(yīng)變r(jià)(n)與隧道壁應(yīng)變0相等時(shí),結(jié)束運(yùn)算,輸出塑性區(qū)半徑。由于不同方向的塑性區(qū)半徑不一定相等,所以本文對(duì)每一極坐標(biāo)角下的塑性區(qū)半徑逐一進(jìn)行求解,從而得到塑性區(qū)范圍。本文采用MATLAB軟件進(jìn)行編程,具體的求解過程如圖3所示。
為驗(yàn)證本文理論方法的可靠性,將本文理論解答和數(shù)值模擬結(jié)果(使用Abaqus軟件)進(jìn)行對(duì)比驗(yàn)證。選取的計(jì)算參數(shù)[12]有:隧道特征參數(shù):隧道半徑=4.25 m,隧道埋深=19 m;巖土體特征參數(shù):彈性模量=35 MPa,泊松比=0.25,重度=19 kN/m3,內(nèi)摩擦角峰值p=25°,殘余值r=20°,黏聚力p=80 kPa,殘余值p=70 kPa,剪脹角峰值p=19.47°,殘余值r=4.22°,臨界塑性偏應(yīng)變p*=0.004 742,=500。
圖4給出了半無限空間下隧道的有限元模型,模型尺寸為200 m×100 m。隧道半徑為4.25 m,隧道壁應(yīng)變?yōu)?。Abaqus塑性區(qū)計(jì)算結(jié)果與本文所給方法計(jì)算結(jié)果對(duì)比如圖5所示。
圖4 有限元模型圖
圖5 塑性區(qū)分布對(duì)比
從兩圖對(duì)比可以看出,本文理論解與數(shù)值模擬解的結(jié)果基本吻合,塑性區(qū)的分布很相似。淺埋隧道的塑性區(qū)半徑并不是處處相等的,其中拱頂方向塑性區(qū)半徑最大,拱底方向塑性區(qū)半徑最小。
選取隧道拱腰右側(cè)巖土體(=0°)為研究對(duì)象,將本文理論解答及數(shù)值模擬解答進(jìn)行對(duì)比,結(jié)果如圖6所示。
圖6 拱腰右側(cè)應(yīng)力位移對(duì)比
與Abaqus計(jì)算結(jié)果的對(duì)比表明,無論是徑向應(yīng)力還是環(huán)向應(yīng)力本文方法計(jì)算結(jié)果與數(shù)值模擬有相同的規(guī)律,且大小基本吻合,最大差值僅為 7 kPa。
位移計(jì)算結(jié)果對(duì)比表明,本文方法計(jì)算出的位移與數(shù)值模擬解答較為接近,最大差值為0.5 mm。
總體上看,本文理論解答可以較為準(zhǔn)確的反映出隧道圍巖塑性區(qū)分布。無論應(yīng)力還是位移,本文理論解答與數(shù)值模擬解答基本匹配,誤差很小,表明本文的方法是可靠的。
1) 利用彈塑性交界面上應(yīng)力連續(xù)原則并用隧道壁應(yīng)變?yōu)檫吔鐥l件,求出了塑性區(qū)半徑和對(duì)應(yīng)的徑向應(yīng)變,繼而采用有限差分法推導(dǎo)塑性區(qū)應(yīng)力位移。運(yùn)用Abaqus數(shù)值模擬軟件進(jìn)行對(duì)比驗(yàn)證,塑性區(qū)的徑向和環(huán)向應(yīng)力及位移分布與數(shù)值模擬結(jié)果吻合且有較高精度,證明了本文方法的正確性和有效性。
2) 對(duì)已有的淺埋隧道完全彈性解做了修正,得到了應(yīng)變軟化淺埋隧道圍巖彈性區(qū)解析解,并驗(yàn)證了其正確性。
3)給出了淺埋隧道圍巖不同方向的塑性區(qū)半徑,繪制出整個(gè)塑性區(qū)分布。使用有限元軟件進(jìn)行數(shù)值模擬,將結(jié)果與本文的理論解對(duì)比從而驗(yàn)證了本文方法的準(zhǔn)確性。半無限空間下圍巖塑性區(qū)分布并不是軸對(duì)稱的,其中拱頂方向塑性區(qū)半徑最大,拱底方向最小。
[1] 韓凱航, 張成平, 王夢恕. 淺埋隧道圍巖應(yīng)力及位移的顯式解析解[J]. 巖土工程學(xué)報(bào), 2014, 36(12): 2253? 2259. HAN Kaihang, ZHANG Chengping, WANG Mengshu. Explicit analytical solutions for stress and displacement of surrounding rock in shallow tunnels[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2253?2259.
[2] FANG Q, SONG H, ZHANG D. Complex variable analysis for stress distribution of an underwater tunnel in an elastic half plane. International Journal for Numerical & Analytical Methods in Geomechanics, 2015, 39(16): 1821?1835.
[3] ZOU J, ZUO S. Similarity solution for the synchronous grouting of shield tunnel under the vertical non- axisymmetric displacement boundary condition[J]. Advances in Applied Mathematics and Mechanics, 2017, 9(1): 205?232.
[4] Sagaseta C. Analysis of undraind soil deformation due to ground loss[J]. Géotechnique, 1988, 37(3): 301?320.
[5] Strack O E, Verruijt A. A complex variable solution for a deforming buoyant tunnel in a heavy elastic half-plane[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 2002, 26(12):1235?1252.
[6] Verruijt A. A complex variable solution for a deforming circular tunnel in an elastic half-plane[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1997, 21(2): 77?89.
[7] 王巖, 鄒金鋒, 鄒飛. 基于雙極坐標(biāo)法淺埋圓形隧道圍巖非線性彈塑性分析[J]. 中南大學(xué)學(xué)報(bào)(自然科學(xué)版), 2017, 48(11): 3076?3082. WANG Yan, ZOU Jinfeng, ZOU Fei. Nonlinear elasto-plastic analysis of surrounding rock for shallow buried circular tunnel based on bipolar coordinate method [J]. Journal of Central South University (Science and Technology), 2017, 48(11): 3076?3082.
[8] 崔嵐, 鄭俊杰, 章榮軍, 等. 考慮剪脹效應(yīng)的深埋圓形隧道圍巖應(yīng)變軟化彈塑性解[J]. 巖土力學(xué),2014, 35(4): 1187?1193. CUI Lan, ZHENG Junjie, ZHANG Rongjun, et al. Elastoplastic solutions to strain-softening behavior of surrounding rock masses of deep circular tunnels considering dilatancy effect[J]. Rock and Soil Mechanics, 2014, 35(4): 1187?1193.
[9] 鄒飛, 鄒金鋒. 考慮水?力耦合效應(yīng)時(shí)軟化圍巖解析[J]. 中南大學(xué)學(xué)報(bào)(自然科學(xué)版), 2016, 47(12): 4216?4223. ZOU Fei, ZOU Jinfeng. Solution for strain-softening surrounding rock incorporating hydraulic-mechanical coupling[J]. Journal of Central South University (Science and Technology), 2016, 47(12): 4216?4223.
[10] 孫闖, 張向東, 劉家順. 基于Hoek-Brown強(qiáng)度準(zhǔn)則的應(yīng)變軟化模型在隧道工程中的應(yīng)用[J]. 巖土力學(xué), 2013, 34(10): 2954?2960, 2970. SUN Chuang, ZHANG Xiangdong, LIU Jiashun. Application of strain softening model to tunnels based on Hoek-Brown strength criterion[J]. Rock and Soil Mechanics, 2013, 34(10): 2954?2960, 2970.
[11] 夏才初, 徐晨, 劉宇鵬, 等. 基于GZZ強(qiáng)度準(zhǔn)則考慮應(yīng)變軟化特性的深埋隧道彈塑性解[J]. 巖石力學(xué)與工程學(xué)報(bào), 2018, 37(11): 2468?2477. XIA Caichu, XU Chen, LIU Yupeng, et al. Elastoplastic solution of deep buried tunnel considering strain-softening characteristics based on GZZ strength criterion[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(11): 2468?2477.
[12] Alonso E, Alejano L R, Varas F, et al. Ground response curves for rock masses exhibiting strain-softening behavior[J]. International Journal for Numerical Analytical Methods in Geomechanics, 2003(27): 1153? 1185.
[13] 許淵, 李亮, 鄒金鋒, 等. 考慮軸向力和滲透力時(shí)圓形隧道廣義Hoek-Brown解[J]. 巖土力學(xué), 2015, 36(10): 2837?2846. XU Yuan, LI Liang, ZOU Jinfeng, et al. Generalized Hoek-Brown solution of circular tunnel considering effects of axial stress and seepage force[J]. Rock and Soil Mechanics, 2015, 36(10): 2837?2846.
[14] 鄒金鋒, 李帥帥, 張勇, 等. 考慮軸向力和滲透力時(shí)軟化圍巖隧道解析[J]. 力學(xué)學(xué)報(bào), 2014, 46(5): 747?755. ZOU Jinfeng, LI Shuaishai, ZHANG Yong, et al.Analysis of softening surrounding rock tunnel considering axial and penetration forces[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(5): 747?755.
[15] 蔣武軍, 鄒金鋒. 應(yīng)變軟化圓形隧道圍巖的逐步量綱一化應(yīng)力分析方法[J]. 中南大學(xué)學(xué)報(bào)(自然科學(xué)版), 2016, 47(8): 2842?2847. JIANGWujun, ZOU Jinfeng. Dimensionless analysis of stress numerical stepwise procedure in strain-softening rock mass[J]. Journal of Central South University (Science and Technology), 2016, 47(8): 2842?2847.
[16] Verruijt A, Booker J R. Surface settlements due to deformation of a tunnel in an elastic half plane[J]. Géotechnique, 1996, 46(4): 753?756.
[17] ZOU J F, LI C, WANG F. A new procedure for ground response curve (GRC) in strain-softening surrounding rock[J]. Computers & Geotechnics, 2017(89): 81?91.
Elasto-plastic solution of shallow tunnel considering strain-softening characteristics based on Mohr-Coulomb criterion
TANG Shengxian, LI Liang
(School of Civil Engineering, Central South University, Changsha 410075, China)
In this paper, an elasto-plastic semi-analytical solution was proposed. The plastic zone and distribution of stress and displacement in semi-infinite space was determined. The specific method was divided into three steps: The elastic solution proposed by Verruijt in the semi-infinite space was modified, and the stress and strain on the outer boundary of the plastic zone were obtained by combining the principle of stress continuity on the elasto-plastic interface. The stress and strain of the plastic zone were derived from the outside to the inside by the stepwise radius increment method presented by Zou. If the calculated radial strain in the plastic zone is equal to the tunnel wall strain, the plastic zone, stress and displacement can be determined. The reliability of the method was verified by numerical simulation. The results show that the plastic radiuses of the shallow tunnel in different directions are different.
shallow buried tunnel; strain softening; semi-infinite space; elasto-plastic solution; stepwise radius increment method
U451.2
A
1672 ? 7029(2019)11? 2775 ? 07
10.19713/j.cnki.43?1423/u.2019.11.017
2019?02?01
國家重點(diǎn)研發(fā)計(jì)劃資助項(xiàng)目(2017YFB1201204)
李亮(1962?),男,江蘇泰興人,教授,從事巖土與路基工程教學(xué)和科研工作;E?mail:liliang_csu@126.com
(編輯 蔣學(xué)東)