徐新光 郭亮 王者龍 杜艷 李琮琮
摘要:為克服外部干擾和不確定參數(shù)對(duì)勵(lì)磁穩(wěn)定控制的影響,解決由電磁功率反饋引起的非仿射勵(lì)磁系統(tǒng)L2增益魯棒穩(wěn)定控制問題,提出一種擴(kuò)展反演自適應(yīng)L2增益勵(lì)磁控制新方法。通過(guò)采用含K類函數(shù)的反演L2增益設(shè)計(jì)方法,給出滿足耗散不等式的控制律和參數(shù)自適應(yīng)律,實(shí)現(xiàn)勵(lì)磁系統(tǒng)的快速穩(wěn)定控制。為驗(yàn)證所提方法的有效性,在負(fù)載突增和三相短路故障兩種工作狀態(tài)下,開展仿真驗(yàn)證實(shí)驗(yàn)。仿真結(jié)果表明:相對(duì)于傳統(tǒng)比例積分控制方法,新的勵(lì)磁控制方法可明顯加快勵(lì)磁系統(tǒng)關(guān)鍵狀態(tài)變量的穩(wěn)定速度,降低動(dòng)態(tài)超調(diào),具有較好的抗擾動(dòng)能力,對(duì)提高勵(lì)磁系統(tǒng)以及電力系統(tǒng)的動(dòng)態(tài)穩(wěn)定能力具有一定的參考價(jià)值。
關(guān)鍵詞:擴(kuò)展反演設(shè)計(jì);功率反饋;勵(lì)磁控制;自適應(yīng)反演設(shè)計(jì);L2增益控制
中圖分類號(hào):TM273;TM71
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1674–5124(2019)03–0151–06
Extend back-stepping adaptive L2-gain control of non-affine excitation system with power feedback
XU Xinguang1, GUO Liang2, WANG Zhelong1, DU Yan1, LI Congcong1
(1. Shandong Electric Power Research Institute, State Grid Electric Power Company, Jinan 250002, China; 2. State Grid Shandong Electric Power Company, Jinan 250002, China)
Abstract: In order to overcome the effects on excitation stability control by the outer disturbances and the uncertain parameters, and resolve the non-affine excitation system L2 gain robust stability control problem caused by power feedback, the new extend back-stepping adaptive L2 gain control method is proposed. By adopting the back-stepping L2-gain design method with K class functions, the control law and the adaptive law satisfied the dissipation inequality are deduced, the rapid stability control of excitation system is realized. In order to verify the effectiveness of the proposed method, simulation experiment is carried out under sudden load increase and three-phase short-circuit fault conditions. Simulation results show that the new excitation control method can rapid the stability speed of the key variable parameters, reduce the dynamic overshoot and resist the interference, which has certain reference value for improving the dynamic stability of excitation system and power system.
Keywords: extend back-stepping design; power feedback; excitation control; adaptive back-stepping design; L2-gain control
0 引言
勵(lì)磁系統(tǒng)作為電力系統(tǒng)重要組成部分,對(duì)于提高電力系統(tǒng)暫態(tài)穩(wěn)定和抑制低頻振蕩具有重要意義[1~2]。由于勵(lì)磁系統(tǒng)具有較強(qiáng)的非線性特征,所以傳統(tǒng)的依據(jù)勵(lì)磁系統(tǒng)定點(diǎn)線性化模型的控制方法對(duì)于保證電力系統(tǒng)大范圍穩(wěn)定運(yùn)行的能力有限[3]。因此,為了更好地提高勵(lì)磁控制的性能,保證電力系統(tǒng)的大范圍穩(wěn)定運(yùn)行,許多學(xué)者在勵(lì)磁系統(tǒng)非線性控制方面進(jìn)行著不懈的努力,并取得了許多顯著的成果。
文獻(xiàn)[4]采用基于微分幾何反饋線性化方法,將非線性系統(tǒng)分解為線性與非線性兩部分,線性部分采用最優(yōu)二次型方法設(shè)計(jì)控制律,非線性部分采用動(dòng)態(tài)擴(kuò)張的方法,最終實(shí)現(xiàn)整體線性化,并得到了最優(yōu)控制解。文獻(xiàn)[5]基于協(xié)同控制理論,通過(guò)選取端電壓、功率、轉(zhuǎn)速偏差構(gòu)建流形,并合理設(shè)計(jì)控制律,使得系統(tǒng)沿此流形穩(wěn)定于平衡點(diǎn),但是控制律中含有交、直軸電流微分項(xiàng),增加了測(cè)量難度。文獻(xiàn)[6-7]設(shè)計(jì)不同類型滑模面相應(yīng)的控制律,但是用以實(shí)現(xiàn)勵(lì)磁系統(tǒng)不確定性估計(jì)的觀測(cè)器實(shí)現(xiàn)比較復(fù)雜。文獻(xiàn)[8-9]充分采用反演設(shè)計(jì)方法抵消勵(lì)磁系統(tǒng)的非線性部分,但是并未對(duì)系統(tǒng)的外部干擾影響進(jìn)行分析。文獻(xiàn)[10]基于H∞理論,通過(guò)求解線性矩陣不等式,保證干擾對(duì)期望輸出的影響小于給定值;文獻(xiàn)[11-12]基于微分幾何原理,通過(guò)微分同胚變換,將勵(lì)磁系統(tǒng)等效為線性系統(tǒng),經(jīng)過(guò)對(duì)干擾或模型不確定性的狀態(tài)觀測(cè)或預(yù)測(cè),最終采用變結(jié)構(gòu)或線性系統(tǒng)最優(yōu)控制方法得到了勵(lì)磁控制解,但是控制律中含有轉(zhuǎn)速微分項(xiàng),并且狀態(tài)觀測(cè)或預(yù)測(cè)算法中有較多參數(shù)需要調(diào)整。文獻(xiàn)[13]基于偽廣義Hamilton理論對(duì)廣域多機(jī)系統(tǒng)中存在的時(shí)滯控制問題進(jìn)行了分析。文獻(xiàn)[14]通過(guò)設(shè)計(jì)布魯諾夫斯基標(biāo)準(zhǔn)型簡(jiǎn)化了非線性勵(lì)磁控制難度,但是沒有考慮干擾抑制問題。文獻(xiàn)[15-16]采用非線性魯棒控制的方法對(duì)勵(lì)磁系統(tǒng)的干擾抑制和參數(shù)自適應(yīng)控制進(jìn)行了分析,但是由于受狀態(tài)變量和勵(lì)磁系統(tǒng)模型選取限制,控制律的設(shè)計(jì)過(guò)程比較復(fù)雜。
本文在勵(lì)磁系統(tǒng)模型分析中,將電磁功率Pe作為直接量測(cè)量,簡(jiǎn)化了勵(lì)磁系統(tǒng)模型,但此時(shí)的勵(lì)磁系統(tǒng)模型不具備嚴(yán)參數(shù)反饋系統(tǒng)結(jié)構(gòu)特征,傳統(tǒng)反演自適應(yīng)L2增益控制方法不適用。為此,本文提出一種擴(kuò)展反演自適應(yīng)L增益勵(lì)磁控制算法,實(shí)現(xiàn)2了勵(lì)磁系統(tǒng)的穩(wěn)定控制。在本文所提新的控制方法中,在選用狀態(tài)變量δ0、ωN、E′q0實(shí)施控制的同時(shí),由于新增了功率偏差狀態(tài)量?Pe,所以具有更好的動(dòng)態(tài)控制性能,同時(shí)由于給出的控制律所涉及各狀態(tài)量均可以直接快速測(cè)得,所以該方法更有利于工程實(shí)際應(yīng)用。
1 勵(lì)磁系統(tǒng)模型分析
當(dāng)受到大擾動(dòng)影響或在大范圍動(dòng)態(tài)工作過(guò)程中,考慮到電抗飽和、慣性時(shí)間常數(shù)誤差、阻尼系數(shù)變化等不確定性以及外部電磁、力矩等擾動(dòng)影響[15],勵(lì)磁系統(tǒng)模型可表示為[17]
式中:δ——發(fā)電機(jī)功角,rad;
ω——發(fā)電機(jī)轉(zhuǎn)子角頻率,rad/s;
ωN——額定角速度,rad/s;
M——轉(zhuǎn)動(dòng)慣量時(shí)間常數(shù),s;
D——阻尼系數(shù),通常難以精量確定,不確定模型參數(shù),N/(m·s?1);
Pe——機(jī)組輸出的電功率,kW;
d1——轉(zhuǎn)矩?cái)_動(dòng),rad/s;
Eq′——q軸空載暫態(tài)電勢(shì),V;
Pm——機(jī)械輸入功率,kW;
U——電網(wǎng)母線電壓,V;
Td′——暫態(tài)勵(lì)磁繞組時(shí)間常數(shù),s;
Td0——?jiǎng)?lì)磁繞組時(shí)間常數(shù),s;
xd——直軸同步電抗,Ω;
xd′——直軸暫態(tài)同步電抗,Ω;
d2——電磁干擾,V;
Ef——?jiǎng)?lì)磁控制輸入,V。
假定勵(lì)磁系統(tǒng)穩(wěn)定工作點(diǎn)為(δ0,ωN,E′q0),式(1)~式(3)經(jīng)坐標(biāo)變換[x1x2x3]T=[δ?δ0ω?ωNEq′]T可得
其中,a1=ωN/M;?Pe=Pm?Pe;θ=D;y為評(píng)價(jià)信號(hào);qi為加權(quán)系數(shù);v=?1Eq′+1xd?xdUcosδ+1Ef為預(yù)反饋。
由于模型式(4)~式(7)不具備嚴(yán)參數(shù)反饋結(jié)構(gòu)特征,所以不能直接采用常規(guī)反演自適應(yīng)L2增益控制方法實(shí)現(xiàn)勵(lì)磁系統(tǒng)的L2增益穩(wěn)定控制。為此,本文提出一種擴(kuò)展反演自適應(yīng)L2增益勵(lì)磁控制方法。
2 擴(kuò)展反演自適應(yīng)L2增益勵(lì)磁控制實(shí)現(xiàn)
由Lyapunov穩(wěn)定理論和反演設(shè)計(jì)理論可知,可將x2看作子系統(tǒng)(4)的控制輸入,要使子系統(tǒng)穩(wěn)定,需要滿足V?1<0,此時(shí)可取虛擬控制為
其中:m1=κ1(|e1|)+c1,κ1(|e1|)為有關(guān)e1的K類函數(shù),c1>0為常系數(shù)。
常規(guī)反演設(shè)計(jì)中,m1為大于零的常數(shù),本文中引入K類函數(shù)κ1(|e1|)。由K類函數(shù)定義可知,當(dāng)誤差e1越大時(shí),κ1(|e1|)的值越大,從而可以加快V?1<0的速度。另外,c1大小同樣會(huì)決定V?1<0的速度,且c1值越大,子系統(tǒng)穩(wěn)定速度越快。
由式(10)、式(11)得
由式(12)得
取虛擬控制量x3為
其中:m=κ(|e|)+c,κ(|e|)為有關(guān)e的K類函數(shù),2212222c2>0為常系數(shù)。κ2(|e2|)和c2的含義同上述的κ1(|e1|)和c1。
則可得誤差變量e3=x3?x3?,取不確定常數(shù)θ的估計(jì)值為θ?,則可得估計(jì)誤差為θ?=θ?θ?。
由式(15)得
由式(17)可得控制律和參數(shù)自適應(yīng)律為
將式(18)、式(19)代入式(17)得
由式(20)得
式(21)積分可得耗散不等式:
由式(22)可知,采用控制律式(18)和參數(shù)自適應(yīng)律式(19),可以實(shí)現(xiàn)L2增益控制。
由式(18)、式(19)可知?jiǎng)?lì)磁控制輸入是關(guān)于e1=x1=?δ=t?ωdt、e2=x2?x?=ω+m1e1、x2=ω?02ωN、x3=Eq′≈U+xd′Qe/U、?Pe=Pe0?Pe、U的函數(shù),而這些量可以通過(guò)直接測(cè)量得到,有利于工程實(shí)際應(yīng)用。電壓、功率值可以采用以下瞬時(shí)功率計(jì)算方法得到。
通過(guò)采集發(fā)電機(jī)的端電壓、轉(zhuǎn)速變化量、功角變化量、有功變化量、有功功率和無(wú)功功率,代入控制律式(18)和參數(shù)自適應(yīng)律式(19)可以得到擴(kuò)展反演自適應(yīng)L2增益勵(lì)磁控制輸出,進(jìn)而控制勵(lì)磁系統(tǒng)受到擾動(dòng)后依然保持穩(wěn)定運(yùn)行。
3 仿真驗(yàn)證與結(jié)論分析
為驗(yàn)證所提擴(kuò)展反演自適應(yīng)L2增益控制方法有效性,并與傳統(tǒng)PI控制進(jìn)行對(duì)比分析,進(jìn)行如下仿真試驗(yàn)。仿真中勵(lì)磁系統(tǒng)模型參數(shù)如表1所示。3.1負(fù)載增加時(shí)的仿真在0.6s時(shí)發(fā)電機(jī)突然增加50%負(fù)載,并在0.7s時(shí)恢復(fù)原有負(fù)載,常規(guī)PI控制仿真圖如圖1所示。采用擴(kuò)展反演自適應(yīng)L2增益控制時(shí),仿真參數(shù)為:κ1(|e1|)=3e21;c1=5;κ2(|e2|)=2e2;c2=1;f1(e2)=2|e2|+cose2;f(e3)=4|e3|+2cose3;q1=0.4;q2=0.6;q3=0.4;γ=0.5;ρ=1;d1和d2為白噪聲。仿真結(jié)果如圖2所示。
比較圖1、圖2可知:當(dāng)在0.6s出現(xiàn)負(fù)載擾動(dòng)后,相對(duì)于傳統(tǒng)的常規(guī)PI控制,采用本文所提的擴(kuò)展反演自適應(yīng)L2增益控制時(shí),狀態(tài)變量的恢復(fù)時(shí)間由原來(lái)的大約1.7s減小至大約1.0s,轉(zhuǎn)速和暫態(tài)電勢(shì)波動(dòng)時(shí)的最低值明顯增加,有利于頻率和電壓的快速恢復(fù),不確定參數(shù)的估計(jì)速度較快,在0.5s內(nèi)基本完成估計(jì)跟隨,具有很好的跟隨特性,能夠滿足勵(lì)磁控制需要。
3.2 三相短路故障大擾動(dòng)時(shí)的仿真
在1.1s時(shí)在并網(wǎng)變壓器二次側(cè)發(fā)生三相短路故障,并在1.2s時(shí)切除三相短路故障。采用常規(guī)PI控制方式仿真圖形如圖3所示,采用擴(kuò)展反演自適應(yīng)L2增益控制仿真圖形如圖4所示。擴(kuò)展反演自適應(yīng)L2增益控制采用的控制參數(shù)同3.1節(jié)。
比較圖3、圖4可知:當(dāng)發(fā)生短時(shí)三相短路故障大擾動(dòng)時(shí),采用本文所提的擴(kuò)展反演自適應(yīng)L2增益控制可使發(fā)電機(jī)更能夠快速恢復(fù)穩(wěn)定運(yùn)行,相對(duì)于傳統(tǒng)的常規(guī)PI控制,暫態(tài)電勢(shì)的的恢復(fù)穩(wěn)定時(shí)間由2.5s縮短為1.5s,超調(diào)量明顯降低,且勵(lì)磁控制的幅值明顯降低,不確定參數(shù)的估計(jì)速度較快,在0.8s內(nèi)完成估計(jì)跟隨,具有很好的跟隨特性,能夠滿足勵(lì)磁控制需要。
4 結(jié)束語(yǔ)
本文通過(guò)選取電磁功率作為整體測(cè)量量,簡(jiǎn)化了勵(lì)磁系統(tǒng)模型,鑒于等效后的模型不具備嚴(yán)參數(shù)反饋結(jié)構(gòu),提出一種擴(kuò)展反演自適應(yīng)L2增益勵(lì)磁控制新方法,其控制律中涉及的狀態(tài)變量為端電壓、轉(zhuǎn)速、功率等可以直接測(cè)量得到的物理量,因此該方法可以較方便地應(yīng)用于工程實(shí)際中。通過(guò)開展負(fù)載擾動(dòng)和三相接地故障仿真測(cè)試實(shí)驗(yàn),進(jìn)一步證明了所提方法的正確性。仿真結(jié)果說(shuō)明該方法對(duì)于提高系統(tǒng)的穩(wěn)定速度、降低電壓沖擊具有明顯的效果,為提高電力系統(tǒng)暫態(tài)穩(wěn)定能力提供了一種新的勵(lì)磁控制途徑。
參考文獻(xiàn)
[1] BO Z Q, LIN X N, WANG Q P, et al. Developments of power system protection and control[J]. Protection and Control of Modern Power Systems, 2016(1): 1-7.
[2]張靜,李志強(qiáng),何鳳軍,等.全過(guò)程勵(lì)磁控制對(duì)電力系統(tǒng)暫態(tài)穩(wěn)定性的影響[J].電力系統(tǒng)自動(dòng)化,2014,38(15):124-129.
[3]盧強(qiáng),梅生偉,孫元章.電力系統(tǒng)非線性控制[M].北京:清華大學(xué)出版社,2008.
[4]李嘯驄,鄭濤,梁志堅(jiān),等.水輪機(jī)水門、勵(lì)磁與電氣制動(dòng)系統(tǒng)非線性綜合控制[J].電力自動(dòng)化設(shè)備,2016,36(7):97-103.
[5]趙平,姚偉,王少榮,等.采用協(xié)同控制理論的同步發(fā)電機(jī)非線性勵(lì)磁控制[J].電力系統(tǒng)保護(hù)與控制,2013,41(23):1-7.
[6]趙輝,王亞菲,王紅君,等.基于滑模變結(jié)構(gòu)控制的余熱發(fā)電機(jī)機(jī)組勵(lì)磁控制研究[J].電力系統(tǒng)保護(hù)與控制,2015,43(6):8-13.
[7]張虹,于雷,徐濱.基于改進(jìn)PSO的Terminal分段滑模勵(lì)磁控制器設(shè)計(jì)[J].電工電能新技術(shù),2014,33(6):18-22,35.
[8]楊培宏,劉文穎,魏毅立,等.基于自適應(yīng)逆推變結(jié)構(gòu)方法的非線性勵(lì)磁控制[J].電力系統(tǒng)保護(hù)與控制,2012,40(20):125-144,149.
[9]劉玲,孫麗穎.發(fā)電機(jī)勵(lì)磁和SVC改進(jìn)backstepping協(xié)調(diào)無(wú)源控制[J].遼寧工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2016,36(4):
211-215.
[10]李帥兵,董海鷹,李曉青.電勵(lì)磁同步風(fēng)力發(fā)電機(jī)輸出電壓DL-H∞控制[J].電氣傳動(dòng),2015,45(1):64-68.
[11]常鮮戎,張海生,崔趙俊.基于微分幾何和擴(kuò)張狀態(tài)觀測(cè)器的勵(lì)磁控制[J].電力系統(tǒng)及其自動(dòng)化學(xué)報(bào),2015,27(8):87-91.
[12]肖健梅,張科,王錫淮.基于預(yù)測(cè)函數(shù)與線性多變量反饋控制的同步發(fā)電機(jī)勵(lì)磁控制[J].電力自動(dòng)化設(shè)備,2015,35(7):153-159.
[13]陳文韜,王杰.基于偽廣義Hamilton理論的電力系統(tǒng)時(shí)滯反饋勵(lì)磁控制[J].電網(wǎng)技術(shù),2015,39(8):2238-2244.
[14]李嘯驄,袁輝,陳明媛,等.多機(jī)系統(tǒng)中STATCOM與發(fā)電機(jī)勵(lì)磁的非線性分散協(xié)調(diào)控制設(shè)計(jì)[J].電網(wǎng)技術(shù),2016,40(8):2350-2356.
[15]谷志鋒,朱長(zhǎng)青,邵天章,等.全狀態(tài)參數(shù)最優(yōu)控制的魯棒自適應(yīng)勵(lì)磁控制[J].控制理論與應(yīng)用,2013,30(7):856-862.
[16]谷志鋒,朱長(zhǎng)青,邵天章,等.含K類函數(shù)和附加控制量的自適應(yīng)L2勵(lì)磁控制[J].控制理論與應(yīng)用,2016,33(2):257-264.
[17]梅生偉,申鐵龍,劉康志.現(xiàn)代魯棒控制理論與應(yīng)用[M].北京:清華大學(xué)出版社,2008:307-308.
(編輯:商丹丹)