• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modeling of the whole process of shock wave overpressure of freefield air explosion

    2019-11-18 02:35:00ZaiqingXueShunpingLiChunliangXinLipingShiHongbinWu
    Defence Technology 2019年5期

    Zai-qing Xue, Shunping Li, Chun-liang Xin, Li-ping Shi, Hong-bin Wu

    Beijing Institute of Space Long March Vehicle, Beijing,100076, China

    Keywords:Air explosion Shock wave overpressure Free field Experimental verification Numerical simulation

    ABSTRACT The waveform of the explosion shock wave under free-field air explosion is an extremely complex problem. It is generally considered that the waveform consists of overpressure peak, positive pressure zone and negative pressure zone. Most of current practice usually considers only the positive pressure.Many empirical relations are available to predict overpressure peak,the positive pressure action time and pressure decay law. However, there are few models that can predict the whole waveform. The whole process of explosion shock wave overpressure, which was expressed as the product of the three factor functions of peak, attenuation and oscillation, was proposed in the present work. According to the principle of explosion similarity, the scaled parameters were introduced and the empirical formula was absorbed to form a mathematical model of shock wave overpressure. Parametric numerical simulations of free-field air explosions were conducted. By experimental verification of the AUTODYN numerical method and comparing the analytical and simulated curves, the model is proved to be accurate to calculate the shock wave overpressure under free-field air explosion.In addition,through the model the shock wave overpressure at different time and distance can be displayed in three dimensions.The model makes the time needed for theoretical calculation much less than that for numerical simulation.

    1. Introduction

    The waveform structure of the air explosion shock wave is generally considered to consist of overpressure peak, positive pressure zone and negative pressure zone, as shown in Fig. 1, in which, the overpressure peak is the most concerned, followed by the positive pressure action time and pressure decay law.As for the negative pressure zone and the subsequent oscillation zone, there is few research information published.

    Many scholars have carried out research on the overpressure and propagation laws of explosive shock waves,and summarized a number of overpressure experience and semi-empirical formulas[1?5].The formulas often used to calculate overpressure are Henrch formula[1],Brode formula[2]and Friedlander formula[3].In 1984,based on a large number of experimental data, Kingery [4,6and7]put forward the Kingery-Bulmash model to calculate overpressure, which has been widely used. After a series of tests, the Kingery-Bulmash model was modified by Kingery in 1998 [8,9]which makes the far-field overpressure prediction much higher than before.

    All these formulas assume that positive pressure decays exponentially,and do not consider the role of negative pressure zone.In the far-field of air explosion shock wave, the structural response might be influenced by both the positive and negative phases of the pressure pulse, and their interaction with the structure [10].Regarding the negative pressure zone, Martin Larcher [11]uses a double-fold line to approximate the pressure in the negative pressure zone, and the negative pressure peak value is given as:

    where w is the TNT equivalent of the charge and the unit is kg,R is the distance from detonation and the unit is m, and pmis overpressure and the unit is MPa.When the overpressure peak is lower than -0.01 MPa,it is limited to -0.01 MPa.Because it is too simple that the double-fold line model divides the duration of the negative pressure area equally,there will be a big deviation from the actual situation.

    Fig.1. Typical waveform structure of the air explosion shock wave.

    At present there is no model that can predict the whole process of shock wave overpressure under free-field air explosion. And in the research of damage and protection, in order to obtain the mechanical response of the target or equipment under impact, it is necessary to input accurate time-space distribution data of the shock wave,including the negative pressure region waveform and even the subsequent oscillation data.Therefore,the research on the shock wave modeling of the whole process is very important.In the present work,a formula,which was expressed as the product of the three factor functions of peak, attenuation and oscillation, was established to predict the shock wave overpressure of free-field air explosion. In this formula, the scaled parameters were absorbed and well fitted by numerical data. The results obtained from the formula are consistent with the data of numerical simulation models,which indicates that the formula can accurately predict the shock wave overpressure of free-field air explosion at different times and distances.The new formula can be used to calculate the shock wave overpressure of free-field air explosion, including overpressure peak, the positive pressure action time and pressure decay law, and the negative pressure zone and the subsequent oscillation zone.

    2. Modeling

    At a certain point in the free field of air explosion, the shock waveform is generally combined by the attenuation of the overpressure peak and the periodic oscillation of the gas medium,which can be expressed by the following formula,

    where pmis the overpressure peak,the function f(tg1)describes the attenuation of the overpressure with time, and the function g(tg2)describes the periodic oscillation of the pressure with time.tg1and tg2are two scaled-time.The formation and propagation of explosive shock waves in the air conform to the law of explosion similarity.In order to make Equation(2)applicable to different explosive charges,scaled-parameters are needed to describe the distance and time.The scaled-distance is defined as

    where R is the distance from the detonation point, w is the TNT equivalent of the explosive. As w increases or R changes, the duration and attenuation of the shock wave will change accordingly. In order to comply with the law of explosion similarity, the sum of the indices of R and ffiffiffiw3p in the scaled-time definition must be 1. So the scaled-time should be defined as

    where n is a constant, and t is time. When different n values are taken, different kinds of scaled-time definitions are formed.

    In practical applications,the overpressure peak of Equation(2)is usually expressed in the following form,

    where Rgis the scaled-distance between the point and the detonation point. s1, s2, and s3are constants.

    The function f etg1T in Equation (2) describes the attenuation of pressure with time.The form of the negative exponential function is taken here,

    where a, b, and k are constants. The units of a and tg1should be correspond to each other and are reciprocal to each other. tg1is a scaled-time formed by Equation (4) with different value of n.

    The function g(tg2) in Equation (2) describes the periodic oscillation of pressure with time, which is expressed in the form of a cosine function.

    where c and q are constants,the unit of c should correspond to tg2.tg2is another scaled-time formed by Equation (4) with difference value of n.The denominator cosq is only for satisfying the result of 1 when tg2is 0.

    Substituting Equation (6) and Equation (7) into Equation (2),

    3. Parameter determination of the model

    With the development of numerical method, many explosion problems has been solved by numerical simulation [12?14]. Explosion shock wave can be solved more accurately [11,15?17].Generally speaking, the software based on finite difference and finite volume method,such as AUTODYN,Air3D,DYTRAN,DYSMAS and so on, is more accurate than finite element software, such as LS-DYNA and EUROPLEXUS.The AUTODYN numerical results of the free-field explosion are used to determine the parameters of the shock wave model.

    In order to simulate the spherical symmetry explosion, a twodimensional axisymmetric wedge model in Autodyn2D [18] is used to establish a small hollow wedge-shaped charge with an inner radius of 2 mm and an outer radius of 106 mm.The corresponding spherical TNT charge is 8 kg.The same modeling method is used for air domain, which has an inner radius on the outer surface of the charge and an outer radius of 20 m. The established numerical model is shown in Fig. 2. The grid number of explosion and air domain is 52 and 9949 respectively.The interval of the grid is 2 mm.

    Fig. 2. Numerical model of free-field explosion.

    Air and TNT are simulated by Euler processor.Air mass density is 1.225 kg m-3, air initial internal energy is 2.068×105kJ kg-1, and ideal gas constant is 1.4, which are standard constants of air and TNT from Autodyn2D material library.And air is presumed to have equation of state of ideal gas. The TNT charge detonation product adopts the JWL equation of state, that is, the pressure of the detonation product is

    where E is the unit mass internal energy,V is the specific volume.A,B,R1,R2,and u are constants.The first term on the right end of the equation plays a major role in the high pressure section.The second term plays a major role in the medium pressure section. And the third term represents the low pressure section.In the later stage of the expansion of the detonation product,the effects of the first and second term in the equation are negligible.In order to speed up the solution,the explosive equation of state is converted from the JWL equation of state to a simpler ideal gas state equation. The JWL equation of state for explosive detonation products is taken from the AUTODYN material database, seeing Table 1. Where r0Tis the initial density of TNT charge, D is the detonation velocity, E0is the initial internal energy, and PCJis the detonation pressure.

    3.1. Parameter determination of pm

    According to experimental data of TNT shock wave overpressure under free-field air explosion,the following similarity ratio formula was proposed by Henrch [1],

    By numerical simulation,a formula of shock wave overpressure of infinite ideal gas was fitted by Brode as follows [2],where the unit of pmis MPa, and the unit of scaled-distance Rgis

    Fig. 3. Numerical overpressure at different positions from the detonation point.

    According to Ruce Wang[19],the overpressure peak of spherical charge explosion can be calculated by the following formula,where the unit of pmis MPa, and the unit of RgisThe comparison shows that the formula is very close to the simulation result of AUTODYN when Rgis larger than 0.5. And no change is needed.The values of s1,s2,and s3in equation(12)should be 0.082,0.26 and 0.69 respectively. The formula is no longer applicable when Rgis smaller than 0.5.

    3.2. Parameter determination of g(tg2)

    The parameter values of g(tg2) and f(tg1) require reliable data support. When the accurate and credible experimental data is insufficient,the rigorous numerical results are a good basis.In this paper, Fig. 2, the pressure waveform calculated by AUTODYN, is used to determine the parameters. The action time of the positive and the negative pressure zone of the shock wave is determined by the factor function g(tg2), and there are clear numerical results. So parameters of g(tg2) is determined firstly. Parameters of f(tg1) are further determined based on the parameters.

    In the function g(tg2),the relationship between the positive and negative pressure action time and the distance is determined by tg2.According to the comparative analysis and fitting of the curve data on the values at different distances,the value of n in Equation(4)is determined to be 0.75. At this time

    In the function g(tg2), the oscillation period of the pressure is determined by c, that is, the boundary point between the positive pressure zone and the negative pressure zone is determined. The distribution of the action time of the positive and negative pressure zones is determined by q. When q is p/4, the positive pressureaction time is 1/4 of the negative pressure action time.Based on the extrapolation analysis of the numerical curve shown in Fig.4,q?p/4 is considered to be suitable.Similarly,according to the oscillation period calculated from numerical results, the value of c is 0.9575 when the time unit is ms,the distance unit is m,the mass unit is kg,and the pressure unit is MPa.Then

    Table 1 JWL equation of state parameters of TNT detonation product.

    Fig. 4. Extrapolation analysis of numerical data with scaled-distance of 1.

    3.2.1. Parameter determination of f(tg1)

    In the function f(tg1), tg1is closely related to the shape of the shock wave attenuation curve changing with the distance. According to the comparative analysis of the numerical curve at different distances, it is considered that a value of 1.75 for n in Equation(4)is suitable when the time unit is ms,the distance unit is m, and the mass unit is kg. Then

    In the function f(tg1),the variation law of the pressure waveform at different times and different distances is determined by a and k.According to the analysis of the numerical curve Fig.2,the values of a and k are 1.915 and 1.4 respectively when the time unit is ms,the distance unit is m,the mass unit is kg,and the pressure unit is MPa.The value is of b is mainly used to ensure that the value of f(tg1)is 1 when tg1is 0.And its value has a certain influence on the waveform.This paper takes 0.13 as b. So there is

    So far,all the parameters in the free-field explosion shock wave model have been determined. Substituting Equations (13)e(16)into Equation (2),

    Substituting Equation (3) into Equation (12),

    Substituting equation (18) into Equation (17),

    where t≥0. P is 0 when t<0.

    This formula(19) is the model of the free-field pressure of the explosion shock wave.It should be noted that the model is valid in the range of the scaled-distance bigger than 0.5.

    4. Verification

    4.1. Experimental verification of the numerical method

    In order to confirm the accuracy of AUTODYN numerical method,a near-surface explosion experiment is implemented.The near-surface explosion shock wave will experience more complicated conditions than free-field explosions, such as free-field propagation, ground positive reflection, ground oblique reflection and Mach reflection,which make the verification of the numerical method more rigorous.

    A two-dimensional axisymmetric model of AUTODYN is used to establish a cylinder-shaped TNT with a charge of 5 kg.The height from the ground is 1.5 m.The air domain has a radius of 20 m and a height of 7.5 m. The established numerical model is shown in Fig. 5(a). The numerical shock wave propagation and the groundgenerated Mach reflection process are shown in Fig. 5(b) and (c).The result of overpressure curve is shown in Fig.7(a).

    The experiment of 5 kg cylindrical TNT near ground explosion was carried out. The experimental setup is shown in Fig. 6. The height of the TNT charge from the ground is 1.5 m.Two sensors are placed at 3 m, 5 m, 7 m and 9 m from the charge respectively. The pressure sensor is used to test the horizontal shock wave overpressure curve. The measured ground reflection overpressure curves are shown in Fig. 7(b).

    From Figs.7(a)and Fig.6(b),the peak value and propagation of the shock wave calculated by AUTODYN are in good agreement with the experimental results.The simulation data is considered to be credible.

    Fig. 5. Numerical model of free-field explosion.

    Fig. 6. Experiment setup diagram.

    4.2. Numerical verification

    From the detonation moment,defining the scaled-time tdgwhen the front edge of the shock wave reaches a certain position is

    where tdis the time when the front edge of the shock wave reaches a certain position,and the unit is ms.

    According to the relationship between the position of the shock wave front and the time calculated by the numerical value, the scaled-distance of the shock wave reaching at a certain scaled-time can be fitted,and when tdg≥0.1,

    where tdgis the scaled-time.When 0

    Substituting Equations (3) and (18) into equation (19)

    Let the total time from the detonation time be tz, then the relationship between the time t in Equation(17)and the total time in Equation (20) is The equations, consisting of Equations (17), (20) and (21) can completely predict the spatiotemporal characteristics of the freefield overpressure of the explosion shock wave. In order to visually display the accuracy of the model,the results of the calculation can be compared with the results of the numerical method. Fig. 8 shows the pressure curves of shock waves at different distances of 64 kg spherical TNT charge of analytical and simulated methods,respectively. Fig. 9 shows the analytical and simulated curves of 1 kg spherical TNT charge. As can be seen from the curves in the figures, the two curves are in very good agreement, respectively.

    Fig.9. Comparison of shock wave pressure-time curves of 1 kg TNT charge at multiple distances of analytical and simulated calculations.

    Fig. 7. Numerical(a) and experimental(b) overpressure curve.

    Fig.10. Shock wave overpressure-distance curves at multiple times.

    Fig.11. Shock wave overpressure-time curves at multiple distances.

    In addition, equations (17), (20) and (21) can describe the relationship of shock wave pressure and distance at different times,and the relationship of shock wave pressure and time at different distances,which are shown as Fig.10 and Fig.11 respectively.Both the explosion is 8 kg spherical TNT charge.The shock wave pressure at different times and at different distances can be displayed and studied in three dimensions.

    5. Conclusion

    A new model establishment method of shock wave overpressure under free-field air explosion was studied in this paper.The free-field explosion shock wave overpressure was expressed as a product of the three factor functions of peak, attenuation and oscillation. The attenuation of the explosion shock wave conforms to the law of negative exponential decay,and the initial stage of the oscillation process basically conforms to the law of cosine oscillation.Further,the parameters of a,b,k,c and q were well fitted by the numerical data.By comparing the calculated results from Equations(17), (20) and (21) with numerical data, it was found that the analytical and simulated curves are in very good agreement,which indicates that the equations can accurately calculate the shock wave overpressure under free-field air explosion.Furthermore,the equations can realize three-dimensional display of the shock wave pressure with time and distance.

    The new formulas of this model can predict shock wave pressure well of the free-field air explosion. But because that careful parameter determination is through simulation, and the ground reflection of explosion shock wave is so complex that the measurement of free-field overpressure in experiment is very difficult,new measurement methods should be developed and a wide range of test conditions should be carried out to modify the parameters in the formulas.Focusing on these issues,further investigation will be conducted in our succedent research based on the analytical model.

    Acknowledgments

    This work was partially sponsored by Foundation of PLA Rocket Force.

    色噜噜av男人的天堂激情| 最近在线观看免费完整版| 露出奶头的视频| 97超视频在线观看视频| 久久精品影院6| 亚洲av成人av| 国产精品av视频在线免费观看| 波多野结衣高清作品| av在线蜜桃| 蜜臀久久99精品久久宅男| 三级男女做爰猛烈吃奶摸视频| 成人亚洲欧美一区二区av| 国产高潮美女av| 神马国产精品三级电影在线观看| 日韩av不卡免费在线播放| av在线观看视频网站免费| 国产 一区精品| 国产av在哪里看| 黄片wwwwww| 国产男人的电影天堂91| 成人特级av手机在线观看| 欧美激情在线99| 国产亚洲av嫩草精品影院| 99热6这里只有精品| 国产中年淑女户外野战色| 久久精品国产99精品国产亚洲性色| 日本在线视频免费播放| 欧美一级a爱片免费观看看| 精品国内亚洲2022精品成人| 国产探花极品一区二区| 国产午夜福利久久久久久| 日韩精品青青久久久久久| 日韩欧美精品v在线| 久久久久久久久久黄片| 久久人人爽人人爽人人片va| 美女xxoo啪啪120秒动态图| 99久久无色码亚洲精品果冻| 能在线免费观看的黄片| 亚洲成人久久爱视频| 99热这里只有精品一区| 啦啦啦观看免费观看视频高清| 亚洲,欧美,日韩| 久久鲁丝午夜福利片| 99久久久亚洲精品蜜臀av| 久久国产乱子免费精品| 日日撸夜夜添| 精品久久久久久久久av| 国产私拍福利视频在线观看| 久久婷婷人人爽人人干人人爱| 久久精品国产亚洲av香蕉五月| 有码 亚洲区| 狠狠狠狠99中文字幕| 一区二区三区免费毛片| 精品一区二区三区视频在线| 成人鲁丝片一二三区免费| 最近最新中文字幕大全电影3| 99热精品在线国产| 久久鲁丝午夜福利片| 插逼视频在线观看| 91久久精品电影网| 亚洲精品日韩av片在线观看| 免费电影在线观看免费观看| 观看美女的网站| 毛片女人毛片| 麻豆乱淫一区二区| 99久久成人亚洲精品观看| a级一级毛片免费在线观看| 国产成人freesex在线 | 亚洲国产欧美人成| 国产高清有码在线观看视频| 久久久久九九精品影院| 亚洲欧美中文字幕日韩二区| 欧美色欧美亚洲另类二区| 精品久久久久久久久久久久久| 国产大屁股一区二区在线视频| 亚洲av中文字字幕乱码综合| av福利片在线观看| 欧美一区二区精品小视频在线| 最好的美女福利视频网| 日韩制服骚丝袜av| 噜噜噜噜噜久久久久久91| 免费人成视频x8x8入口观看| 欧美色视频一区免费| 久久久国产成人精品二区| 十八禁国产超污无遮挡网站| 免费av观看视频| 国产视频一区二区在线看| 亚洲精品在线观看二区| 九九久久精品国产亚洲av麻豆| 亚洲最大成人av| 老司机影院成人| 精品久久久久久成人av| 久久久久久久亚洲中文字幕| 亚洲av中文字字幕乱码综合| 欧美日本视频| 亚洲av二区三区四区| 国产高清视频在线播放一区| 日本 av在线| 色综合站精品国产| 免费大片18禁| 精品一区二区三区视频在线| 久久草成人影院| 亚洲av成人精品一区久久| 婷婷亚洲欧美| 91久久精品电影网| 日本 av在线| av在线天堂中文字幕| 亚洲精品国产av成人精品 | 欧美区成人在线视频| 国产精品久久久久久亚洲av鲁大| 精品国产三级普通话版| 丰满乱子伦码专区| 久久天躁狠狠躁夜夜2o2o| 久久精品夜色国产| 校园春色视频在线观看| 国产黄色视频一区二区在线观看 | 国内揄拍国产精品人妻在线| avwww免费| 国国产精品蜜臀av免费| 免费看美女性在线毛片视频| 中国美女看黄片| 国产精品一二三区在线看| 久久精品国产亚洲av天美| 波多野结衣巨乳人妻| 国语自产精品视频在线第100页| 国产精品久久久久久亚洲av鲁大| 国产伦精品一区二区三区视频9| 久久精品综合一区二区三区| 欧美zozozo另类| 亚洲欧美中文字幕日韩二区| 麻豆精品久久久久久蜜桃| 中文字幕久久专区| 人人妻人人澡人人爽人人夜夜 | 欧美绝顶高潮抽搐喷水| 亚洲专区国产一区二区| 波多野结衣高清无吗| 亚洲av美国av| 午夜福利在线观看吧| 久久人人爽人人片av| 久久人妻av系列| h日本视频在线播放| 少妇被粗大猛烈的视频| 久久久精品94久久精品| 国产淫片久久久久久久久| 欧美极品一区二区三区四区| 国产精品亚洲美女久久久| 日韩av不卡免费在线播放| 亚洲av美国av| 欧美成人一区二区免费高清观看| 美女高潮的动态| 可以在线观看毛片的网站| 国产老妇女一区| 亚洲成人中文字幕在线播放| 久久久久久大精品| 国内精品宾馆在线| 亚洲久久久久久中文字幕| 高清毛片免费看| av在线老鸭窝| 在线a可以看的网站| 国产av在哪里看| or卡值多少钱| 性色avwww在线观看| 人妻久久中文字幕网| 少妇的逼水好多| 国产高潮美女av| 我的女老师完整版在线观看| 亚洲av第一区精品v没综合| 精品一区二区三区视频在线| 国产在视频线在精品| 伦理电影大哥的女人| 日韩精品青青久久久久久| 久久中文看片网| 欧美zozozo另类| 一级av片app| 亚洲av中文字字幕乱码综合| 亚洲电影在线观看av| eeuss影院久久| 久久久精品欧美日韩精品| 美女cb高潮喷水在线观看| 亚洲av不卡在线观看| 99精品在免费线老司机午夜| 波野结衣二区三区在线| 无遮挡黄片免费观看| 亚洲熟妇熟女久久| 97热精品久久久久久| 亚洲av电影不卡..在线观看| 亚洲国产日韩欧美精品在线观看| 亚洲成人久久性| 久久99热这里只有精品18| 少妇裸体淫交视频免费看高清| 麻豆成人午夜福利视频| 内地一区二区视频在线| 不卡视频在线观看欧美| 日本免费一区二区三区高清不卡| 亚洲综合色惰| 欧美在线一区亚洲| 如何舔出高潮| 搞女人的毛片| 亚洲国产精品sss在线观看| a级毛片a级免费在线| 精品一区二区三区视频在线| 亚洲欧美日韩高清在线视频| 成人亚洲欧美一区二区av| 国产高清激情床上av| 国产成人a∨麻豆精品| 亚洲图色成人| 一级黄色大片毛片| 日本 av在线| 亚洲aⅴ乱码一区二区在线播放| 老司机福利观看| 久久精品国产亚洲av涩爱 | 日韩精品青青久久久久久| 有码 亚洲区| 麻豆成人午夜福利视频| 又爽又黄a免费视频| 女同久久另类99精品国产91| 久久精品国产清高在天天线| 18禁裸乳无遮挡免费网站照片| 欧洲精品卡2卡3卡4卡5卡区| 少妇熟女aⅴ在线视频| 国产三级中文精品| 嫩草影院精品99| 色视频www国产| 国产伦一二天堂av在线观看| 亚洲精品在线观看二区| 亚洲无线在线观看| 精品无人区乱码1区二区| 人人妻人人看人人澡| 波多野结衣高清无吗| 18禁在线播放成人免费| 夜夜夜夜夜久久久久| 欧美高清成人免费视频www| 国产亚洲欧美98| 中文字幕久久专区| 成年女人看的毛片在线观看| 九九久久精品国产亚洲av麻豆| 天美传媒精品一区二区| 精品人妻视频免费看| 亚洲av.av天堂| 99久久无色码亚洲精品果冻| 国产久久久一区二区三区| 亚洲成人av在线免费| 成人国产麻豆网| 久久午夜福利片| 级片在线观看| 在线a可以看的网站| 99热网站在线观看| 春色校园在线视频观看| 丰满人妻一区二区三区视频av| 日韩av在线大香蕉| 亚洲国产精品久久男人天堂| 三级男女做爰猛烈吃奶摸视频| 国产精品,欧美在线| 午夜免费激情av| 又黄又爽又刺激的免费视频.| 三级男女做爰猛烈吃奶摸视频| 国产蜜桃级精品一区二区三区| 一区二区三区免费毛片| 丝袜喷水一区| 高清午夜精品一区二区三区 | 日韩高清综合在线| 99久国产av精品| 久久久久国产精品人妻aⅴ院| 男女做爰动态图高潮gif福利片| 一级毛片我不卡| 精品久久久噜噜| 此物有八面人人有两片| 超碰av人人做人人爽久久| 晚上一个人看的免费电影| 欧美激情久久久久久爽电影| 国内揄拍国产精品人妻在线| 一区二区三区免费毛片| 又黄又爽又刺激的免费视频.| 国产探花极品一区二区| 一级a爱片免费观看的视频| 日日干狠狠操夜夜爽| 亚洲国产精品国产精品| 亚洲第一区二区三区不卡| 国产一区二区三区在线臀色熟女| 中出人妻视频一区二区| 在线观看免费视频日本深夜| 久久人人爽人人爽人人片va| 秋霞在线观看毛片| 人妻制服诱惑在线中文字幕| 热99在线观看视频| 99久国产av精品国产电影| 一级毛片aaaaaa免费看小| 又粗又爽又猛毛片免费看| 免费看美女性在线毛片视频| 一级黄片播放器| 国产伦一二天堂av在线观看| 男女做爰动态图高潮gif福利片| 亚洲精品国产av成人精品 | 亚洲熟妇熟女久久| 国产淫片久久久久久久久| 国产免费男女视频| 久久精品国产清高在天天线| 亚洲国产色片| 亚洲,欧美,日韩| 99久久精品热视频| 在现免费观看毛片| 久久久精品大字幕| 日韩精品青青久久久久久| 国产精品女同一区二区软件| a级毛色黄片| 亚洲av五月六月丁香网| 丰满人妻一区二区三区视频av| 一区二区三区免费毛片| 99精品在免费线老司机午夜| av在线观看视频网站免费| 亚洲婷婷狠狠爱综合网| 真实男女啪啪啪动态图| 天天躁夜夜躁狠狠久久av| or卡值多少钱| 亚洲av电影不卡..在线观看| 日本-黄色视频高清免费观看| 亚洲最大成人av| 九九爱精品视频在线观看| 日本成人三级电影网站| 日本精品一区二区三区蜜桃| 99热全是精品| 天天一区二区日本电影三级| 香蕉av资源在线| 精品无人区乱码1区二区| 不卡视频在线观看欧美| 国产精品久久久久久精品电影| 亚洲av免费高清在线观看| 真人做人爱边吃奶动态| 波多野结衣高清无吗| 天美传媒精品一区二区| 内地一区二区视频在线| 国产免费一级a男人的天堂| 一级毛片久久久久久久久女| 直男gayav资源| 小说图片视频综合网站| 99在线人妻在线中文字幕| 日本黄色片子视频| 人人妻人人澡人人爽人人夜夜 | 久久精品国产自在天天线| 欧美xxxx黑人xx丫x性爽| 人妻丰满熟妇av一区二区三区| 最好的美女福利视频网| 毛片一级片免费看久久久久| 天堂影院成人在线观看| 日韩欧美 国产精品| 久久韩国三级中文字幕| 国产精品电影一区二区三区| 亚洲精品日韩av片在线观看| 精品欧美国产一区二区三| 国产探花极品一区二区| 色吧在线观看| 99热这里只有是精品在线观看| 国产白丝娇喘喷水9色精品| 国产一区二区三区在线臀色熟女| 中文字幕免费在线视频6| 日韩欧美 国产精品| 嫩草影院精品99| 亚洲天堂国产精品一区在线| 亚洲激情五月婷婷啪啪| 亚洲婷婷狠狠爱综合网| 一进一出好大好爽视频| 俺也久久电影网| a级一级毛片免费在线观看| 午夜福利18| 亚洲精品国产av成人精品 | 国产精品日韩av在线免费观看| 欧美另类亚洲清纯唯美| 三级国产精品欧美在线观看| 免费看美女性在线毛片视频| 久久人妻av系列| 国产三级在线视频| 欧美成人a在线观看| 国产伦精品一区二区三区四那| 日韩精品有码人妻一区| 热99re8久久精品国产| 国语自产精品视频在线第100页| a级毛片免费高清观看在线播放| 欧洲精品卡2卡3卡4卡5卡区| 国内少妇人妻偷人精品xxx网站| 嫩草影院入口| 日日摸夜夜添夜夜添小说| 国产高清激情床上av| 非洲黑人性xxxx精品又粗又长| 亚洲专区国产一区二区| 久久久精品欧美日韩精品| 国产aⅴ精品一区二区三区波| 人人妻人人澡欧美一区二区| 禁无遮挡网站| 看免费成人av毛片| 天堂√8在线中文| 亚洲久久久久久中文字幕| 亚洲精品在线观看二区| 午夜免费激情av| 少妇熟女aⅴ在线视频| 丰满乱子伦码专区| 亚洲久久久久久中文字幕| 中文字幕av成人在线电影| 日韩av在线大香蕉| 午夜视频国产福利| 我的女老师完整版在线观看| 国产亚洲欧美98| 国内精品美女久久久久久| 亚洲欧美日韩卡通动漫| 99精品在免费线老司机午夜| 久久这里只有精品中国| 非洲黑人性xxxx精品又粗又长| 日本成人三级电影网站| 狂野欧美激情性xxxx在线观看| 国产高清三级在线| avwww免费| 午夜爱爱视频在线播放| 亚洲av五月六月丁香网| 久久久精品欧美日韩精品| 国产精品永久免费网站| 午夜影院日韩av| 亚洲国产色片| 国产精品1区2区在线观看.| 淫秽高清视频在线观看| 国产又黄又爽又无遮挡在线| 亚洲欧美日韩无卡精品| 天天躁日日操中文字幕| 色尼玛亚洲综合影院| 亚洲第一区二区三区不卡| a级毛片免费高清观看在线播放| 国产精品伦人一区二区| 国产午夜精品论理片| 五月伊人婷婷丁香| 精品一区二区三区视频在线| 麻豆一二三区av精品| 国产 一区精品| 亚洲人与动物交配视频| 国产熟女欧美一区二区| 一区二区三区四区激情视频 | 久久久久久久久中文| 久久久久久伊人网av| 狂野欧美白嫩少妇大欣赏| 亚洲第一区二区三区不卡| 嫩草影院入口| 成人永久免费在线观看视频| 国产精品国产三级国产av玫瑰| 亚洲av不卡在线观看| 午夜福利在线在线| 99久国产av精品国产电影| 波野结衣二区三区在线| 一个人免费在线观看电影| 成人精品一区二区免费| 日韩欧美三级三区| 亚洲欧美日韩卡通动漫| 欧美色欧美亚洲另类二区| 国产精品人妻久久久久久| 亚州av有码| 精品人妻一区二区三区麻豆 | 亚洲欧美日韩卡通动漫| 国产午夜精品论理片| 国产国拍精品亚洲av在线观看| 成年av动漫网址| 欧美日韩在线观看h| 国产日本99.免费观看| 国产高潮美女av| 久久国内精品自在自线图片| 国产精品国产高清国产av| 深爱激情五月婷婷| 国产色婷婷99| 香蕉av资源在线| 成人亚洲精品av一区二区| 国产精品福利在线免费观看| 精品一区二区三区视频在线| 亚洲中文字幕日韩| 国产精品久久久久久av不卡| 内射极品少妇av片p| a级毛片a级免费在线| 中文字幕久久专区| 99热网站在线观看| 国产精品伦人一区二区| 人人妻,人人澡人人爽秒播| 国产欧美日韩一区二区精品| 在线观看免费视频日本深夜| 卡戴珊不雅视频在线播放| 久久精品国产亚洲av涩爱 | eeuss影院久久| 少妇人妻精品综合一区二区 | 午夜激情福利司机影院| 精品一区二区三区视频在线观看免费| 卡戴珊不雅视频在线播放| 国产亚洲精品综合一区在线观看| 国产高清视频在线观看网站| 亚洲av电影不卡..在线观看| 欧美+亚洲+日韩+国产| 久久国内精品自在自线图片| 伦理电影大哥的女人| 女人十人毛片免费观看3o分钟| 91狼人影院| 久久久久久久午夜电影| 高清毛片免费看| 在线观看一区二区三区| 免费在线观看成人毛片| 亚洲中文字幕一区二区三区有码在线看| 91久久精品国产一区二区成人| 亚洲第一电影网av| 国产精品一区二区三区四区免费观看 | 久久综合国产亚洲精品| 久久久久国内视频| 一级毛片aaaaaa免费看小| av在线观看视频网站免费| 男女之事视频高清在线观看| 女的被弄到高潮叫床怎么办| 亚洲欧美成人精品一区二区| 日本-黄色视频高清免费观看| 九九久久精品国产亚洲av麻豆| 国产v大片淫在线免费观看| 日韩精品青青久久久久久| av视频在线观看入口| 国产又黄又爽又无遮挡在线| 黄片wwwwww| 极品教师在线视频| 无遮挡黄片免费观看| 最近2019中文字幕mv第一页| 人妻夜夜爽99麻豆av| 久久久久九九精品影院| 婷婷亚洲欧美| 免费看美女性在线毛片视频| 乱码一卡2卡4卡精品| 日韩中字成人| 麻豆av噜噜一区二区三区| 22中文网久久字幕| 国产精品久久视频播放| 两性午夜刺激爽爽歪歪视频在线观看| 淫秽高清视频在线观看| 国产av麻豆久久久久久久| 国产精品人妻久久久影院| 亚洲国产精品国产精品| 久久精品国产自在天天线| 久久精品国产99精品国产亚洲性色| 亚洲精品日韩在线中文字幕 | 91久久精品国产一区二区三区| 精品久久久噜噜| 丰满的人妻完整版| 久久久国产成人精品二区| 久久精品人妻少妇| 最近手机中文字幕大全| 亚洲精品一卡2卡三卡4卡5卡| 日本爱情动作片www.在线观看 | 国内揄拍国产精品人妻在线| 一级av片app| 欧美最新免费一区二区三区| 91在线精品国自产拍蜜月| 成人永久免费在线观看视频| 淫秽高清视频在线观看| 又黄又爽又刺激的免费视频.| 午夜福利18| 在线看三级毛片| 99久久久亚洲精品蜜臀av| 春色校园在线视频观看| 人人妻人人澡人人爽人人夜夜 | 成人永久免费在线观看视频| 美女免费视频网站| 亚洲av熟女| 黄色配什么色好看| 一边摸一边抽搐一进一小说| 欧美区成人在线视频| 亚洲av免费高清在线观看| 国产高清视频在线播放一区| 亚洲人与动物交配视频| 国产av在哪里看| 国产单亲对白刺激| eeuss影院久久| 国产在视频线在精品| 色吧在线观看| 免费观看精品视频网站| a级毛片免费高清观看在线播放| 尾随美女入室| 狠狠狠狠99中文字幕| 欧美最新免费一区二区三区| 夜夜爽天天搞| 全区人妻精品视频| 在现免费观看毛片| 中文字幕av成人在线电影| 亚洲成a人片在线一区二区| 久久国产乱子免费精品| 亚洲不卡免费看| 五月玫瑰六月丁香| 久久久久久久久中文| 搡老妇女老女人老熟妇| 人妻制服诱惑在线中文字幕| 中国美女看黄片| av在线蜜桃| 少妇熟女欧美另类| 精品久久久久久久久亚洲| 国产大屁股一区二区在线视频| 黑人高潮一二区| 精品久久久久久久人妻蜜臀av| 一个人免费在线观看电影| av福利片在线观看| 一本一本综合久久| 日本五十路高清| 免费黄网站久久成人精品| 国产一区亚洲一区在线观看| 麻豆一二三区av精品| 欧美日韩乱码在线| 亚洲av五月六月丁香网| 禁无遮挡网站| 嫩草影视91久久| 国产91av在线免费观看| 亚洲精品色激情综合| 亚洲中文日韩欧美视频| 69人妻影院| 你懂的网址亚洲精品在线观看 | 草草在线视频免费看| 免费观看精品视频网站| 美女xxoo啪啪120秒动态图| 久久久久国产精品人妻aⅴ院| 国内精品宾馆在线| 自拍偷自拍亚洲精品老妇| 久久精品国产鲁丝片午夜精品| 国产一区二区激情短视频|