林粲源,龔 劍*,熊小萍,周永順,吳翠琴
珠三角河流飲用水源中皮質(zhì)激素的污染與風(fēng)險(xiǎn)
林粲源1,2,龔 劍1,2*,熊小萍1,2,周永順1,2,吳翠琴1,2
(1.廣州大學(xué)環(huán)境科學(xué)和工程學(xué)院,廣東省放射性核素污染控制與資源化重點(diǎn)實(shí)驗(yàn)室,廣東 廣州 510006;2.廣州大學(xué)珠江三角洲水質(zhì)安全與保護(hù)教育部重點(diǎn)實(shí)驗(yàn)室,廣東 廣州 510006)
利用固相萃取聯(lián)合液相色譜-質(zhì)譜法對(duì)珠三角河流飲用水源中的21種糖皮質(zhì)激素(GCs)和3種鹽皮質(zhì)激素(MCs)進(jìn)行了研究.結(jié)果發(fā)現(xiàn),24種目標(biāo)物在水源水中均有檢出,檢出率在8%(可的松)~75%(地夫可特)之間,總濃度(∑CSs)(平均值/中值)為0.29~8.7ng/L(2.6ng/L/1.6ng/L),污染以布地奈德、丙酸氯倍他索、醛固酮為主.東江東莞段和流溪河下游水源水中腎上腺皮質(zhì)激素(CSs)濃度水平總體高于西江和北江,各水源地的CSs組成與濃度存在一定的季節(jié)性差異.冗余分析發(fā)現(xiàn),水源水中大部分CSs與水溫、電導(dǎo)率、pH值以及溶解氧呈負(fù)相關(guān)關(guān)系,表明這些環(huán)境因子是影響CSs含量分布的重要因素.CSs在珠三角河流水源地的危害指數(shù)(HI)(平均值/中值)在<0.1~0.65(0.25/0.29)之間,總體處于中低風(fēng)險(xiǎn)水平.
皮質(zhì)激素;飲用水源;內(nèi)分泌干擾物;珠江三角洲
環(huán)境內(nèi)分泌干擾物(EEDCs),是一種外源性干擾內(nèi)分泌系統(tǒng)的化學(xué)物質(zhì),通過攝入、積累等各種途徑,通過干擾生物或人體內(nèi)保持自身平衡和調(diào)解發(fā)育過程天然激素的合成、分泌、運(yùn)輸、結(jié)合、反應(yīng)和代謝等過程對(duì)生物體或人類的生殖、神經(jīng)和免疫系統(tǒng)等功能產(chǎn)生影響[1-3].
近幾十年,關(guān)于水環(huán)境中典型內(nèi)分泌干擾物研究主要集中在類固醇性激素和烷基酚類上[4-5],而同樣參與人體重要代謝功能的另一類類固醇:腎上腺皮質(zhì)激素(CSs)的相關(guān)研究相對(duì)較少[6-8].這類類固醇激素主要產(chǎn)生于脊椎動(dòng)物的腎上腺皮質(zhì),分為糖皮質(zhì)激素(GCs)和鹽皮質(zhì)激素(MCs).它們主要參與的生理過程包括應(yīng)激反應(yīng)、免疫反應(yīng)等[9].目前,皮質(zhì)激素藥物被廣泛應(yīng)用于人和動(dòng)物的炎癥性疾病治療[10],它們可以通過污水處理廠以及城市地表徑流進(jìn)入到環(huán)境水體中[11-15].近年來的研究發(fā)現(xiàn),CSs對(duì)環(huán)境中的低等脊椎動(dòng)物例如魚類的行為、免疫功能、繁殖和發(fā)育產(chǎn)生影響或造成損害[15-17].例如,即使暴露于環(huán)境濃度(ng/L至μg/L)水平的皮質(zhì)醇、潑尼松龍、醋酸氟氫可的松等常見CSs條件下,魚類的血糖濃度、白細(xì)胞數(shù)量、基因轉(zhuǎn)錄等生理指標(biāo)和功能均會(huì)受到不利影響[18-20].盡管CSs的生態(tài)環(huán)境效應(yīng)和潛在危害性開始引起了廣泛關(guān)注,但國(guó)內(nèi)外針對(duì)這類“新興”污染物在環(huán)境中存在狀態(tài)和污染狀況等相關(guān)研究最近幾年才剛剛起步[13,21-22].除生活污水直排外,現(xiàn)代水處理工藝亦不能完全去除污水、廢水中的CSs[13],導(dǎo)致有大量未被處理的CSs隨污水處理廠以及納污河流出水排入到自然水體中[23],進(jìn)而對(duì)水生態(tài)安全和人體健康形成威脅.
珠江水系是珠江三角洲主要的飲用水源,其污染水平直接關(guān)系到居民的飲用水的安全[24].針對(duì)珠江三角洲河流EEDCs的研究已逐步深入,尤其是環(huán)境雌激素(EEs)已在地表水中廣泛檢出,其中在珠江三角洲河流的污染水平處于中高值區(qū),濃度在數(shù)ng/L到數(shù)千ng/L之間,以酚類雌激素壬基酚(NP)、雙酚A (BPA)、類固醇雌激素雌酮(E1)、雌二醇(E2)的污染為主[25-33].不僅如此,風(fēng)險(xiǎn)評(píng)估發(fā)現(xiàn),環(huán)境雌激素(EEs)已對(duì)當(dāng)?shù)厮鷳B(tài)環(huán)境構(gòu)成潛在威脅,其中珠江廣州河段以及東江東莞河段已成為中高風(fēng)險(xiǎn)區(qū)[33-36].可見,EEDCs產(chǎn)生的環(huán)境效應(yīng)不容忽視,甚至可能已威脅到人們的飲水安全[37].然而,專門針對(duì)EEDCs在珠三角水源地的研究仍相對(duì)較少[38-39],對(duì)CSs這類“新興”EEDC在珠三角流域的污染現(xiàn)狀及其潛在風(fēng)險(xiǎn)更是知之甚少,幾乎未見報(bào)道.
本文以珠江水系中的西江、北江、流溪河以及東江東莞段的集中式飲用水源地作為研究區(qū)域,以24種常見、常用的CSs(包括21種GCs和3種MCs)為目標(biāo)物,研究了它們的污染現(xiàn)狀、時(shí)空分布特征及其影響因素,并對(duì)其潛在的生態(tài)風(fēng)險(xiǎn)進(jìn)行了初步評(píng)價(jià),以期為珠三角飲用水源的生態(tài)安全及健康風(fēng)險(xiǎn)評(píng)估提供科學(xué)依據(jù).
實(shí)驗(yàn)用甲醇、乙酸乙酯、乙腈均為色譜純級(jí),購(gòu)自Merck(德國(guó),Darmstadt);溶液的配制、淋洗等所有實(shí)驗(yàn)用水均為超純水,電阻率為18.25MΩ·cm.24種CSs標(biāo)準(zhǔn)品(表1)購(gòu)自Sigma-Aldrich(美國(guó),St. Louis, Missouri)和Dr. Ehrenstorfer GmbH(德國(guó), Augsburg),純度均大于98%.5種同位素內(nèi)標(biāo)(表1)均購(gòu)自Toronto Research Chemicals公司,純度均大于95%.玻璃纖維膜(GF/F,0.7μm)和Oasis HLB固相萃取柱(500mg,6m L)分別購(gòu)自Whatman和Waters.所有玻璃器皿,玻璃纖維濾膜和無水硫酸鈉在使用前均在450℃下烘烤5h.
根據(jù)廣東省飲用水水源保護(hù)區(qū)劃分,分別于2018年1月和7月從西江思賢窖(X1)、金本村(X2),北江寶鴨洲(B1)、順德水道(B2~B3),流溪河下游石門(S1)以及東江東莞段北干流(D1~D4)、南支流(D5~D6)水源地進(jìn)行樣品采集,同時(shí)對(duì)水體理化指標(biāo)進(jìn)行監(jiān)測(cè).利用便攜式采樣泵采集各水源地表層水樣4L,收集到干凈的棕色玻璃采樣瓶中.加入0.4g疊氮化鈉抑制微生物的降解.樣品低溫保存下于當(dāng)日運(yùn)回實(shí)驗(yàn)室置于4℃冰柜避光保存,并在24h內(nèi)完成富集萃取工作.
圖1 采樣點(diǎn)分布
利用蠕動(dòng)泵將水樣通過玻璃纖維濾膜去除顆粒物后,取1L濾液,加入10ng 的同位素內(nèi)標(biāo),混和均勻;使用全自動(dòng)固相萃取儀(Auto Trace,Thermo公司)對(duì)濾液中的目標(biāo)化合物進(jìn)行富集;HLB固相萃取柱預(yù)先用6mL乙酸乙酯、6mL乙腈和12mL超純水活化;儀器設(shè)定流速為10mL/min;待樣品全部通過固相萃取柱后,使用10mL10%(體積分?jǐn)?shù))乙腈水溶液進(jìn)行淋洗、凈化,去除干擾基質(zhì);柱子經(jīng)高純氮?dú)飧稍锖?用6mL乙酸乙酯:乙腈(1:1,/)和6mL乙酸乙酯進(jìn)行洗脫.洗脫液合并后經(jīng)高純氮?dú)獯抵羷偢?用甲醇定容至0.5mL,過0.2μm微孔濾膜,待測(cè).
采用CDT48M多參數(shù)儀(SST,德國(guó))在野外現(xiàn)場(chǎng)測(cè)定各采樣點(diǎn)的水溫(T)、電導(dǎo)率(COND)、溶解氧(DO)、葉綠素a (Chl a)、pH值等環(huán)境參數(shù).
利用高效液相色譜-串聯(lián)質(zhì)譜(HPLC-MS/MS, 1260Infinity-6460QQQ, Agilent)對(duì)24種目標(biāo)化合物進(jìn)行定量分析.色譜柱選擇Agilent ZORBAX Eclipse Plus C8柱(100mm×3.0mm,1.8μm).色譜條件:柱溫為30℃;進(jìn)樣量為3μL;流動(dòng)相A為0.1%(/)乙酸,流動(dòng)相B為乙腈;流速0.3mL/min;液相梯度洗脫程序?yàn)?min 28% B;8.0min 28% B;8.1min 40% B;12.0min 40% B;12.1min 60% B;16.0min 70% B;16.5min 100% B; 19.5min 100% B.質(zhì)譜條件:離子源為ESI±模式,霧化器壓力為276kPa(40psi);干燥氣溫度為300℃,干燥氣流速為11L/min;毛細(xì)管電壓為4000V,采用動(dòng)態(tài)多反應(yīng)監(jiān)測(cè)(DMRM)模式對(duì)目標(biāo)物的特征離子對(duì)掃描[40].使用內(nèi)標(biāo)法進(jìn)行定量,分別定義信噪比S/N=10和S/N=3所對(duì)應(yīng)的濃度作為被測(cè)化合的方法定量限和方法檢測(cè)限(如表1所示).
表1 目標(biāo)化合物信息及其在水源水中的檢出限和定量限(ng/L)
續(xù)表1
注:LOD:方法檢出限;LOQ:方法定量限;GCs:糖皮質(zhì)激素;MCs:鹽皮質(zhì)激素;RSD:相對(duì)標(biāo)準(zhǔn)偏差;* 定量離子.
本研究設(shè)置7組標(biāo)準(zhǔn)溶液,質(zhì)量濃度分別為0.5, 1, 2, 5, 10, 20, 50μg/L,其線性方程的2>0.99.為確保數(shù)據(jù)的準(zhǔn)確性和精密度,每批實(shí)驗(yàn)均設(shè)有方法空白,加標(biāo)水樣和樣品平行,對(duì)實(shí)驗(yàn)過程進(jìn)行監(jiān)控.儀器分析中,每6個(gè)樣品添加一個(gè)溶劑空白和質(zhì)控標(biāo)準(zhǔn)樣,對(duì)儀器狀態(tài)進(jìn)行監(jiān)控.實(shí)驗(yàn)結(jié)果顯示,所有空白樣品均呈陰性,所有目標(biāo)化合物的平均回收率在75%~107%,相對(duì)標(biāo)準(zhǔn)偏差(RSD)均低于10%,方法檢出限范圍在0.2~0.68ng/L(如表1所示).
根據(jù)歐盟技術(shù)指導(dǎo)文件(ECTGD)[41]和Hernando等[42]中關(guān)于風(fēng)險(xiǎn)評(píng)價(jià)的方法,本研究采用風(fēng)險(xiǎn)商(RQ)法對(duì)水源地的CSs污染進(jìn)行初步的生態(tài)風(fēng)險(xiǎn)評(píng)價(jià).該評(píng)價(jià)標(biāo)準(zhǔn)分為3個(gè)風(fēng)險(xiǎn)等級(jí),分別為低風(fēng)險(xiǎn)(RQ<0.1);中等風(fēng)險(xiǎn)(0.1£RQ<1);以及高風(fēng)險(xiǎn)(RQ31).因受限于當(dāng)前有限的CSs毒理數(shù)據(jù),本文采用地塞米松當(dāng)量(DEQ)表征CSs對(duì)水生生物的風(fēng)險(xiǎn)水平,計(jì)算式如下 :
DEQ=REP×MEC (1)
RQ=DEQ/PNEC(DEX)(2)
式中:REP為地塞米松當(dāng)量因子;MEC為測(cè)定的環(huán)境暴露濃度,ng/L;PNEC(DEX)為DEX的PNEC值,取值為78.4ng/L[43].選取已有REP值報(bào)道的15種CSs進(jìn)行風(fēng)險(xiǎn)評(píng)價(jià),如表2所示.
表2 CSs的REP值匯總
注: EC50為半數(shù)效應(yīng)濃度;REP為地塞米松當(dāng)量因子.
多種CSs同時(shí)存在時(shí),則以混合風(fēng)險(xiǎn)商即危害指數(shù)(HI)來表征它們的綜合風(fēng)險(xiǎn)水平,如式(3):
HI=ΣRQ(3)
西江、北江、流溪河以及東江東莞段水源地中CSs的檢出濃度如表3所示.3種MCs和21種GCs在水樣中均有檢出,檢出率在8%(COR)~75%(DC),其中GCs的濃度范圍為<0.38(PNL)~4.7ng/L (BDN), MCs的平均濃度在<0.2(FLCact)~2.24ng/L (ADS)之間,表明CSs廣泛存在于珠三角水源水中.水樣中CSs的總濃度(ΣCSs)在0.29~8.7ng/L之間,平均值和中值分別為2.6和1.6ng/L.
有7種GCs和1種MCs在冬夏兩季均被檢出,平均濃度在0.23ng/L(DC)~3.8ng/L(BDN)之間. ΣCSs的濃度水平和組成存在一定季節(jié)性差異,夏季的污染水平普遍高于冬季.冬季水樣中有1~8種的CSs被檢出,ΣCSs濃度平均值和中位值(范圍)分別為0.57和0.34ng/L(未檢出(ND)~2.2ng/L),其中CLOprop和CRL的檢出率較高,均達(dá)到50%;夏季各水源地中均有1~7種CSs被檢出,ΣCSs濃度平均值和中位值(范圍)分別為0.90和0.37ng/L (ND~4.7ng/L),其中DC和BDN的檢出率分別高達(dá)75%和50%.此外,冬夏兩季的目標(biāo)物的組成也存在顯著差異.冬季水源地污染以CLOprop、BDN和ADS為主,分別占當(dāng)季CSs總量的29%、13%和11%,而夏季的污染則主要來自BDN,其貢獻(xiàn)高達(dá)56%.
表3 珠三角水源水中CSs的濃度水平(ng/L)
續(xù)表3
注: LOQ為定量限.
如圖2所示,西江和北江冬夏兩季ΣCSs濃度平均值均在1ng/L左右,無顯著差異.流溪河石門的水樣中測(cè)得較高濃度的CSs,可能與該點(diǎn)位于流溪河下游,距離廣州市區(qū)較近,受居民生活污水排放影響有關(guān).冬季石門水源水中ΣCSs濃度高達(dá)8.8ng/L,約高出夏季1倍(4.5ng/L),這主要因?yàn)橄募?豐水季)降雨量(占全年總量的85%以上)[44]、徑流量(約為枯水季的10倍)[45]大,對(duì)污染物的稀釋作用較為明顯.東江水源地的情況則不相同,其冬季ΣCSs濃度平均值為1.2ng/L,明顯低于夏季的平均水平(5.2ng/L).該季節(jié)性差異可能與周邊的工農(nóng)業(yè)生產(chǎn)生活的季節(jié)性排放有關(guān),具體的原因有待進(jìn)一步的調(diào)查.
空間分布上,4條河流水源地CSs的總體污染水平(ΣCSs濃度平均值)為:東江東莞段(1.2ng/L)>流溪河石門(0.95ng/L)>北江(0.55ng/L)>西江(0.40ng/L).東江東莞段水源地中, BDN和CLOprop為主要污染物,分別占改水源地總污染物濃度水平的60%和13%.而在流溪河中,檢出的CSs類較多,污染以ADS、BC、FN、BDN以及CLOprop為主,它們的濃度之和占珠江水源總污染物濃度水平的58%.值得注意的是,人工合成GCs中BDN和CLOprop在東江東莞段和流溪河石門水源地均是主要的污染物,這可能與它們的廣泛使用有關(guān).作為常見、常用的2種CSs類藥物,它們廣泛應(yīng)用于皮膚病和鼻炎的治療.加之東莞、廣州兩地人口稠密、藥物使用量較大,這些化合物可隨生活污水大量地排入附近流域,進(jìn)而影響水源地的水質(zhì).另外,冬季珠江三角洲河流水源地中CSs的分布總體呈現(xiàn)下游高于上游的特征.例如,北江ΣCSs從上游的0.32ng/L(B1)到下游的2.18 (B2)和0.72ng/L(B3),西江ΣCSs從上游的0.29ng/L(X1)到下游的1.84ng/L(X2),東江東莞段ΣCSs從上游的0.79ng/L(D2)到下游的2.49ng/L(D3).這可能因?yàn)槲鹘?、北江和東江上游人口稀疏,人類活動(dòng)較少,而下游接近城市及工業(yè)園區(qū),因此有相當(dāng)數(shù)量的污染物隨廢水進(jìn)入到環(huán)境中,并在下游聚集.而在夏季,雨、水豐沛,受稀釋作用影響,上述流域中的CSs并無明顯的空間分布特征.
圖2 珠江三角洲河流水源地中CSs的時(shí)空分布
對(duì)所有檢出的CSs進(jìn)行了去趨勢(shì)對(duì)應(yīng)分析,發(fā)現(xiàn)排序中第一軸的長(zhǎng)度為1.4(<3),因此可以采用冗余分析(RDA)來評(píng)估CSs濃度與環(huán)境參數(shù)之間的相關(guān)性[46].結(jié)果如圖3所示.前兩主軸的特征值分別為85.7%和10.8%,共解釋了總變量關(guān)系的96.5%.圖中箭頭的長(zhǎng)度反映了兩者之間的關(guān)系強(qiáng)度而箭頭間交點(diǎn)的夾角則表示相關(guān)程度.相關(guān)性分析發(fā)現(xiàn), CSs的濃度與DO、水溫均呈負(fù)相關(guān)關(guān)系,這一結(jié)果與之前一些典型EEDCs以及PPCPs的研究結(jié)果相似[34,47-48].這可能因?yàn)樵谒疁剌^高、溶解氧充足的條件下,水中微生物及浮游生物的活性較大,它們對(duì)水相中CSs的降解、吸附作用也隨之增強(qiáng),以致其濃度降低[49-50].部分CSs與COND呈負(fù)相關(guān)關(guān)系的這一發(fā)現(xiàn)與之前EEs的研究結(jié)果類似[51].由于鹽析效應(yīng)的影響, CSs更易于與顆粒物等非水相介質(zhì)結(jié)合,以致CSs的水溶性降低.pH值與CSs濃度呈負(fù)相關(guān)關(guān)系,可能與CSs的酸離解常數(shù)(pKa)有關(guān).在不同的pH值條件下,顆粒物對(duì)CSs吸附作用會(huì)受到去質(zhì)子化程度的影響[52].本研究水樣的pH值在6.4~8.0之間,高于大部分CSs的pKa值(0~13.81)[53],它們大多以非離子形態(tài)存在,易于被顆粒物吸附.環(huán)境中pH值越高越不利于大部分CSs離解成離子狀態(tài)賦存于水相.
圖3 水源水中CSs與水環(huán)境因子的冗余分析
就化合物而言,所有水樣中TRI、ADS、PNL、CRL、PNS、COR、MPNL、DEX、FMS、FN、TRIact、FCNact、FML、FLCact、AM、FLUprop的RQ值均低于0.1,表明它們的風(fēng)險(xiǎn)水平較低;BDN(<0.1~ 0.42)和CLOprop(<0.1~0.94)的RQ值則相對(duì)較高,處于中低風(fēng)險(xiǎn)水平.
水源地的總RQ(ΣRQs)即HI的時(shí)空分布如圖4所示.從季節(jié)上看,冬季CSs的HI值范圍(中值):< 0.1~0.97(0.30)處于中低風(fēng)險(xiǎn)水平,其中CLOprop是主要貢獻(xiàn)者,其RQ范圍在<0.1~0.94之間.夏季水源地HI范圍(中值)在<0.1~0.42之間(0.29),主要貢獻(xiàn)來自BDN(RQ:0.30~0.42).冬季西江、北江、流溪河以及東江東莞段的HI范圍(中值)分別為<0.1~0.15 (0.12),<0.1~0.25(0.10),0.69,<0.1~0.97(0.49),表明各個(gè)流域水源地均處于中低風(fēng)險(xiǎn)水平,主要貢獻(xiàn)來自FLUprop、CLOprop、BDN等人工合成的CSs.夏季西江和北江各取樣點(diǎn)的HI值均<0.1,處于低風(fēng)險(xiǎn)水平;流溪河石門和東江東莞段水源水的HI值分別為0.3、0.30~0.42(0.34),處于中等風(fēng)險(xiǎn)水平,風(fēng)險(xiǎn)的主要來源與冬季情況相似.
圖4 珠江三角洲河流水源地中CSs的總風(fēng)險(xiǎn)商(危害指數(shù))
空間上,西江、北江、流溪河石門和東江東莞段水源地兩季HI平均值范圍分別為<0.1~0.15,<0.1~ 0.25,0.63,0.19~0.65,總體處于中低風(fēng)險(xiǎn)水平.其中,西江和北江水源中CSs風(fēng)險(xiǎn)的主要貢獻(xiàn)來自FLUprop,貢獻(xiàn)率分別為74%和29%,而流溪河和東江東莞段水源地的風(fēng)險(xiǎn)則主要來自CLOprop和BDN,貢獻(xiàn)率分別為47%、26%(流溪河石門)以及53%、44%(東江東莞段).
綜上所述,珠江三角洲河流水源地在冬季的潛在生態(tài)風(fēng)險(xiǎn)大于夏季,西江、北江處于低風(fēng)險(xiǎn)水平,而流溪河和東江東莞段處于中等風(fēng)險(xiǎn).
3.1 珠江三角洲河流飲用水源中,ΣCSs濃度(平均值/中值)在0.29~8.7ng/L(/1.6ng/L)之間,污染主要以CLOprop、BDN、ADS等人工合成GCs為主.東江東莞段和流溪河水源水中CSs濃度水平總體高于西江和北江.不同流域水源地的CSs組成與濃度存在一定的季節(jié)性差異
3.2 RDA分析結(jié)果顯示,水源水中大部分CSs與T、COND、pH值以及DO呈負(fù)相關(guān)關(guān)系,表明上述環(huán)境因子在控制水源水中CSs的發(fā)生和分布方面發(fā)揮著重要作用.
3.3 初步的風(fēng)險(xiǎn)評(píng)價(jià)發(fā)現(xiàn),珠三角河流水源地CSs的HI(平均值/中值)在<0.1~0.65(0.25/0.29ng/L)之間,其中西江、北江水源處于低風(fēng)險(xiǎn)水平,而流溪河和東江東莞段水源則處于中等風(fēng)險(xiǎn)水平.結(jié)果表明,珠三角部分飲用水源地CSs的污染可能已對(duì)水生態(tài)及飲用水安全形成威脅,其環(huán)境效應(yīng)不容忽視.
[1] 李 杰,司紀(jì)亮.環(huán)境內(nèi)分泌干擾物質(zhì)簡(jiǎn)介[J]. 環(huán)境與健康雜志, 2002,19(1):83-84. Li J, Si J L. Introduction of environmental endocrine disruptors [J]. Journal of Environment and Health, 2002,19(1):83-84.
[2] 龔 劍,黃 文,楊 娟,等.珠江河流膠體中的典型內(nèi)分泌干擾物[J]. 中國(guó)環(huán)境科學(xué), 2015,35(2):617-623. Gong J, Huang W, Yang J, et al. Occurrence of colloid-bound endocrine-disrupting chemicals in Pearl River, China [J]. China Environment Science, 2015,35(2):617-623.
[3] 陳玫宏,郭 敏,劉 丹,等.典型內(nèi)分泌干擾物在太湖及其支流水體和沉積物中的污染特征[J]. 中國(guó)環(huán)境科學(xué), 2017,(11):325-334. Chen M H, Guo M, Liu D, et al. Occurrence and distribution of typical endocrine disruptors in surface water and sediments from Taihu Lake and its tributaries [J]. China Environment Science, 2017,(11):325-334.
[4] Ying G G, Kookana R S, Ru Y J. Occurrence and fate of hormone steroids in the environment. [J]. Environment International, 2003,28(6): 545-551.
[5] Hotchkiss A K, Rider C V, Blystone C R, et al. Fifteen Years after "Wingspread"--Environmental Endocrine Disrupters and Human and Wildlife Health: Where We are Today and Where We Need to Go [J]. Toxicological Sciences, 2008,105(2):235-259.
[6] 趙硯彬,胡建英.環(huán)境孕激素和糖皮質(zhì)激素的生態(tài)毒理效應(yīng):進(jìn)展與展望[J]. 生態(tài)毒理學(xué)報(bào), 2016,11(2):6-17. Zhao J B, Hu J Y. Ecotoxicology of environmental progestogens and glucocorticoids: A short review [J]. Asian Journal of Ecotoxicology, 2016,11(2):6-17.
[7] 王 鴻,潘 秋,王靜花,等.環(huán)境皮質(zhì)激素的危害與環(huán)境行為[J]. 浙江工業(yè)大學(xué)學(xué)報(bào), 2016,44(2):159-163. Wang H, Pang Q, Wang J H, et al. Impact and behaviors of corticosteroids in environment [J]. Journal of Zhejiang University of Technology, 2016,44(2):159-163.
[8] Vijayan M M, Raptis S, Sathiyaa R. Cortisol treatment affects glucocorticoid receptor and glucocorticoid-responsive genes in the liver of rainbow trout [J]. General and Comparative Endocrinology, 2003,132(2):256-263.
[9] Nussey S S, Whitehead S A. Endocrinology: An Integrated Approach [M]. 2001.
[10] Kugathas S, Williams R J, Sumpter J P. Prediction of environmental concentrations of glucocorticoids: The River Thames, UK, as an example [J]. Environment International, 2012,40(1):15-23.
[11] Jia A, Wu S, Daniels K D, et al. Balancing the budget: Accounting for glucocorticoid bioactivity and fate during water treatment [J]. Environmental Science & Technology, 2016,50(6):2870-2880.
[12] Fan Z, Wu S, Chang H, et al. Behaviors of glucocorticoids, androgens and progestogens in a municipal sewage treatment plant: Comparison to estrogens [J]. Environmental Science & Technology, 2011,45(7): 2725-2733.
[13] Chang H, Hu J, Shao B. Occurrence of Natural and Synthetic Glucocorticoids in Sewage Treatment Plants and Receiving River Waters [J]. Environmental Science & Technology, 2007,41(10):3462- 3468.
[14] Chang H, Wan Y, Hu J. Determination and source apportionment of five classes of steroid hormones in urban rivers [J]. Environmental Science & Technology, 2009,43(20):7691-7698.
[15] Macikova P, Groh K J, Ammann A A, et al. Endocrine disrupting compounds affecting corticosteroid signaling pathways in czech and swiss waters: potential impact on fish [J]. Environmental Science & Technology, 2014,48(21):12902.
[16] ?verli ?, Kotzian S, Winberg S. Effects of cortisol on aggression and locomotor activity in rainbow trout [J]. Hormones & Behavior, 2002, 42(1):53-61.
[17] 安立會(huì),雷 坤,劉 穎,等.遼東灣野生四角蛤蜊性畸變調(diào)查[J]. 中國(guó)環(huán)境科學(xué), 2014,34(1):259-265. An L H, Lei K, Liu Y, et al. Investigation the intersex of wild Mactra veneriformis from Liaodong Bay [J]. China Environmental Science, 2014,34(1):259-265.
[18] Kugathas S, Sumpter J P. Synthetic glucocorticoids in the environment: First results on their potential impacts on fish [J]. Environmental Science & Technology, 2011,45(6):2377-2383.
[19] 侯彥峰,張照斌,胡建英.皮質(zhì)醇影響青鳉鰓內(nèi)鈉鉀ATP酶基因表達(dá)的研究[J]. 生態(tài)毒理學(xué)報(bào), 2009,4(2):212-217. Hou Y F, Zhang Z B, Hu J Y. Effects of cortisol on Na+-K+-ATPase Gene Expression in Gill of Medaka (Oryzias latipes) [J]. Asian Journal of Ecotoxicology, 2009,4(2):212-217.
[20] Zhao Y, Zhang K, Fent K. Corticosteroid fludrocortisone acetate targets multiple end points in Zebrafish () at low concentrations [J]. Environmental Science & Technology, 2016,50: 10245-10524.
[21] Liu S, Chen H, Xu X R, et al. Steroids in marine aquaculture farms surrounding Hailing Island, South China: Occurrence, bioconcentration, and human dietary exposure [J]. Science of The Total Environment, 2015,502:400-407.
[22] Weizel A, Schluesener M P, Dierkes G, et al. Occurrence of Glucocorticoids, Mineralocorticoids and Progestogens in Various Treated Wastewater, Rivers and Streams [J]. Environmental Science & Technology, 2018,52:5296-5307.
[23] Adeel M, Song X, Francis D, et al. Environmental impact of estrogens on human, animal and plant life: A critical review [J]. Environment International, 2016,99:107-119.
[24] 萬軍明,梁潤(rùn)秋,區(qū)衛(wèi)華.水源水中有機(jī)污染物的研究[J]. 環(huán)境與開發(fā), 1998,13(1):29-30. Wang J M, Liang R Q, Ou W H. Study on organic pollutant of water source [J]. Environment and Exploitation, 1998,13(1):29-30.
[25] 王子釗,張錫輝,王凌云.深圳河典型內(nèi)分泌干擾物分布和季節(jié)變化規(guī)律研究[J]. 環(huán)境污染與防治, 2013,35(9):9-13+18. Wang Z Z, Zhang X H, Wang L Y. Distribution and seasonal variation of typical endocrine disrupting chemicals in Shenzhen River [J]. Environmental Pollution and Control, 2013,35(9):9-13+18.
[26] 龔 劍,冉 勇,黃 文,等.內(nèi)分泌干擾物在珠三角河水多相中的分配及風(fēng)險(xiǎn)[J]. 生態(tài)毒理學(xué)報(bào), 2016,11(2):518-523. Gong J, Ran Y, Huang W, et al. Partitioning and risk of endocrine- disrupting chemicals in multiphases of the rivers from the Pearl River Delta, China [J]. Asian Journal of Ecotoxicology, 2016,11(2):518- 523.
[27] Liu Y H, Zhang S H. Occurrence, distribution and risk assessment of suspected endocrine-disrupting chemicals in surface water and suspended particulate matter of Yangtze River (Nanjing section). Ecotoxicology and Environmental Safety1, 2017,35:90–97.
[28] Gong J, Huang Y, Huang W, et al. Multiphase partitioning and risk assessment of endocrine-disrupting chemicals in the Pearl River, China [J]. Environmental Toxicology and Chemistry, 2016,35:2474- 2482.
[29] Gong J, Ran Y, Chen D, et al. Association of endocrine-disrupting chemicals with total organic carbon in riverine water and suspended particulate matter from the Pearl River, China [J]. Environmental Toxicology and Chemistry, 2012,31:2456-2464.
[30] Gong J, Ran Y, Chen D, et al. Occurrence and environmental risk of endocrine-disrupting chemicals in surface waters of the Pearl River, South China [J]. Environmental Monitoring & Assessment, 2009, 156(1-4):199-210.
[31] Gong J, Ran Y, Zhang D, et al. Vertical profiles and distributions of aqueous endocrine-disrupting chemicals in different matrices from the Pearl River Delta and the influence of environmental factors [J]. Environmental. Pollution, 2019,246:328-335.
[32] Liu S, Chen H, Zhou G J, et al. Occurrence, source analysis and risk assessment of androgens, glucocorticoids and progestagens in the Hailing Bay region, South China Sea [J]. Science of The Total Environment, 2015,536:99-107.
[33] Yang L, Cheng Q, Lin L, et al. Partitions and vertical profiles of 9endocrine disrupting chemicals in an estuarine environment: Effect of tide, particle size and salinity [J]. Environmental Pollution, 2016,211: 58-66.
[34] Zhao J L, Ying G G, Chen F, et al. Estrogenic activity profiles and risks in surface waters and sediments of the Pearl River system in South China assessed by chemical analysis and in vitro bioassay [J]. Journal of Environmental Monitoring, 2011,13(4):813-821.
[35] 王若師,張 嫻,許秋瑾,等.東江流域典型鄉(xiāng)鎮(zhèn)飲用水源地有機(jī)污染物健康風(fēng)險(xiǎn)評(píng)價(jià)[J]. 環(huán)境科學(xué)學(xué)報(bào), 2012,32(11):2874-2883. Wang R S, Zhang X, Xiu Q J, et al. Health risk assessment of organic pollutants in typical township drinking water sources of Dongjiang River Basin [J]. Acta Scientiae Circumstantiae, 2012,32(11):2874- 2883.
[36] 樊靜靜,王 賽,唐金鵬,等.廣州市流溪河水體中6種內(nèi)分泌干擾素時(shí)空分布特征與環(huán)境風(fēng)險(xiǎn)[J]. 環(huán)境科學(xué), 2018,(3):1053-1064. Fan J J, Wang S, Tang J P, et al. Spatio-temporal patterns and environmental risk of endocrine disrupting chemicals in the Liuxi River [J]. Environmental Science, 2018,(3):1053-1064.
[37] 程 晨,陳振樓,畢春娟,等.中國(guó)地表飲用水水源地有機(jī)類內(nèi)分泌干擾物污染現(xiàn)況分析[J]. 環(huán)境污染與防治, 2007,29(6):446-450. Cheng C, Chen Z L, Bi C J, et al. The current status of organic endocrine disrupting chemicals in the surface drinking water sources of China [J]. Environmental Pollution & Control, 2007,29(6):446-450.
[38] Guo L, Li Z Y, Gao P, et al. Ecological risk assessment of bisphenol A in surface waters of China based on both traditional and reproductive endpoints [J]. Chemosphere, 2015,139:133-137.
[39] Gao P, Li Z Y, Gibson M, et al. Ecological risk assessment of nonylphenol in coastal waters of China based on species sensitivity distribution model [J]. Chemosphere, 2014,104:113-119.
[40] 龔 劍,林粲源,熊小萍,等.超高效液相色譜?電噴霧串聯(lián)質(zhì)譜法同時(shí)測(cè)定地表水中28種皮質(zhì)激素[J]. 色譜, 2018,36(11):1158-1166. Gong J, Lin C Y, Xiong X P, et al. Simultaneous determination of corticosteroids in surface water by high performance liquid chromatography-electrospray tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2018,36(11):1158-1166.
[41] EC (European Commission), 2003. European Commission Technical Guidance Document in Support of Commission Directive 93/67/EEC on Risk Assessment for New Notified Substances and Commission Regulation No 1488/94on Risk Assessment for existing substances, Part II. In: Commission E (Ed.). Luxembourg: Office for official publications of the European Communities.
[42] Hernando M D, Mezcua M, Fernández-Alba A R, et al. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments [J]. Talanta, 2006, 69(2):334-342.
[43] Lorenz C, Opitz R, Lutz I, et al. Corticosteroids disrupt amphibian metamorphosis by complex modes of action including increased prolactin expression. [J]. Comp Biochem Physiol C Toxicol Pharmacol, 2009,150(2):314-321.
[44] Guangzhou Water Bureau. http://www.gzwater.gov.cn/portal/site/site/ portal/gzswj/index.portal [Z].
[45] Bureau of Hydrology of Guangzhou. http://swj.gd.gov.cn/index/ index.html [Z].
[46] Liu W R, Zhao J L, Liu Y S, et al. Biocides in the Yangtze River of China: Spatiotemporal distribution, mass load and risk assessment [J]. Environmental Pollution, 2015,200:53-63.
[47] You L, Nguyen V T, Pal A, et al. Investigation of pharmaceuticals, personal care products and endocrine disrupting chemicals in a tropical urban catchment and the influence of environmental factors [J]. Science of the Total Environment, 2015,536:955-963.
[48] Ferguson P J, Bernot M J, Doll J C, et al. Detection of pharmaceuticals and personal care products (PPCPs) in near-shore habitats of southern Lake Michigan [J]. Science of the Total Environment, 2013,458- 460(3):187-196.
[49] Koumaki E, Mamais D, Noutsopoulos C, et al. Degradation of emerging contaminants from water under natural sunlight: The effect of season, pH, humic acids and nitrate and identification of photodegradation by-products [J]. Chemosphere, 2015,138:675-681.
[50] Fan Z, Wu S, Chang H, et al. Behaviors of Glucocorticoids, Androgens and Progestogens in a Municipal Sewage Treatment Plant: Comparison to Estrogens [J]. Environmental Science & Technology, 2011,45(7):2725-2733.
[51] Yang L, Cheng Q, Lin L, et al. Partitions and vertical profiles of 9endocrine disrupting chemicals in an estuarine environment: Effect of tide, particle size and salinity [J]. Environmental Pollution, 2016,211: 58-66.
[52] You L, Nguyen V T, Pal A, et al. Investigation of pharmaceuticals, personal care products and endocrine disrupting chemicals in a tropical urban catchment and the influence of environmental factors [J]. Science of the Total Environment, 2015,536:955-963.
[53] Online Drug Information System. http://druginfosys.com/.
Occurrence and risks of typical corticosteroids in drinking water sources of the rivers from the Pearl River Delta.
LIN Can-yuan1,2, GONG Jian1,2*, XIONG Xiao-ping1,2, ZHOU Yong-shun1,2, WU Cui-qin1,2
(1.Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China;2.Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China)., 2019,39(11):4752~4761
The occurrence and eco-risks of typical corticosteroids (CSs) including 21 glucocorticoids and 3 mineralocorticoids were studied in the drinking water sources of the rivers from the Pearl River Delta. The solid phase extraction and liquid chromatography-mass spectrometry were employed. The 24 target compounds were all detected in the source water samples. Their detection frequencies ranged from 8% (cortisone) to 75% (deflazacort), and the total concentrations (∑CSs) were in a range (mean/median) of 0.29~8.7ng/L (2.6ng/L/1.6ng/L). Budesonide, clobetasol propionate and aldosterone were the major pollutants. The concentrations of CSs in the source water from the Dongjiang River and lower reach of the Liuxi River were generally higher than those of the Xijiang River and Beijiang River. Besides the CS compositions and concentrations varied seasonally from river to river. Redundancy analysis showed that most of CSs in the source water were negatively correlated with water temperature, conductivity, pH, and dissolved oxygen, suggesting that the occurrence and distribution of CSs in the source water can be influenced by these environmental factors. Moreover, the hazard index (HI) of CSs in the water sources of the Pearl River Delta ranged from <0.1to 0.65 (mean/median: 0.25/0.29), indicating that low and medium risks were present in these waters.
corticosteroids;drinking water source;endocrine disrupting chemicals;Pearl River Delta
X522
A
1000-6923(2019)11-4752-10
林粲源(1994-),男,廣東廣州人,廣州大學(xué)碩士研究生,主要從事內(nèi)分泌干擾物的水陸環(huán)境行為、風(fēng)險(xiǎn)研究.發(fā)表論文3篇.
2019-04-18
國(guó)家自然科學(xué)基金資助面上項(xiàng)目(41673110);廣州市科技計(jì)劃項(xiàng)目(201607010217)
* 責(zé)任作者, 副研究員, gong_jian@mails.ucas.ac.cn