• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Phase Modification Methodology in Modelling Deterministic Freak Wave Train

    2019-12-10 01:06:16GAONingboZHANGHongYANGJianminTIANXinliangLIXin
    船舶力學(xué) 2019年9期

    GAO Ning-bo, ZHANG Hong , YANG Jian-min, TIAN Xin-liang , LI Xin

    (1. State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200030, China;2. Postdoctoral Research Center, CCCC Second Harbor Engineering Co., Ltd., Wuhan 430040, China;3. CCCC Highway Bridges National Engineering Research Center Co., Ltd., Beijing 100088, China)

    Abstract: Freak waves, which are heated and debated in oceanic community, can pose serious damages to ships and offshore structures. Accurate simulation of the deterministic freak wave trains will be a basis for understanding wave-structure interactions. In this study, a numerical wave tank (NWT)is developed based on commercial computational fluid dynamics (CFD) software package-FLUENT.A freak wave train is given through linear superposition method. Fourier series expansion is applied to determine the amplitude and the initial phase of each wave frequency component. A phase modification methodology (PMM), by modifying the initial phases, is used to improve the numerical simulation quality. This method was validated against an elaborated experiment. It proves that the PMM can significantly improve the numerical results, which might show a new perspective in the wavestructure interaction problems.

    Key words: Navier-Stokes equations; freak wave; phase modification

    0 Introduction

    Freak waves, also called rogue waves, have been reported frequently as human activities moving towards deep sea. Owing to the unpredictability and extremity, the freak waves may induce vital harms to ships and offshore structures. One of the most famous field records about freak waves is called ‘New Year Wave’ that occurred in North Sea in 1995[1]. Several assumptions have been proposed in the last decades to understand the evolution of freak waves, such as linear dispersive superposition, wave-current interaction, atmospheric forcing, topographic effects, nonlinear self-focusing of wave energy, etc[2-3].

    Baldock et al[4]applied dispersive focusing of wave components to produce a highly nonlinear wave group in a wave tank, and found that the nonlinearity increases with the wave amplitude and reduces with increasing bandwidth. Johannessen and Swan[5]generated a large multi-direction transient wave group, and investigated the influences of spreading on large events. Wu and Yao[6]experimentally investigated the influences of current on the formation of freak waves, and found that the strong opposing current can induce partial wave blocking which significantly elevates the limiting steepness and asymmetry of freak waves. Ning et al[7]conducted numerical and experimental study on the free-surface propagation and wave kinematics for nonlinear unidirectional focused wave groups, and reported that the fully nonlinear wavewave interactions produce a much steeper wave envelope in which the central wave crest is higher and narrower, while the adjacent wave troughs are broader and less deep. Zhao et al[8]numerically simulated extreme wave groups based on VOF technique, and analyzed the nonlinearity effects on focused waves. Li et al[9]developed a numerical model based on high-order spectral (HOS) method to simulate focused waves and investigated the effects of the wave parameters on the surface elevations, the shift of the focusing points, the maximum crests and frequency spectrum.

    The majority of the current studies focused on modelling extreme focused wave groups.It is not consistent with the real sea state, since it is almost static before and after the focused event. Not sufficient work is available on deterministic freak waves due to the nonlinear wavewave interaction and wave breaking. Do et al[10]used an iterative approach for Gaussian wave packet. Schmittner et al[11]proposed a phase-amplitude iteration scheme to optimize simulation of deterministic wave sequences. Buldakov[12]employed a phase-amplitude iteration scheme for tsunami wave simulation in a small wave flume. Fernández et al[13]developed a self-correcting method (SCM) to optimize the control signal of wave-maker to simulate predefined focused wave groups in a potential NWT. They validated the SCM in a large wave flume. Since the real freak wave is mostly embedded in random wave background, it will be of great significance to simulate deterministic freak wave sequences, rather than only extreme focused wave groups.

    In this work, a target freak wave sequence is defined based on linear dispersive superposition theory. It serves as the input wave train to get the initial wave-maker control signals during the numerical simulation. A phase modification methodology is introduced to improve the numerical results. Then the phase modification results are validated against an elaborated experiment. The paper is arranged as follows. In Chap.1, the freak wave is defined based on linear dispersive superposition theory. The phase modificaion methodology is then presented in Chap.2.In Chap.3, the mathematic model is described which includes governing equations and numerical wave tank model, followed by numerical results and some discussions in Chap.4. Finally some conclusions are drawn in Chap.5.

    1 Deterministic freak wave model

    There have been a few different definitions on freak waves in the last decades. The most acceptable one was proposed by Klinting and Sand[14], which defines three parameters: (1) α=Hj/Hs≥2.0; (2) β1=Hj/Hj-1≥2, β2=Hj/Hj+1≥2; (3) μ=ηj/Hj≥0.65 (Hsis the significant wave height, Hj-1, Hj, Hj+1are the three successive waves, respectively). In this study, we adopt this definition.

    In general, a real sea state is regarded as a random statistic process. In this study, JONSWAP spectrum is applied to represent a random sea, which can be given by

    where α=0.062 4/ [0.23+0.033 6γ-0.185 (1.9+γ)-1], H1/3and TPare the significant wave height and spectral peak period, respectively. γ refers to the peakness parameter (the average value of γ is 3.3) and σ is the shape parameter having the values σ=0.07 if f ≤fpand σ=0.09 if f >fp; and ω=2π f.

    Kriebel[15]proposed an efficient way to model freak waves by embedding an extreme wave group into a random wave circumstance, which has been widely applied in experimental and numerical studies[16-17]. It is achieved by separating the wave energy into two parts with one part going into transient wave and the other going into the underlying random background. The wave surface elevation is given by:

    In this study, the significant wave height is 0.10 m, and the peak period is 2.31 s. The wave frequency bandwidth ranges are from 1 rad/s to 10 rad/s. For keeping the statistics property of the wave train, only a small part of the total energy is used to generate transient wave,which P1=0.95 and P2=0.05. The freak wave train is shown in Fig.1. The maximum wave height is 0.237 m, and it can be seen that it satisfies the definition of freak wave (see Tab.1).This defined freak wave is regarded as the target wave in the following sections. Since the nonlinearity can not be neglected in wave propagation, this wave train can not occur in the real sea state. It only serves as the input wave sequence for the numerical and experimental simulations.

    Fig.1 Deterministic freak wave sequence

    Tab.1 Characteristic parameters of the target freak wave

    2 Phase modification methodology

    Fernández et al[13]proposed a self-correcting method (SCM) to optimize the control signals of the wave-maker in a potential NWT. It has been proved that the SCM is feasible for the simulation of focused wave packages, but not for freak waves. The phase shift should be judged to be negative or positive when calculating the new control signal of the wave-maker. In order to simplify the process to calculate the new control signal of the wave-maker, we only modify the initial phases, regardless of the phase shift is negative or positive. The detailed information is given as follows.

    In general, any time series of wave sequences η(t )can be represented in frequency domain by its complex Fourier transform F(ω )which is given in Eq.(3). Applying the inverse Fourier transformation, we obtain the Eq.(4)

    where t is the time, and ω=2π f represents the angular frequency. In practice, it is necessary to adopt a discrete and finite form of the Fourier transform pair which is given as

    where the values η (kΔ t )represent the available data points of the discrete finite wave record, Δt denotes the sampling rate and Δω=2π/ (NΔt )refers to the frequency resolution. In polar notation, the complex Fourier transform can be expressed by its amplitude and phase spectrum:

    Once we get the value of F(ω )by fast Fourier transform, the associated amplitude aiand phase εican be easily calculated in Eq.(7). The wave series propagates upstream to the location of wave-maker based on linear wave theory. Then the wave-maker control signals can be given as:

    where u0(t )is the velocity of the wave-maker; Tiis the transfer function associated with the ith component wave, which can be calculated as:

    During wave propagation, nonlinearity such as wave-wave interaction (including sum and difference interactions) is difficult to predict. Meanwhile, wave breaking occurs for large wave steepness. It is a challenge task to model deterministic wave trains. The phase modification methodology ignores the nonlinearity effects and treats the wave propagation from wave-maker to the target position as a black box. Only the phase angles are modified. The phase modification process is presented in Fig.2 which can be divided into three steps as follows.

    (1) The target wave sequence is generated at the predefined location by means of linear wave theory as Eq.(8). Thus the first recorded wave is got.

    (2) The recorded wave is decomposed into number of component waves with different phase angles εrecordedthrough Fourier transformation. The phase shift between the target wave and the recorded wave is calculated as

    where εsis the phase shift between εtarget, the phase angles for the target wave at the focal point,and εrecorded, the phase angles for the recorded wave at the focal point.

    (3) Applying the phase shift to modify the previous wave-maker control signals

    where εnewis the phase angles for the new wave-maker control signal which will be used in Eq.(8) for the next simulation, and εoldis the phase angles for the previous wave-maker control signals.

    Fig.2 The diagram of phase modification

    3 Mathematical model

    3.1 Governing equations

    In this study, we consider a laminar flow field with a free surface. The numerical simulation is carried out on a 2-D NWT. The governing equations include the continuity and Navier-Stokes equations:

    The volume of fraction (VOF) method[18], is applied to capture the free surface which has been implanted in FLUENT. This method adds another governing equation of fluid fraction αq(x, y,t )given by:

    where αq=0: the cell is empty (of the qthfluid); αq=1: the cell is full (of the qthfluid); 0<αq<1:the cell contains the interface. Here αq=0.5 is regarded as the free surface and its vertical coordinate which is given as surface elevation time history is extracted at the position of the wave gauges for each time step.

    3.2 Numerical wave tank model

    In this study, a flap wave-maker is applied and the center of rotation is hinged at the bottom. The detailed sketch of the geometric model is presented in Fig.3. Coordinate origin O locates at the left side of the wave tank bottom. The wave tank is 15 m length, with a 4 m wave absorbing zone. The water depth d is 0.9 m with 0.3 m height above the initial free surface. At x=7 m, a wave gauge is set up to obtain the time series of the wave elevation.

    Fig.3 Sketch of the numerical wave tank

    A wall boundary condition is set at the wave-maker and the tank bottom. At the top of the tank, a pressure boundary condition consistent with atmospheric pressure is used allowing fluid flow through the boundary. At the end of the tank, an absorbing damping zone is implemented to reduce wave reflection. In the wave absorbing zone, an attenuation coefficient c(x )is introduced to increase the flow viscosity gradually to absorb the wave reflection.

    where xLand xRare the starting and the end coordinate of the damping zone, respectively.

    To generate the flap wave-maker motion, dynamic layering approach is introduced. A user-defined function (UDF) written in C language is employed to control the wave-maker moving with specified velocity.

    Structured grids are used to get smooth free surface. To save calculation resources as well as to improve calculation accuracy, meshes adjacent to the free surface are refined, together with coarse mesh is used in the wave absorbing zone. The mesh of the computational domain is shown in Fig.4, where the total number of the element is 78 710. The mesh model has been validated in the previous study[19].

    In this simulation, we selected the pressure-based, unsteady solver and the laminar physical model in the FLUENT program. The geo-reconstruct method was applied to reconstruct the free surface. A second-order upwind discretization was chosen for better accuracy and the Pressure-Implicit with Splitting of Operators (PISO) algorithm with a neighbor correction was enabled.

    Fig.4 Schematic drawing of the numerical wave tank

    4 Results and discussions

    The target freak wave train in Fig.1 is decomposed by fast Fourier transform. The associated wave amplitudes and phase angles are presented in Figs.5-6. It can be seen that the wave amplitude at frequency larger than 10 rad/s is negligible, which is consistent with the wave spectrum frequency bandwidth. Fig.7 shows the comparison of target freak wave and FFT decomposition result. The FFT decomposition result agrees perfectly well with the target wave.

    Here, the pre-defined target wave is only regarded as the input wave series to get the initial wave-maker control signal as shown in Eq.(8). Since the wave-maker control signal is calculated based on linear wave theory during wave propagating from the focal position to the wave-maker, the numerical results must be different with the target wave considering nonlinear effects, such as wave-wave interactions and wave breaking. Then, the phase modification methodology described in Chap.3 is applied to optimize the initial phases in order to get the new wave-maker control signal.

    Fig.5 Wave amplitude associated with each wave component

    Fig.6 Initial phase associated with each wave component

    Fig.7 Comparison of target wave and FFT decomposition wave train

    The numerical results will be validated with experimental data. The associated experiment was conducted in a physical wave flume in State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University. The dimension of the wave flume is 20 m×1 m×1.2 m, with a 4 m length passive wave absorbing beach at the end. The wave-maker is flap board hinged at the bottom, just as the numerical geometrical model. The flap wave-maker can move with specified velocity. The illustration is shown in Fig.8. In order to compare the numerical results and experimental data, the wave elevations at the position of 7 m away from the wave board are extracted. The initial wave-maker control signals for both numerical model and wave flume are identical, which is calcualted as Eq.(8).

    In Fig.9, we can see that even though the wave-maker control signals for both numerical model and wave flume are the same, the initial numerical results show an obvious difference compared with experimental data. This difference is mainly due to the fact that the numerical model discretes the continuous flow to grid elements, which is incongruent with the property of the continuous flow. Morever, during the numerical simulation, the higher frequency components of the freak wave train will dissipate much faster than those of wave flume experiment[20].

    Fig.8 Schematic illustration of the wave tank (a) the 3D preview; (b) the experimental setup

    Fig.9 Comparison of numerical results and experimental data

    Then the initial recorded wave elevation at the target position is decomposed through fast Fourier transformation, and the phase shift can be calculated as in Eq.(10). The phase shift is applied to modify the previous wave-maker control signal as in Eq.(11). At last, the new wavemaker control signal is obtained. It can be seen from Fig.9 that the phase modification results agree quite well with the experimental data, exspecially at the maximum wave crest. The comparison of initial phases and the modified phases is presented in Fig.10. For lower frequency components (ω<8 rad/s), the initial phases and the modified phases show no obvious changes,while the modifed phases are different from the initial phases that are almost constant for higher frequency components (ω<8 rad/s). It means that higher frequency components have a significant effect on freak wave generation. Anyway, the phase modification methodology can be used to improve the numerical results, which serves as a basis for the wave-structure interaction study.

    Fig.10 Comparison of initial phases and modified phases

    5 Conclusions

    In this study, a freak wave train which satisfies the freak wave definition is numerically simulated and compared with experimental data. In this study, we overcome the challenge induced by the nonlinearity effects during wave propagating from the target position to the wave-maker, which has not been done in previous studies. Moreover, the wave-maker transfer function is based on linear wave theory. This leads to the differences at the focusing location.In order to improve the simulation quality, a phase modification methodology is introduced to modify the phase angles during the numerical simulations. The good agreement between the numerical results and the experimental data confirms the realibility of the phase modification methodology developed in this study. This lays a foundation for the following research about wave-structure interactions, such as wave slamming and run-up.

    Acknowledgement

    This work is supported by the National Nature Science Foundation of China (Grant No.51239007) and China Postdoctoral Science Foundation (Grant No. 2017M612543). The sources of support are appreciated. The authors would also like to appreciate the comments from Dr.Zhao Wenhua at University of Western Australia.

    在现免费观看毛片| 十八禁国产超污无遮挡网站| 国产探花在线观看一区二区| 精品久久久久久久久久久久久| 少妇被粗大猛烈的视频| 色噜噜av男人的天堂激情| 国产精品一及| 99在线人妻在线中文字幕| 亚洲无线在线观看| 噜噜噜噜噜久久久久久91| 亚洲国产精品成人综合色| 亚洲人与动物交配视频| 久久久欧美国产精品| av.在线天堂| 九九久久精品国产亚洲av麻豆| 丰满乱子伦码专区| 一级黄片播放器| 美女被艹到高潮喷水动态| 午夜福利在线观看免费完整高清在 | 日本一本二区三区精品| 国产午夜福利久久久久久| 99热网站在线观看| 国内精品宾馆在线| 99热精品在线国产| 欧美又色又爽又黄视频| av在线天堂中文字幕| 国产美女午夜福利| 免费人成在线观看视频色| 精品熟女少妇av免费看| 婷婷六月久久综合丁香| 99riav亚洲国产免费| 国产av一区在线观看免费| 一个人看视频在线观看www免费| 日韩精品青青久久久久久| 99在线人妻在线中文字幕| 好男人在线观看高清免费视频| 丝袜喷水一区| ponron亚洲| 天堂√8在线中文| 一本一本综合久久| 免费一级毛片在线播放高清视频| 天天躁夜夜躁狠狠久久av| 久久精品影院6| 好男人在线观看高清免费视频| 国产成人a区在线观看| 亚洲电影在线观看av| 美女黄网站色视频| 成人av在线播放网站| 亚洲三级黄色毛片| 日本五十路高清| 狂野欧美激情性xxxx在线观看| 国产美女午夜福利| 伊人久久精品亚洲午夜| 国产蜜桃级精品一区二区三区| 六月丁香七月| 精品人妻一区二区三区麻豆 | 免费看美女性在线毛片视频| 性欧美人与动物交配| 熟妇人妻久久中文字幕3abv| 最新中文字幕久久久久| 99久久精品国产国产毛片| 丝袜喷水一区| 又粗又爽又猛毛片免费看| 成人特级av手机在线观看| 亚洲人与动物交配视频| 国产探花极品一区二区| 国产精品无大码| 亚洲av第一区精品v没综合| 国产v大片淫在线免费观看| 久久鲁丝午夜福利片| 91av网一区二区| 日本a在线网址| 女的被弄到高潮叫床怎么办| 在线a可以看的网站| 久久久久久伊人网av| 俺也久久电影网| 亚洲av成人精品一区久久| 亚洲一区二区三区色噜噜| 日本精品一区二区三区蜜桃| 精品无人区乱码1区二区| 日韩成人伦理影院| 热99在线观看视频| 国产亚洲av嫩草精品影院| 国产在线精品亚洲第一网站| 嫩草影视91久久| 亚洲性夜色夜夜综合| 欧美丝袜亚洲另类| 成年版毛片免费区| 波多野结衣高清作品| 亚洲欧美中文字幕日韩二区| 国产精品不卡视频一区二区| 亚洲av中文av极速乱| 久久久精品欧美日韩精品| 国产淫片久久久久久久久| 欧美中文日本在线观看视频| 一个人看视频在线观看www免费| 中文亚洲av片在线观看爽| 日韩欧美一区二区三区在线观看| 国产亚洲精品久久久com| 国产色婷婷99| 91午夜精品亚洲一区二区三区| 中国国产av一级| 啦啦啦啦在线视频资源| 熟女电影av网| a级毛片a级免费在线| 久久99热6这里只有精品| 欧美绝顶高潮抽搐喷水| 日韩欧美三级三区| 夜夜夜夜夜久久久久| 伊人久久精品亚洲午夜| 亚洲精品色激情综合| 国产真实乱freesex| 亚洲成av人片在线播放无| 村上凉子中文字幕在线| 成人无遮挡网站| 日本一本二区三区精品| 久久欧美精品欧美久久欧美| 亚洲七黄色美女视频| 亚洲av电影不卡..在线观看| 身体一侧抽搐| 校园人妻丝袜中文字幕| 黄色欧美视频在线观看| 亚洲国产精品sss在线观看| 欧美zozozo另类| 久久久久久久久久久丰满| 精品熟女少妇av免费看| 一级毛片久久久久久久久女| 国产aⅴ精品一区二区三区波| 不卡一级毛片| 校园人妻丝袜中文字幕| 亚洲三级黄色毛片| 日韩中字成人| 俺也久久电影网| 日日摸夜夜添夜夜添小说| 亚洲真实伦在线观看| 一区二区三区四区激情视频 | av.在线天堂| 久久久久久国产a免费观看| 亚洲一区高清亚洲精品| 精品一区二区三区视频在线观看免费| 亚洲av一区综合| 亚洲不卡免费看| 亚洲电影在线观看av| 久久久精品94久久精品| 国产v大片淫在线免费观看| 一级黄色大片毛片| 哪里可以看免费的av片| 一卡2卡三卡四卡精品乱码亚洲| 国产老妇女一区| 亚洲精品粉嫩美女一区| 中出人妻视频一区二区| 亚洲成人久久性| 我要搜黄色片| 99热精品在线国产| 欧美bdsm另类| 午夜激情福利司机影院| 高清午夜精品一区二区三区 | 亚洲精品粉嫩美女一区| 久久午夜福利片| 久久精品国产亚洲av天美| 亚洲欧美成人精品一区二区| 日韩av不卡免费在线播放| 国产一区亚洲一区在线观看| 欧美成人一区二区免费高清观看| 亚洲av不卡在线观看| 日日摸夜夜添夜夜添av毛片| 中文字幕av成人在线电影| 国产成人福利小说| 久久九九热精品免费| 直男gayav资源| 亚洲欧美日韩东京热| 日日啪夜夜撸| 亚洲国产欧洲综合997久久,| 高清毛片免费观看视频网站| 亚洲第一电影网av| 中文资源天堂在线| 天天躁夜夜躁狠狠久久av| 国产男人的电影天堂91| 插阴视频在线观看视频| 国产精品永久免费网站| 老熟妇乱子伦视频在线观看| 91av网一区二区| 亚洲av一区综合| 最新在线观看一区二区三区| 欧美区成人在线视频| 国产欧美日韩精品亚洲av| 非洲黑人性xxxx精品又粗又长| 日韩欧美在线乱码| 婷婷精品国产亚洲av在线| 噜噜噜噜噜久久久久久91| 三级毛片av免费| av专区在线播放| 国产高清视频在线播放一区| АⅤ资源中文在线天堂| 国产成人aa在线观看| 麻豆一二三区av精品| 国产一级毛片七仙女欲春2| 国产精品久久久久久精品电影| 18禁在线无遮挡免费观看视频 | 国产精品亚洲美女久久久| 精品人妻偷拍中文字幕| 久久久成人免费电影| 校园人妻丝袜中文字幕| 欧美3d第一页| 亚洲av中文字字幕乱码综合| 亚洲中文字幕一区二区三区有码在线看| 亚洲av.av天堂| 中国美女看黄片| 久久精品国产亚洲av天美| 黄色日韩在线| 一进一出好大好爽视频| 一边摸一边抽搐一进一小说| 国产乱人偷精品视频| 欧美日韩一区二区视频在线观看视频在线 | 成人二区视频| av在线蜜桃| 国产高清有码在线观看视频| 久久久久久久久中文| 久久久成人免费电影| 麻豆精品久久久久久蜜桃| 在线观看免费视频日本深夜| 久久6这里有精品| av专区在线播放| 搡女人真爽免费视频火全软件 | 国产午夜福利久久久久久| 一夜夜www| 精品国内亚洲2022精品成人| 久久精品夜夜夜夜夜久久蜜豆| 别揉我奶头~嗯~啊~动态视频| 老熟妇乱子伦视频在线观看| 综合色丁香网| 国产精品人妻久久久久久| 日日撸夜夜添| 校园春色视频在线观看| 亚洲自拍偷在线| 久久久色成人| h日本视频在线播放| 国产精品爽爽va在线观看网站| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品一区av在线观看| 午夜福利视频1000在线观看| 国产白丝娇喘喷水9色精品| 91久久精品国产一区二区三区| 99久久成人亚洲精品观看| 亚洲真实伦在线观看| 午夜精品在线福利| 在线天堂最新版资源| 嫩草影院精品99| 观看免费一级毛片| 丰满的人妻完整版| 色av中文字幕| 亚洲乱码一区二区免费版| 毛片女人毛片| 国产黄片美女视频| 国产高清有码在线观看视频| 成人永久免费在线观看视频| 综合色av麻豆| 国产色婷婷99| 亚州av有码| 国产91av在线免费观看| 亚洲欧美日韩无卡精品| 日韩 亚洲 欧美在线| 成人亚洲欧美一区二区av| 综合色丁香网| 91狼人影院| 国产欧美日韩精品亚洲av| 日本三级黄在线观看| 亚洲自拍偷在线| 成人性生交大片免费视频hd| 寂寞人妻少妇视频99o| 免费搜索国产男女视频| 尾随美女入室| 久久久精品欧美日韩精品| 国内精品久久久久精免费| 久久婷婷人人爽人人干人人爱| 欧美3d第一页| 国产三级在线视频| 少妇熟女欧美另类| 国内少妇人妻偷人精品xxx网站| 亚洲五月天丁香| 18+在线观看网站| 国产成年人精品一区二区| 欧美高清性xxxxhd video| 免费看a级黄色片| 国产人妻一区二区三区在| 99视频精品全部免费 在线| 国产黄色小视频在线观看| 小蜜桃在线观看免费完整版高清| 精品久久国产蜜桃| 欧美最黄视频在线播放免费| 国产精品一及| 午夜久久久久精精品| 日韩三级伦理在线观看| 国产91av在线免费观看| 国产一区二区在线观看日韩| 特大巨黑吊av在线直播| 国产真实伦视频高清在线观看| 日韩 亚洲 欧美在线| 国产极品精品免费视频能看的| 夜夜爽天天搞| 国语自产精品视频在线第100页| 在线观看美女被高潮喷水网站| 99久久精品一区二区三区| 亚洲精品色激情综合| 亚洲第一电影网av| 国产精品久久久久久精品电影| 女的被弄到高潮叫床怎么办| 国产男靠女视频免费网站| 乱系列少妇在线播放| 午夜福利在线观看免费完整高清在 | 给我免费播放毛片高清在线观看| 免费av不卡在线播放| 国产高清有码在线观看视频| 人妻制服诱惑在线中文字幕| 欧美性感艳星| av在线亚洲专区| 国产一区二区激情短视频| 老女人水多毛片| 日韩制服骚丝袜av| 国产av一区在线观看免费| 一a级毛片在线观看| 欧美中文日本在线观看视频| 日本色播在线视频| 国产精品久久久久久久久免| 91av网一区二区| 最新在线观看一区二区三区| av天堂在线播放| 久久精品夜色国产| 亚洲av中文av极速乱| 简卡轻食公司| 亚洲激情五月婷婷啪啪| 中文字幕精品亚洲无线码一区| 免费在线观看影片大全网站| 亚洲欧美中文字幕日韩二区| 天天躁夜夜躁狠狠久久av| 精品一区二区三区视频在线| 老熟妇仑乱视频hdxx| 男人和女人高潮做爰伦理| 你懂的网址亚洲精品在线观看 | 91在线精品国自产拍蜜月| 国产伦在线观看视频一区| 国产精品爽爽va在线观看网站| 国产伦精品一区二区三区四那| 亚洲熟妇中文字幕五十中出| 欧美潮喷喷水| a级毛片免费高清观看在线播放| 精品国内亚洲2022精品成人| 精品久久久久久久久av| 成人美女网站在线观看视频| 久久精品影院6| 国产色婷婷99| 97在线视频观看| 日韩一区二区视频免费看| 欧美精品国产亚洲| a级一级毛片免费在线观看| 精品久久久久久久久av| 欧美潮喷喷水| 日韩强制内射视频| 国产伦在线观看视频一区| 成人漫画全彩无遮挡| 在线国产一区二区在线| 免费大片18禁| 久久鲁丝午夜福利片| av在线播放精品| 熟妇人妻久久中文字幕3abv| 国产一区二区激情短视频| 亚洲国产精品国产精品| 亚洲中文字幕一区二区三区有码在线看| 国产精品久久久久久亚洲av鲁大| 亚洲欧美日韩卡通动漫| 国产av麻豆久久久久久久| 国产成人91sexporn| 最近的中文字幕免费完整| 99久久九九国产精品国产免费| 十八禁网站免费在线| 中出人妻视频一区二区| 1000部很黄的大片| 丝袜美腿在线中文| 看黄色毛片网站| 久久久久久伊人网av| 色视频www国产| 国产视频一区二区在线看| 综合色av麻豆| 久久精品国产亚洲av天美| 国产三级中文精品| 久久久久国内视频| 精品少妇黑人巨大在线播放 | 欧美一级a爱片免费观看看| 2021天堂中文幕一二区在线观| 国产高清有码在线观看视频| 国产伦精品一区二区三区四那| 搡女人真爽免费视频火全软件 | 特级一级黄色大片| 国产精品国产三级国产av玫瑰| 成人鲁丝片一二三区免费| 1000部很黄的大片| videossex国产| 真人做人爱边吃奶动态| 久久中文看片网| 国产精品伦人一区二区| 久久久久久九九精品二区国产| 在线观看午夜福利视频| 在线天堂最新版资源| 99久国产av精品国产电影| 麻豆久久精品国产亚洲av| 可以在线观看的亚洲视频| 男人舔奶头视频| 国产69精品久久久久777片| 日本色播在线视频| 久久精品国产鲁丝片午夜精品| 色吧在线观看| 国产伦精品一区二区三区四那| or卡值多少钱| 又黄又爽又免费观看的视频| 最后的刺客免费高清国语| 亚洲中文字幕一区二区三区有码在线看| 1024手机看黄色片| 日日啪夜夜撸| 亚洲av电影不卡..在线观看| 我的女老师完整版在线观看| 国产欧美日韩精品一区二区| a级毛片a级免费在线| 亚洲,欧美,日韩| 两个人视频免费观看高清| 亚洲经典国产精华液单| 日本欧美国产在线视频| 天天躁夜夜躁狠狠久久av| 亚洲成a人片在线一区二区| 国产 一区精品| 九九爱精品视频在线观看| 久久中文看片网| 99精品在免费线老司机午夜| 深爱激情五月婷婷| 黄色一级大片看看| 最近手机中文字幕大全| 亚洲激情五月婷婷啪啪| 精品日产1卡2卡| 亚洲成人中文字幕在线播放| 最新在线观看一区二区三区| 婷婷精品国产亚洲av在线| 久久精品国产99精品国产亚洲性色| www日本黄色视频网| 精品99又大又爽又粗少妇毛片| 香蕉av资源在线| 成年av动漫网址| 最好的美女福利视频网| 久久久国产成人精品二区| 欧美日韩精品成人综合77777| 麻豆乱淫一区二区| 天天躁夜夜躁狠狠久久av| 日本撒尿小便嘘嘘汇集6| 久久精品国产自在天天线| 中文字幕人妻熟人妻熟丝袜美| 国产欧美日韩精品亚洲av| 亚洲成av人片在线播放无| 岛国在线免费视频观看| 欧美三级亚洲精品| 99热全是精品| 亚洲精品成人久久久久久| av黄色大香蕉| 亚洲精品粉嫩美女一区| 白带黄色成豆腐渣| 观看美女的网站| 日韩国内少妇激情av| 美女内射精品一级片tv| 成人午夜高清在线视频| 你懂的网址亚洲精品在线观看 | 久久久久九九精品影院| 中文字幕av成人在线电影| 久久精品国产99精品国产亚洲性色| 草草在线视频免费看| 成人综合一区亚洲| 美女xxoo啪啪120秒动态图| 欧美日韩国产亚洲二区| av卡一久久| 久久精品91蜜桃| 国产麻豆成人av免费视频| 日本色播在线视频| 国产色爽女视频免费观看| 欧美性猛交黑人性爽| 亚洲欧美日韩东京热| 中国美女看黄片| 日韩欧美 国产精品| 美女高潮的动态| 日韩欧美一区二区三区在线观看| 免费一级毛片在线播放高清视频| 两个人视频免费观看高清| 成人特级黄色片久久久久久久| 精品人妻熟女av久视频| 国产一区二区在线观看日韩| 午夜精品一区二区三区免费看| 噜噜噜噜噜久久久久久91| 亚洲色图av天堂| 国产片特级美女逼逼视频| 又粗又爽又猛毛片免费看| 国产视频内射| 久久久久久伊人网av| 看片在线看免费视频| 岛国在线免费视频观看| 亚洲人成网站在线播放欧美日韩| 国产麻豆成人av免费视频| 久久精品国产自在天天线| 国产成人a区在线观看| av在线天堂中文字幕| 国产高清不卡午夜福利| 亚洲人与动物交配视频| 日韩精品有码人妻一区| 欧美最黄视频在线播放免费| 一区二区三区四区激情视频 | АⅤ资源中文在线天堂| 亚洲最大成人中文| 好男人在线观看高清免费视频| 国产午夜精品久久久久久一区二区三区 | 亚洲国产精品合色在线| 在现免费观看毛片| 色在线成人网| 亚洲人成网站高清观看| 午夜亚洲福利在线播放| 国产一级毛片七仙女欲春2| 日本黄色片子视频| 日韩欧美三级三区| 欧美+日韩+精品| 男插女下体视频免费在线播放| 99国产极品粉嫩在线观看| 国产乱人偷精品视频| 久久久久久大精品| 三级男女做爰猛烈吃奶摸视频| 51国产日韩欧美| 国内揄拍国产精品人妻在线| 天堂av国产一区二区熟女人妻| 少妇猛男粗大的猛烈进出视频 | 国产精品爽爽va在线观看网站| 三级经典国产精品| 国产美女午夜福利| 久久精品国产亚洲av香蕉五月| 真人做人爱边吃奶动态| 美女内射精品一级片tv| 国产精品久久久久久亚洲av鲁大| 亚洲国产精品国产精品| 最近视频中文字幕2019在线8| 欧美日韩综合久久久久久| 麻豆乱淫一区二区| 美女黄网站色视频| 国产精品99久久久久久久久| 国内精品宾馆在线| 婷婷色综合大香蕉| 成人欧美大片| 亚洲高清免费不卡视频| 日韩精品青青久久久久久| 国内久久婷婷六月综合欲色啪| 露出奶头的视频| 变态另类成人亚洲欧美熟女| 少妇熟女欧美另类| 久久中文看片网| 欧美激情国产日韩精品一区| 国内精品宾馆在线| 看非洲黑人一级黄片| 亚洲丝袜综合中文字幕| 嫩草影院入口| 国产av在哪里看| 又黄又爽又刺激的免费视频.| 99九九线精品视频在线观看视频| 亚洲第一区二区三区不卡| 欧美成人精品欧美一级黄| 变态另类丝袜制服| 婷婷亚洲欧美| 在线免费观看不下载黄p国产| 久久久久久久久大av| 伦精品一区二区三区| 老司机影院成人| 久久精品国产自在天天线| 午夜视频国产福利| 国模一区二区三区四区视频| 亚洲乱码一区二区免费版| 天堂网av新在线| 欧美在线一区亚洲| 国产精品久久久久久亚洲av鲁大| 日韩欧美国产在线观看| 日本免费a在线| 99久久久亚洲精品蜜臀av| 精品久久久久久成人av| 综合色av麻豆| 久久精品91蜜桃| 欧美成人免费av一区二区三区| 国产精品三级大全| av天堂中文字幕网| 免费看av在线观看网站| 国产国拍精品亚洲av在线观看| 国语自产精品视频在线第100页| 久久精品国产亚洲网站| 在线免费观看的www视频| 久久鲁丝午夜福利片| 亚洲人与动物交配视频| 国产一区二区在线观看日韩| 又黄又爽又刺激的免费视频.| 国产一区二区在线av高清观看| 午夜福利成人在线免费观看| 国产老妇女一区| 麻豆成人午夜福利视频| 欧美日韩在线观看h| 级片在线观看| 成人特级av手机在线观看| 人妻制服诱惑在线中文字幕| 午夜福利在线观看吧| 永久网站在线| 久久人人爽人人片av| 3wmmmm亚洲av在线观看| 国产综合懂色| 一级毛片电影观看 | 婷婷六月久久综合丁香| 成人综合一区亚洲| 免费观看人在逋| 插逼视频在线观看| 一进一出抽搐动态| 五月伊人婷婷丁香|