• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tool Health Condition Recognition Method for High Speed Milling of Titanium Alloy Based on Principal Component Analysis (PCA) and Long Short Term Memory (LSTM)

    2019-12-06 09:00:06YANGQiruiXUKaizhouZHENGXiaohuXIAOLei肖雷BAOJinsong

    YANGQirui,XUKaizhou,ZHENGXiaohu,XIAOLei(肖雷),BAOJinsong

    1 College of Mechanical Engineering, Donghua University, Shanghai 201600, China2 Shanghai Space Propulsion Technology Research Institute, Shanghai 201100, China

    Abstract: The healthy condition of the milling tool has a very high impact on the machining quality of the titanium components. Therefore, it is important to recognize the healthy condition of the tool and replace the damaged cutter at the right time. In order to recognize the health condition of the milling cutter, a method based on the long short term memory (LSTM) was proposed to recognize tool health state in this paper. The various signals collected in the tool wear experiments were analyzed by time-domain statistics, and then the extracted data were generated by principal component analysis (PCA) method. The preprocessed data extracted by PCA is transmitted to the LSTM model for recognition. Compared with back propagation neural network (BPNN) and support vector machine(SVM), the proposed method can effectively utilize the time-domain regulation in the data to achieve higher recognition speed and accuracy.

    Key words: health condition recognition; milling tool; principal component analysis(PCA); long short term memory (LSTM)

    Introduction

    With the rapid demands of the titanium alloy components in aerospace industry, high-speed machining technology has also been more widely used. However, due to the high strength-to-weight ratio and high toughness of titanium alloys, real-time monitoring of tool healthy condition is important for high-speed machining. If the tool health condition cannot be recognized correctly, the harmful effect on the machining efficiency and machining quality may happen. Therefore, it is important to recognize the tool health condition.

    The traditional method of monitoring tool health condition is based on off-line measurement by optic microscope. Although the traditional method has an intuitive recognition result, it is helpless to increase productivity. At the same time, due to the need of high productivity, more consideration should be given to the instant monitoring. To satisfy this demand,principal component analysis (PCA) is used to analyze the various processing state data and long short term memory network (LSTM) is used recognize the healthy condition. When recognizing tool health condition, the popular methods are based on data-driven forms, mainly including neural network-based methods. Chenetal.[1]introduced information such as machine vibration signals and machine operating conditions into a neural network model based on logistic regression to evaluate the reliability of CNC machine tools. Wuetal.[2]developed a new optimization method based on the traditional deep neural network. They innovatively pass data from adjacent time nodes to the model for evaluation. Gebraeel and Lawley[3]introduced the features extracted from the bearing vibration signal into the neural network to predict the life distribution of the bearing. Data-driven method has become the mainstream of tool monitoring.

    In recent research, it has become common practice to introduce multiple state features into neural network models. Compared with the early neural network model that uses single state features as incoming data, this model can significantly improve accuracy and robustness. The characteristics of the incoming model can be extracted from the vibration signal of the machine. However, the traditional deep neural network method selection model often ignores the temporal sequence law hidden in the feature set. Although Wuetal.[2]passed the characteristics of adjacent time nodes into the deep network, the traditional deep neural network has two significant problems. (1) The weight of the model increases with the number of time nodes of the incoming features. The number of valueswis also increasing in geometric multiples. (2) The model doesn’t fully learn the timing law of the collected data set. In order to solve the above problems that may arise in the determination of tool health, this paper proposes a method based on long short time memory (LSTM). LSTM has been proved to be very effective for training tests on time series data. Yang and Kim[4]proved that LSTM has better results in other areas of machinery. Qinetal.[5]found that LSTM perform better in sensor fault diagnosis of autonomous underwater vehicle. Especially in the application of state monitoring and fault diagnosis of energy systems, Leietal.[6]attached higher test accuracy by using LSTM. Yuanetal.[7]used the LSTM framework to build a model for hybrid fault diagnosis. Zhaoetal.[8]adopted the combination framework of convolutional neural networks (CNN)+ bi-directional long short term memory (BLSTM) to realize the diagnosis of tool wear state from the perspective of machine vision. Zhangetal.[9]successfully applied LSTM method to life prediction of lithium batteries. Liuetal.[10]used LSTM method to remaining useful life estimation for proton exchange membrane fuel cells. In this paper, the LSTM network is used as a model to judge the health status of milling tools. Compared with the traditional deep learning network, the timing law of incoming data can be mined to obtain higher recognition accuracy. In this paper, the characteristic data transmitted in the experiment is the time domain characteristic obtained by the mean square error and root variance processing of the cutting force in the three axial directions of the main shaft.

    The rest of this article is organized as follows. Section 1 introduces the data collected on by the experiments in this paper and the method for judging recognizing the health condition of the tool by using the PCA and LSTM network. Section 2 introduces the optimal selection of model parameters and compare comparison between the proposed model with and the traditional method. The conclusion can be seen in section 3.

    1 Model and Experiment

    1.1 Model

    The recognition model structure is mainly divided into two parts: the principal component analysis part and the LSTM recognition model part. The overall process is shown in Fig. 1. The 20 time-domain features will be introduced in the data collection section.

    Fig. 1 Model process

    The first part is the preprocessing part, which uses PCA to reduce the amount of data to reduce the model’s data and the size of the model, and improve the training speed. When applying PCA, a total of 20 time-domain features of the three axes are subjected to orthogonal transformation into eight sets of linear independent parameters.

    The second part is the recognition part, which adopts the LSTM model. The processed data is passed to the model for recognition. The LSTM has more input gates, forgetting gates, and output gates than the recurrent neural network(RNN). The output of the previous cellht-1, the input of the current cellXt, and the previous cell stateCt-1are transmitted into the current cell. The forgotten gate readsht-1andXtto determine if the last Cell state needs to be retained. The input gate updates the cell state in the current cell. The output gate is used to generate the output of the current cellht.

    1.2 Experimental details

    In this study, high speed milling experiments of titanium alloy were conducted. Two data sets were collected for the model. Carbide milling cutter with TiAlN heat-resistant coating is used for experiment. Its diameter is 10 mm, the number of blades is 2, and the grain size is 0.6 μm. The experimental data are based on a DMC635V vertical machining center equipped with the Siemens 840D CNC system. The force sensor adopts YDXM-M97 three-way piezoelectric quartz dynamometer, and the sampling frequency is set to 50 kHz per channel. The experimental platform is shown in Fig. 2. In the process of data acquisition, the tool is placed under the microscope to measure the amount of flank wear. Wear measurement based on microscope is shown in Fig. 3.

    Fig. 2 DMC635V vertical machining center equipped with the Siemens 840D data system

    Fig. 3 Wear measurement based on microscope

    The purpose of the tool wear experiment is to study the relationship between tool wear and the state parameters of the sensor acquisition, and to provide a data basis for accurate recognition of tool health condition mean value VB of the wear in the middle part of the wear zone of the flank as an indicator of the health of the tool. VB is defined as the degree of flank wear. Because the milling tool has multiple cutting edges, the data set uses the maximum value of VB in the multi-blade as the true value of milling wear. Schematic diagram of VB is shown in Fig. 4. The tool wear condition is divided according to the tool wear value VB, which is shown in Table 1.

    Fig. 4 Schematic diagram of VB

    CategoryTool wear value/mmWear level10-0.1Light wear20.1-0.5Moderate wear3>0.5Heavy wear

    The data are collected under wear conditions with the spindle speed of 10 000 r/min, the feed rate of 200 mm/min and the cutting depth of 0.2 mm.

    1.3 Data acquisition and processing

    Data acquisition is derived from simultaneous acquisition of multiple sensors that collect machine state parameters. The data set is maily divided into main cutting force signal, spindle load rate data, spindle power data, and spindle current data in sequence. However, due to the huge capacity of the collected signals, the signals cannot be directly used for the recognition of tool wear. It is necessary to use various signal processing methods to generate characteristic quantities of the signals that can reflect the tool wear.

    We have also frequency-domain features in model recognition. However, due to the low sampling frequency of the machine tool, the frequency domain information obtained after processing the sampling signal of the machine tool is not available. Therefore, the final recognition features are based on time-domain features.

    Time-domain feature extraction is a more commonly solution in signal processing. It can reflect the change of the signal with time. Time-domain features are mainly divided into amplitude analysis, autocorrelation analysis, cross-correlation analysis and time series analysis. Among them, amplitude analysis is the most widely used. Amplitude analysis is a statistical analysis of the probability density distribution of sensor signals, such as maximum, average, root mean square(RMS), variance, standard deviation, skewness, kurtosis, peak-to-peak and peak coefficients. After final selection, we select 20 times domain characteristics in 3-axis, such as the average spindle load, the RMS value of the spindle load, the peak load, the peak load factor, the load waveform coefficient, and the axle load pulse factor.

    In this paper, the cutting force, cutting current and the average spindle load of the three axes, the RMS value of the spindle load, the peak load, the peak load factor, the load waveform coefficient, the axle load pulse coefficient, and a total of 20 time domain features are selected to form the signal feature quantity. Ten examples of features acquired on theY-axis are shown in Table 2.

    Table 2 Features acquired on the spindle and Y-axis

    In order to avoid physical unit interference and prevent gradient explosion in the training model, this paper uses a linear function conversion method to scale the data to fall into a small specific interval. Since the indicators of each index of the credit indicator system are different, in order to be able to participate in the evaluation calculation, the indicators need to be normalized, and their values are mapped to a certain numerical interval by function transformation. The expression is

    whereyis the new value after normalization,xis the original value, max(x) is the maximum value in the set of data, and min(x) is the minimum value in the set of data.

    After metal cutting experiments, 500 sets of data in different processing environments were obtained, and each set of data obtained 20 effective eigenvalues through the above feature engineering. Therefore, a 500×20 valid data set normalized under different processing parameters is obtained.

    2 Model Optimization and Comparison

    In order to analyze the accuracy of the proposed method, two recognition methods are selected as the comparison model, which are back propagation neural network (BPNN) and support vector machine (SVM). In this paper, a two-class SVM classification model is used. The basic model is defined as the linear classifier with the largest interval in the feature space. The learning strategy is to maximize the interval. The gamma value of the SVM model is 50, and radial basis function (RBF) is chosen as the kernel. The deep neural network is divided into three layers. The parameters of the model are shown in Table 3.

    Table 3 Parameters of the deep neural network

    At the same time, in order to verify the effect of the LSTM model, in addition to the direct identification of the obtained data, this paper also divides the data, trying to investigate the recognition effect of the model in the case of unbalanced samples. Separately, the severe wear data accounted for 5% and 10% of the training data set. In order to examine the model’s ability to normalize, the first comparison is to verify the impact of the PCA method on the time spent on model training. When PCA is not used, a total of 20 time-frequency domain features need to be taken into account, which will greatly increase the complexity of the model and reduce the speed of model training. Table 4 shows the impact of adopting PCA in model training.

    Table 4 Impact of adopting PCA in model training

    The hyper-parameters of the LSTM model proposed in this paper are shown in Table 5. Case 1 and Case 2 are compared to find the impact of hidden layer. Case 2 and Case 3 are used to find whether different iteration numbers have different effect for test accuracy.

    Table 5 Different hyper-parameters for LSTM model structure

    The accuracy of choosing different hidden layers is shown in Fig. 5. When the hidden layer reaches 50 layers in Case 2, the model can achieve 95.74% in accuracy after 500 iterations of training, which is more accurate than that in Case 1.

    Fig. 5 Accuracy of LSTM model with different hyper-parameters

    It can be seen from the results that the model can reach the accuracy of 95.74% under the condition of 500 iterations and 50 hidden layers. That is higher than the accuracy of 92.16% under 250 iterations.

    The wear condition of the tool is in the medium wear state of the tool during the machining process. Because the data are in an unbalanced state, it is necessary to improve the accuracy of recognizing wear level.

    In order to study the accuracy of the proposed method better, this paper designed three experimental data settings. The setting 1 is making training data containing 5% severe wear samples. The setting 2 is making training data containing 10% severe wear samples. The setting 3 uses all pre-processed data for training.

    In this comparison, the LSTM model has a hidden layer size of 50 and an iteration number of 500. The hyper-parameters of BPNN and SVM are the same as those in introduction. The discriminate results of the three models are shown in Fig. 6.

    Fig. 6 Accuracy of the model with different experimental data settings

    It can be concluded from Fig. 6 that the LSTM model still has better interpretation accuracy than the other two models under the condition of unbalanced samples.

    In order to test the fit of the model to untrained data, cross-validation of the model is required. The cross-validation method divides the data set into two parts, one part is divided into training set for training, and the other part is tested as a test set. Then the two data parts are swapped for repeated training and test. After the cross-validation method, the generalization ability of the model can be judged intuitively. In this verification, we trained the well-defined test set to test the accuracy of the interpretation of the training set. The results of cross validation are shown in Fig. 7.

    Fig. 7 Comparison of discriminant accuracy rates when LSTM is cross-validated

    3 Conclusions

    In this paper, a method for judging the health state of milling tools based on PCA and LSTM is proposed. Time-domain processing is performed on the collected processing parameters to initially reduce the amount of data. Principal component analysis is then performed on the time-domain data for further data reduction. The final processed data is passed to the LSTM model for tool health status discrimination.

    Due to the combination of PCA method and LSTM network, this method can excavate the timing law in the data. Compared with the traditional SVM and BPNN, this method has been proved to have higher recognition accuracy.

    9191精品国产免费久久| 91字幕亚洲| 操出白浆在线播放| 久久午夜综合久久蜜桃| 后天国语完整版免费观看| a在线观看视频网站| 两性夫妻黄色片| aaaaa片日本免费| 午夜久久久在线观看| 国产精品永久免费网站| 精品一区二区三区av网在线观看| 色综合婷婷激情| 无限看片的www在线观看| 国产精品1区2区在线观看.| 亚洲一区二区三区色噜噜| 午夜免费成人在线视频| 美女午夜性视频免费| 在线免费观看的www视频| 久久久久久国产a免费观看| 满18在线观看网站| 欧美乱妇无乱码| 久久久久国产一级毛片高清牌| 午夜久久久久精精品| 熟妇人妻久久中文字幕3abv| 天天躁狠狠躁夜夜躁狠狠躁| 性色av乱码一区二区三区2| 非洲黑人性xxxx精品又粗又长| 日日爽夜夜爽网站| 午夜福利高清视频| 在线天堂中文资源库| 一本一本综合久久| 99精品在免费线老司机午夜| 国产精品综合久久久久久久免费| 亚洲中文av在线| 夜夜躁狠狠躁天天躁| 这个男人来自地球电影免费观看| 国产av一区在线观看免费| 老司机在亚洲福利影院| 他把我摸到了高潮在线观看| 日韩高清综合在线| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品国产区一区二| 国产av不卡久久| 后天国语完整版免费观看| 两个人看的免费小视频| 夜夜看夜夜爽夜夜摸| 亚洲激情在线av| 日韩高清综合在线| 最新美女视频免费是黄的| 精品不卡国产一区二区三区| 免费在线观看完整版高清| 桃红色精品国产亚洲av| 人妻丰满熟妇av一区二区三区| 精品一区二区三区视频在线观看免费| 天堂动漫精品| 成人手机av| 亚洲人成网站高清观看| 日韩免费av在线播放| 国产av不卡久久| 久久香蕉激情| 久久伊人香网站| 精品第一国产精品| 熟女少妇亚洲综合色aaa.| 精品乱码久久久久久99久播| 19禁男女啪啪无遮挡网站| 香蕉丝袜av| 俄罗斯特黄特色一大片| 夜夜爽天天搞| 在线观看免费日韩欧美大片| 91国产中文字幕| 亚洲一区高清亚洲精品| 99久久综合精品五月天人人| 国产精品一区二区免费欧美| 亚洲色图av天堂| 亚洲国产精品sss在线观看| 波多野结衣高清作品| 免费搜索国产男女视频| 99久久国产精品久久久| 亚洲天堂国产精品一区在线| 精品久久久久久久末码| 久久久久久免费高清国产稀缺| 亚洲国产精品999在线| 久久精品影院6| av福利片在线| 两个人看的免费小视频| 婷婷精品国产亚洲av| 男女做爰动态图高潮gif福利片| 免费看十八禁软件| 精品国内亚洲2022精品成人| 2021天堂中文幕一二区在线观 | 午夜成年电影在线免费观看| 久久精品91蜜桃| 久久精品影院6| 美女 人体艺术 gogo| 国产熟女xx| 巨乳人妻的诱惑在线观看| 男女视频在线观看网站免费 | 国语自产精品视频在线第100页| 男人舔女人下体高潮全视频| 一区二区三区精品91| 日韩大尺度精品在线看网址| 此物有八面人人有两片| 大型av网站在线播放| 成人18禁在线播放| av免费在线观看网站| 免费av毛片视频| 最近最新免费中文字幕在线| 啦啦啦韩国在线观看视频| 国产精品影院久久| 夜夜爽天天搞| 啦啦啦观看免费观看视频高清| 大型黄色视频在线免费观看| 两个人视频免费观看高清| 国产精品永久免费网站| 在线观看免费视频日本深夜| 身体一侧抽搐| 一个人免费在线观看的高清视频| 狠狠狠狠99中文字幕| 久久这里只有精品19| 99久久国产精品久久久| 午夜免费鲁丝| 欧美成人午夜精品| 日韩 欧美 亚洲 中文字幕| 国产精品av久久久久免费| 麻豆国产av国片精品| 正在播放国产对白刺激| 欧美 亚洲 国产 日韩一| 久久精品人妻少妇| 天堂√8在线中文| 俺也久久电影网| 亚洲avbb在线观看| 老司机深夜福利视频在线观看| 自线自在国产av| 美女高潮喷水抽搐中文字幕| 国产精品 国内视频| 老司机福利观看| 欧美乱码精品一区二区三区| 久久精品人妻少妇| 变态另类丝袜制服| 久久99热这里只有精品18| 亚洲国产欧美网| 日本五十路高清| 99国产综合亚洲精品| a级毛片在线看网站| 午夜老司机福利片| 国产激情欧美一区二区| 一边摸一边做爽爽视频免费| 亚洲国产毛片av蜜桃av| 成人亚洲精品一区在线观看| 在线观看日韩欧美| 中文字幕最新亚洲高清| 黑人巨大精品欧美一区二区mp4| 国产免费av片在线观看野外av| 日韩高清综合在线| 国产高清videossex| 欧美精品啪啪一区二区三区| 亚洲五月色婷婷综合| 欧美国产日韩亚洲一区| 麻豆国产av国片精品| 精品久久久久久久久久免费视频| 国产精品一区二区精品视频观看| 久久婷婷人人爽人人干人人爱| 18禁国产床啪视频网站| 欧美人与性动交α欧美精品济南到| 亚洲国产欧美网| 国产又爽黄色视频| 国产伦人伦偷精品视频| 午夜久久久在线观看| 黑人操中国人逼视频| 波多野结衣av一区二区av| а√天堂www在线а√下载| 精品欧美一区二区三区在线| 亚洲国产中文字幕在线视频| 久久久久久久久中文| 欧美日韩黄片免| 亚洲狠狠婷婷综合久久图片| 国产精品亚洲av一区麻豆| 亚洲国产精品合色在线| 国产亚洲精品第一综合不卡| 91av网站免费观看| 欧美日韩亚洲国产一区二区在线观看| 老司机深夜福利视频在线观看| av欧美777| a在线观看视频网站| 人妻丰满熟妇av一区二区三区| 国产蜜桃级精品一区二区三区| 大型黄色视频在线免费观看| 18禁黄网站禁片免费观看直播| 成在线人永久免费视频| 人人妻人人澡人人看| 日日夜夜操网爽| 午夜激情av网站| 一级a爱片免费观看的视频| 亚洲第一青青草原| 欧美性猛交黑人性爽| 一进一出抽搐动态| 色av中文字幕| 久久精品亚洲精品国产色婷小说| 老汉色∧v一级毛片| 精品久久久久久久毛片微露脸| 国产视频内射| 久久久久国产精品人妻aⅴ院| 久久国产精品男人的天堂亚洲| or卡值多少钱| 夜夜夜夜夜久久久久| 日本熟妇午夜| 国产av一区二区精品久久| 国产亚洲av嫩草精品影院| 成人精品一区二区免费| 亚洲国产精品sss在线观看| 亚洲一码二码三码区别大吗| 人妻久久中文字幕网| 国产成人精品久久二区二区免费| 一区二区三区高清视频在线| 变态另类丝袜制服| 精品无人区乱码1区二区| 99久久99久久久精品蜜桃| 欧美三级亚洲精品| 国产精品爽爽va在线观看网站 | 高潮久久久久久久久久久不卡| 国内少妇人妻偷人精品xxx网站 | 熟女电影av网| 女性生殖器流出的白浆| 亚洲精华国产精华精| 99热这里只有精品一区 | av超薄肉色丝袜交足视频| 成人亚洲精品av一区二区| 欧美 亚洲 国产 日韩一| 亚洲国产毛片av蜜桃av| 国产伦人伦偷精品视频| 国产av一区在线观看免费| 亚洲精品中文字幕在线视频| 亚洲久久久国产精品| 国内精品久久久久久久电影| 熟妇人妻久久中文字幕3abv| 午夜福利欧美成人| 欧美在线一区亚洲| 日韩欧美国产在线观看| 日本成人三级电影网站| 国产欧美日韩精品亚洲av| 久久香蕉激情| 国产亚洲精品一区二区www| 国产精品久久久av美女十八| 亚洲五月天丁香| 国产激情欧美一区二区| 久久精品人妻少妇| 日韩欧美一区二区三区在线观看| 一个人观看的视频www高清免费观看 | 精品一区二区三区av网在线观看| 999久久久国产精品视频| 亚洲av电影在线进入| xxxwww97欧美| www日本在线高清视频| 婷婷精品国产亚洲av在线| 高潮久久久久久久久久久不卡| 国产视频一区二区在线看| 亚洲精品美女久久久久99蜜臀| 国产成人欧美在线观看| 中文亚洲av片在线观看爽| 欧美av亚洲av综合av国产av| 天堂动漫精品| 啪啪无遮挡十八禁网站| 国产精品一区二区免费欧美| 国产精品免费视频内射| 一级a爱片免费观看的视频| 国产精品 国内视频| 人妻丰满熟妇av一区二区三区| 久久欧美精品欧美久久欧美| 午夜亚洲福利在线播放| 国产久久久一区二区三区| 欧美一区二区精品小视频在线| 黑丝袜美女国产一区| 精品国内亚洲2022精品成人| 一本大道久久a久久精品| 午夜影院日韩av| 精品免费久久久久久久清纯| 久久伊人香网站| 久久久久久免费高清国产稀缺| 女性生殖器流出的白浆| 国产单亲对白刺激| 国产一区二区三区视频了| 国产精品av久久久久免费| 日本三级黄在线观看| 亚洲中文字幕一区二区三区有码在线看 | 黄色女人牲交| 日本 欧美在线| 中文字幕久久专区| av中文乱码字幕在线| 中国美女看黄片| 精品久久久久久久人妻蜜臀av| 婷婷精品国产亚洲av| 亚洲第一青青草原| 国产成人av教育| 亚洲国产精品合色在线| 久热这里只有精品99| 国产日本99.免费观看| 亚洲中文字幕日韩| 听说在线观看完整版免费高清| 日韩欧美国产在线观看| 成人国产一区最新在线观看| 90打野战视频偷拍视频| 成人亚洲精品av一区二区| 国产99白浆流出| 露出奶头的视频| 国内久久婷婷六月综合欲色啪| 999精品在线视频| 亚洲一码二码三码区别大吗| 伦理电影免费视频| 国产男靠女视频免费网站| 哪里可以看免费的av片| 午夜激情福利司机影院| 亚洲 欧美一区二区三区| 色在线成人网| 男女之事视频高清在线观看| 中文字幕av电影在线播放| 色在线成人网| 国产高清视频在线播放一区| 亚洲男人天堂网一区| 黄片大片在线免费观看| 亚洲av中文字字幕乱码综合 | 别揉我奶头~嗯~啊~动态视频| 国内精品久久久久精免费| 不卡一级毛片| 国产精品一区二区三区四区久久 | 精品国产国语对白av| 久久精品aⅴ一区二区三区四区| 99热6这里只有精品| 午夜激情av网站| 欧美性猛交黑人性爽| 国产av一区在线观看免费| 少妇 在线观看| 99热只有精品国产| 在线看三级毛片| 亚洲国产欧美网| 国产欧美日韩一区二区三| 热99re8久久精品国产| 亚洲一区中文字幕在线| 88av欧美| 国产精品 欧美亚洲| 神马国产精品三级电影在线观看 | 天天添夜夜摸| 久久午夜综合久久蜜桃| 天天躁夜夜躁狠狠躁躁| 在线观看免费日韩欧美大片| 欧美乱色亚洲激情| 变态另类丝袜制服| www.熟女人妻精品国产| 亚洲国产欧美日韩在线播放| 18美女黄网站色大片免费观看| 成人永久免费在线观看视频| 久久久水蜜桃国产精品网| 精品久久久久久成人av| 妹子高潮喷水视频| 18美女黄网站色大片免费观看| 女人爽到高潮嗷嗷叫在线视频| 国产av不卡久久| 大香蕉久久成人网| 99国产精品一区二区三区| 亚洲第一青青草原| 欧美黑人巨大hd| 亚洲中文日韩欧美视频| 在线免费观看的www视频| 香蕉国产在线看| 又紧又爽又黄一区二区| 极品教师在线免费播放| 免费在线观看日本一区| 亚洲精品久久成人aⅴ小说| 国产成人一区二区三区免费视频网站| 久久国产精品影院| 国产精品自产拍在线观看55亚洲| 久久青草综合色| 日韩免费av在线播放| 中文字幕另类日韩欧美亚洲嫩草| 婷婷丁香在线五月| 婷婷精品国产亚洲av| 国产一区二区三区在线臀色熟女| 黄片播放在线免费| 国产精品影院久久| 男人操女人黄网站| 日本黄色视频三级网站网址| 一个人观看的视频www高清免费观看 | 亚洲人成伊人成综合网2020| 国产亚洲av高清不卡| 国产av不卡久久| 成年免费大片在线观看| 黄色 视频免费看| 19禁男女啪啪无遮挡网站| 国产视频内射| 国产高清视频在线播放一区| 老鸭窝网址在线观看| 亚洲午夜理论影院| 国产精品久久久久久亚洲av鲁大| 亚洲一码二码三码区别大吗| 国产又黄又爽又无遮挡在线| 又紧又爽又黄一区二区| 两个人视频免费观看高清| www.熟女人妻精品国产| 99re在线观看精品视频| 久久精品国产99精品国产亚洲性色| 国产精品综合久久久久久久免费| 一本久久中文字幕| 最近最新中文字幕大全电影3 | 狠狠狠狠99中文字幕| 国产免费男女视频| 一级毛片高清免费大全| 亚洲精品久久成人aⅴ小说| 精品一区二区三区四区五区乱码| 国产一区二区三区视频了| 亚洲五月天丁香| www日本在线高清视频| 精品国产乱码久久久久久男人| 国产在线精品亚洲第一网站| 日韩精品免费视频一区二区三区| 精品一区二区三区四区五区乱码| 每晚都被弄得嗷嗷叫到高潮| 国产精品久久视频播放| 成人一区二区视频在线观看| 国产蜜桃级精品一区二区三区| 国产日本99.免费观看| 中文亚洲av片在线观看爽| 满18在线观看网站| 亚洲 欧美一区二区三区| 国产av不卡久久| 一级毛片女人18水好多| 88av欧美| 色尼玛亚洲综合影院| av在线播放免费不卡| 精品无人区乱码1区二区| 亚洲成人久久性| 少妇裸体淫交视频免费看高清 | 成人18禁在线播放| 搡老岳熟女国产| 国产97色在线日韩免费| 91字幕亚洲| 久久香蕉激情| 久久婷婷成人综合色麻豆| 亚洲精品中文字幕一二三四区| 99国产精品99久久久久| 宅男免费午夜| 精品午夜福利视频在线观看一区| 亚洲成人久久性| 嫁个100分男人电影在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 日韩成人在线观看一区二区三区| 两人在一起打扑克的视频| 亚洲av成人不卡在线观看播放网| 三级毛片av免费| 精品电影一区二区在线| 别揉我奶头~嗯~啊~动态视频| 亚洲 欧美 日韩 在线 免费| a级毛片a级免费在线| 久久午夜综合久久蜜桃| 国内揄拍国产精品人妻在线 | 一本综合久久免费| 少妇熟女aⅴ在线视频| 午夜免费观看网址| 精品日产1卡2卡| 丁香欧美五月| 人妻久久中文字幕网| www日本黄色视频网| 色av中文字幕| 午夜a级毛片| www.精华液| 国产三级在线视频| 欧美人与性动交α欧美精品济南到| 757午夜福利合集在线观看| 淫秽高清视频在线观看| 久久九九热精品免费| 国产亚洲精品久久久久久毛片| cao死你这个sao货| 老司机在亚洲福利影院| 成人午夜高清在线视频 | 亚洲七黄色美女视频| 婷婷亚洲欧美| cao死你这个sao货| 白带黄色成豆腐渣| 免费女性裸体啪啪无遮挡网站| 波多野结衣巨乳人妻| 午夜福利免费观看在线| 免费在线观看日本一区| 91麻豆精品激情在线观看国产| 91麻豆av在线| 精品国产一区二区三区四区第35| 国产成人啪精品午夜网站| 午夜福利一区二区在线看| 午夜久久久在线观看| 国产在线观看jvid| 午夜久久久在线观看| 麻豆久久精品国产亚洲av| 99在线视频只有这里精品首页| 丝袜在线中文字幕| 在线观看午夜福利视频| 亚洲中文日韩欧美视频| 亚洲狠狠婷婷综合久久图片| 99久久99久久久精品蜜桃| 亚洲成人国产一区在线观看| 久久国产精品人妻蜜桃| 亚洲成人国产一区在线观看| xxx96com| 日韩 欧美 亚洲 中文字幕| 国产亚洲欧美98| 日本五十路高清| 99久久精品国产亚洲精品| 国产成人欧美| 午夜福利视频1000在线观看| 动漫黄色视频在线观看| 久久香蕉激情| 999久久久国产精品视频| 一区二区三区精品91| 成人av一区二区三区在线看| 日本 欧美在线| 精品国产亚洲在线| 女警被强在线播放| 精品人妻1区二区| 国产v大片淫在线免费观看| 国产不卡一卡二| 一卡2卡三卡四卡精品乱码亚洲| 国产av一区二区精品久久| 男女那种视频在线观看| 日韩欧美一区视频在线观看| 人人澡人人妻人| 色综合站精品国产| 一本大道久久a久久精品| a级毛片在线看网站| 999精品在线视频| 日韩一卡2卡3卡4卡2021年| 91成人精品电影| 老司机午夜福利在线观看视频| 亚洲自拍偷在线| 熟女少妇亚洲综合色aaa.| 日本 av在线| 人人澡人人妻人| 88av欧美| 亚洲天堂国产精品一区在线| 亚洲av美国av| 久久国产精品人妻蜜桃| 黄色视频不卡| 在线国产一区二区在线| 婷婷精品国产亚洲av| 国产视频一区二区在线看| 18禁裸乳无遮挡免费网站照片 | 国产精品98久久久久久宅男小说| 一级片免费观看大全| 熟女电影av网| 男人操女人黄网站| 麻豆久久精品国产亚洲av| 国产精品美女特级片免费视频播放器 | 99热只有精品国产| 精品国产乱子伦一区二区三区| 日韩欧美三级三区| 伦理电影免费视频| 深夜精品福利| 黄色毛片三级朝国网站| 视频区欧美日本亚洲| 热re99久久国产66热| 欧美日韩亚洲综合一区二区三区_| 日本熟妇午夜| 69av精品久久久久久| 国产精品99久久99久久久不卡| 又大又爽又粗| 色哟哟哟哟哟哟| 美女 人体艺术 gogo| 亚洲自拍偷在线| 欧美中文综合在线视频| 久久狼人影院| 人人澡人人妻人| 久久久国产精品麻豆| 韩国av一区二区三区四区| 欧洲精品卡2卡3卡4卡5卡区| 久久精品国产亚洲av香蕉五月| 日本一本二区三区精品| 日韩三级视频一区二区三区| 好看av亚洲va欧美ⅴa在| 日韩欧美 国产精品| 好男人在线观看高清免费视频 | 国产精品1区2区在线观看.| 丝袜人妻中文字幕| 麻豆久久精品国产亚洲av| bbb黄色大片| 国产一区在线观看成人免费| 两个人看的免费小视频| 99在线人妻在线中文字幕| 亚洲精品av麻豆狂野| 亚洲第一青青草原| 国产精品永久免费网站| 国产一区二区激情短视频| 成人精品一区二区免费| 欧美日韩乱码在线| 免费无遮挡裸体视频| 香蕉国产在线看| 女人高潮潮喷娇喘18禁视频| 一卡2卡三卡四卡精品乱码亚洲| 深夜精品福利| 成人精品一区二区免费| 国产精品av久久久久免费| av免费在线观看网站| 午夜精品久久久久久毛片777| 97碰自拍视频| 色av中文字幕| 岛国视频午夜一区免费看| 中文资源天堂在线| 1024视频免费在线观看| 丝袜在线中文字幕| 欧美一级毛片孕妇| 波多野结衣高清作品| 国产1区2区3区精品| 国产高清有码在线观看视频 | 国产亚洲精品av在线| 日日干狠狠操夜夜爽| 精品不卡国产一区二区三区| 久久久国产成人免费| 亚洲欧美日韩无卡精品| 亚洲欧美精品综合久久99| 国产私拍福利视频在线观看| 可以在线观看毛片的网站|