趙 杰,梁 剛,李 安,滿 燕,靳欣欣,潘立剛
功能納米材料的“瘦肉精”傳感檢測(cè)技術(shù)研究進(jìn)展
趙 杰,梁 剛,李 安,滿 燕,靳欣欣,潘立剛※
(1. 北京市農(nóng)林科學(xué)院,北京農(nóng)業(yè)質(zhì)量標(biāo)準(zhǔn)與檢測(cè)技術(shù)研究中心,北京 100097;2. 農(nóng)業(yè)部農(nóng)產(chǎn)品質(zhì)量安全風(fēng)險(xiǎn)評(píng)估實(shí)驗(yàn)室(北京),北京 100097)
“瘦肉精”系一類具有相似結(jié)構(gòu)的-腎上腺素受體激動(dòng)劑化合物,曾被濫用作為動(dòng)物生長(zhǎng)促進(jìn)劑,以提高胴體瘦肉率。中國雖自2010年起禁止其應(yīng)用于動(dòng)物養(yǎng)殖環(huán)節(jié),但當(dāng)前,“瘦肉精”類物質(zhì)非法添加現(xiàn)象仍時(shí)有發(fā)生,且其替代品多、隱蔽性不斷增強(qiáng)對(duì)畜產(chǎn)品安全和人類健康仍構(gòu)成極大威脅。功能納米材料所具有的特殊結(jié)構(gòu)及性質(zhì),極大地提升了現(xiàn)有傳感檢測(cè)技術(shù)的性能,使得現(xiàn)有傳感檢測(cè)技術(shù)不斷朝著靈敏、高效、簡(jiǎn)便、低成本及抗干擾能力不斷增強(qiáng)等方向發(fā)展。該文分別從金納米材料、碳質(zhì)納米材料、量子點(diǎn)以及其他新型納米材料角度出發(fā),總結(jié)了以上納米材料與傳感檢測(cè)技術(shù)相結(jié)合在“瘦肉精”檢測(cè)方面的研究進(jìn)展,分析了各種檢測(cè)方法的優(yōu)缺點(diǎn),并提出了未來功能納米材料與傳感檢測(cè)技術(shù)相結(jié)合需要提升的地方,為下一步開發(fā)更靈敏準(zhǔn)確、簡(jiǎn)便易行、高通量及低成本的檢測(cè)方法提供參考。
傳感器;納米技術(shù);無損檢測(cè);功能納米材料;瘦肉精
“瘦肉精”是一類具有腎上腺素功能的苯乙醇胺類物質(zhì),臨床上用于擴(kuò)張支氣管和增加肺通氣量,治療哮喘和肺炎等疾病[1]。當(dāng)其使用劑量是臨床治療劑量的5~10倍時(shí),可促進(jìn)動(dòng)物體內(nèi)脂肪分解代謝,加快蛋白質(zhì)合成速率,顯著增加胴體瘦肉率、增質(zhì)量和提高飼料轉(zhuǎn)化率[2]。但是,由于其用量大、使用時(shí)間長(zhǎng)、代謝慢,可長(zhǎng)期存在于動(dòng)物肌肉及肝臟中,人們食用被“瘦肉精”污染的食品會(huì)引起心悸、肌肉疼痛、頭暈、嘔吐等中毒癥狀,造成腎臟損害,甚至危及生命[3]。因此,世界許多國家,包括歐盟和中國均已明令禁止其作為生長(zhǎng)促進(jìn)劑應(yīng)用于動(dòng)物養(yǎng)殖環(huán)節(jié)[4]。然而,受經(jīng)濟(jì)利益驅(qū)使,動(dòng)物養(yǎng)殖過程中非法使用“瘦肉精”的現(xiàn)象仍屢禁不止,且不斷推陳出新以逃避監(jiān)管[5],另外其應(yīng)用范圍也有所擴(kuò)大[6]。為對(duì)動(dòng)物及其產(chǎn)品實(shí)施更嚴(yán)格的監(jiān)管,確保相應(yīng)法律法規(guī)的有效實(shí)施,更加快速、靈敏及適于現(xiàn)場(chǎng)檢測(cè)的方法仍為市場(chǎng)所急需。
目前,常見的“瘦肉精”類藥物包括:克倫特羅(CLE)、萊克多巴胺(RAC)、沙丁胺醇(SAL)、苯乙醇胺A、賽庚啶、可樂定等。現(xiàn)有已開發(fā)出多種用于“瘦肉精”的檢測(cè)方法,包括傳統(tǒng)的基于大型儀器設(shè)備的檢測(cè)方法,如高效液相色譜法[7-8]、氣相色譜-質(zhì)譜法[9-11]、液相色譜-串聯(lián)質(zhì)譜法[12-14]、毛細(xì)管電泳技術(shù)[15-17];基于免疫分析的相關(guān)技術(shù),如酶聯(lián)免疫相關(guān)方法[18-19]、免疫側(cè)流層析法[20]、表面增強(qiáng)拉曼免疫法[21];以及分子印記聚合物法[22-23]等其他相關(guān)方法。盡管這些方法擁有檢測(cè)靈敏度高、特異性理想,應(yīng)用也最為廣泛,但是由于對(duì)設(shè)備要求高、操作難度大、樣本制備復(fù)雜耗時(shí)、需要專業(yè)的操作人員等原因還很難滿足多種應(yīng)用場(chǎng)景的要求?;诟鞣N原理的傳感檢測(cè)技術(shù)是目前極具潛力的快速檢測(cè)技術(shù),具有簡(jiǎn)單快速、專一性高、選擇性好、成本低、便攜式及可實(shí)現(xiàn)實(shí)時(shí)分析等特點(diǎn),目前在“瘦肉精”檢測(cè)方面有許多報(bào)道。如,Wong等[24]開發(fā)了一種基于一次性絲網(wǎng)印刷碳電極的檢測(cè)CLE的傳感器,通過將絲網(wǎng)印刷電極預(yù)陽極化及利用射頻氧等離子體進(jìn)行處理,在不借助任何生物識(shí)別原件的情況下,實(shí)現(xiàn)對(duì)目標(biāo)物的選擇性檢測(cè),該傳感器的線性響應(yīng)范圍為7~1 000 ng/mL,檢測(cè)限為0.51 ng/mL,并在豬牛肉等實(shí)際樣品中回收率介于94.92%~105.89%,而且該傳感器分析時(shí)間短、成本低,重現(xiàn)性良好,有利于傳感器的一次性的制造和使用。Feng等[25]將分子印跡技術(shù)與石英晶體微天平傳感器陣列結(jié)合,實(shí)現(xiàn)了克倫特羅及其代謝產(chǎn)物的同時(shí)檢測(cè),該方法的檢測(cè)限為3.0 ng/mL,低于食品法典委員會(huì)規(guī)定10g/L的殘留限量。傳感檢測(cè)技術(shù)的快速發(fā)展,為“瘦肉精”更加高效、便捷的檢測(cè)提供了可能。
納米材料主要是指結(jié)構(gòu)單元在納米尺寸范圍(1~100 nm)內(nèi)的一類材料,自上世紀(jì)80年代初期被發(fā)現(xiàn)以來,其在光學(xué)、電學(xué)、磁學(xué)及力學(xué)等方面較普通材料更加優(yōu)越的性能使其在諸多領(lǐng)域得到了廣泛的研究和應(yīng)用。因其結(jié)構(gòu)的特殊性,在界面、表面效應(yīng)、小尺寸效應(yīng)上與傳統(tǒng)材料具有明顯差別,使其在光、電、熱、磁、機(jī)械等各方面具有更加優(yōu)越的性能,這些性能可以大大提高電子、光學(xué)和光電化學(xué)生物傳感對(duì)識(shí)別事件的響應(yīng)能力,以及提高生物傳感接口的分析性能,如功能納米材料在電化學(xué)傳感領(lǐng)域的引入較傳統(tǒng)分析方法在多種途徑上促進(jìn)了檢測(cè)信號(hào)的放大,極大地提高了檢測(cè)方法的性能[26]。納米材料與各種原理的傳感檢測(cè)技術(shù)相結(jié)合,近年來在醫(yī)藥、食品安全、環(huán)境等領(lǐng)域研究應(yīng)用廣泛。目前,基于多種納米材料的“瘦肉精”傳感檢測(cè)方法層出不窮,本文主要從金納米材料、碳納米材料、量子點(diǎn)以及其他新型納米材料幾個(gè)角度進(jìn)行綜述,以期為下一步開發(fā)更加簡(jiǎn)便、高效的檢測(cè)方法提供參考。
金納米材料是納米科學(xué)和納米技術(shù)研究的熱點(diǎn)之一[27],也是當(dāng)前研究較為深入和應(yīng)用較為廣泛的納米材料之一。金納米材料具有獨(dú)特的光學(xué)、電學(xué)和催化性能以及良好的生物相容性。在物理、化學(xué)、催化、生物醫(yī)學(xué)、材料科學(xué)以及電化學(xué)傳感器等領(lǐng)域得到了廣泛的應(yīng)用。依賴于其獨(dú)特的性質(zhì),使其成為晶體生長(zhǎng)、電子轉(zhuǎn)移機(jī)制、催化、DNA檢測(cè)、生物成像及治療等研究領(lǐng)域的理想候選材料[28]。同時(shí),金納米材料在研究光電化學(xué)性能、構(gòu)建生物傳感器、研究電化學(xué)催化等方面具有廣闊的應(yīng)用前景[29-30]。常見的金納米材料依據(jù)其不同的形貌特征,包括球形[31]、棒形[32]、三角形[33]、鏈形[34]以及多態(tài)形[35]等。
在電化學(xué)傳感領(lǐng)域,金納米顆粒(AuNPs)獨(dú)特的光學(xué)特征,其顏色受尺寸、形狀、配體結(jié)合及聚集狀態(tài)等因素影響[36]。當(dāng)AuNPs參與物質(zhì)檢測(cè)時(shí),利用其的不同聚集程度,其光吸收峰變寬,導(dǎo)致顏色發(fā)生改變[37],從而實(shí)現(xiàn)目標(biāo)物的可視化檢測(cè)。如圖1所示,Wang等[38]利用適配體對(duì)飼料中的RAC進(jìn)行檢測(cè),當(dāng)體系中不含目標(biāo)物時(shí),適配體包覆在金納米粒子表面阻止氯化鈉溶液作用導(dǎo)致的聚集,而當(dāng)目標(biāo)物存在時(shí),適配體與目標(biāo)物作用,金納米粒子失去了適配體的保護(hù)后隨即發(fā)生聚集,溶液的顏色也由紅色變成藍(lán)色,通過肉眼或借助分光光度計(jì)進(jìn)行結(jié)果判斷,操作十分簡(jiǎn)便。該方法的有效線性范圍為10~400 ng/mL,檢測(cè)限為10 ng/mL。在實(shí)際樣品動(dòng)物飼料和牛肉檢測(cè)中,加標(biāo)回收率分別為72.7%~87.3% 和78.2%~86.5%。Simon等[39]利用谷氨酸(Glu)和聚乙烯亞胺(PE)來修飾金納米粒子,制備了在室溫下極穩(wěn)定的含有雙官能團(tuán)的PE-Glu-AuNPs復(fù)合物,利用AuNPs顏色的變化實(shí)現(xiàn)了對(duì)人尿樣中CLE和RAC的可視化檢測(cè),其中CLE的線性檢測(cè)范圍為0~600 nmol/L,檢測(cè)限為0.93 nmol/L,RAC的線性檢測(cè)范圍為0~1 000 nmol/L,檢測(cè)限為0.98 nmol/L,二者在實(shí)際樣品人體尿液中的加標(biāo)回收率為91%~98.6%和87.5%~100.7%。該檢測(cè)方法操作更加簡(jiǎn)便,成本更低,為更適于現(xiàn)場(chǎng)樣品的檢測(cè)。Peng等[40]開發(fā)了基于金納米簇的多路并行的免疫側(cè)流層傳感器,通過合成高亮度的綠色發(fā)射金納米簇實(shí)現(xiàn)CLE和RAC的同時(shí)檢測(cè),二者的可視檢測(cè)限均為0.24 ng/mL,若借助便攜式熒光檢測(cè)器,二者的檢測(cè)限分別為0.003 ng/mL和0.023 ng/mL,用于實(shí)際樣品豬尿的檢測(cè),二者的添加回收率分別為89.2%~111.4%和93.3%~105.6%。該方法與LC-MS/MS方法相比,顯示出良好的一致性,同時(shí)該方法在對(duì)30個(gè)樣本進(jìn)行分析時(shí)僅需18 min,為實(shí)際樣品的檢測(cè)提供了更加高效便捷的方法。另外,該方法中制備的納米粒子粒徑更小、水溶性及生物相容性更好,這就為其進(jìn)一步的開發(fā)應(yīng)用奠定了基礎(chǔ)。
圖1 基于金納米粒子的比色傳感器檢測(cè)原理[38]
由于金屬顆粒體系具有不尋常的拉曼散射電磁增強(qiáng)現(xiàn)象,AuNPs及金納米簇經(jīng)可見光激發(fā)后表現(xiàn)出表面等離子激元共振(LSPR)的特性,特別是金納米粒子具有可調(diào)諧的縱向LSPR特性和對(duì)激發(fā)極化高度敏感特性[41],基于這一性質(zhì),AuNPs在表面增強(qiáng)拉曼散射傳感器中有較多的報(bào)道。如圖2所示,Zhu等[42]將AuNPs標(biāo)記上4,4′-聯(lián)吡啶和CLE抗體,作為表面增強(qiáng)拉曼散射探針,建立了競(jìng)爭(zhēng)性表面增強(qiáng)拉曼散射免疫傳感器實(shí)現(xiàn)了對(duì)CLE高靈敏的檢測(cè),該方法的線性范圍為0.1~100 pg/mL,檢測(cè)限為0.1 pg/mL。該方法用于豬尿樣本的檢測(cè),回收率介于76.7%~135.8%。該方法的特別之處在于將CLE的人工抗原而不是CLE抗體固定在底物上,這樣可以極大地降低檢測(cè)成本,該方法在食品安全和激動(dòng)劑控制方面具有廣闊的應(yīng)用前景。Cheng等[43]利用石墨烯的氧化產(chǎn)物和AuNPs作為表面增強(qiáng)拉曼基底實(shí)現(xiàn)了動(dòng)物尿液中克羅特羅的表面增強(qiáng)拉曼光譜檢測(cè),該方法的線性范圍為1~20 ng/mL,檢測(cè)限和定量限分別為0.5和1 ng/mL。利用該方法對(duì)30份動(dòng)物尿液進(jìn)行檢測(cè),其檢測(cè)結(jié)果與LC-MS/MS結(jié)果100%一致,而檢測(cè)時(shí)間僅需8 min/個(gè)樣品。該方法操作簡(jiǎn)單,特別適用于定期監(jiān)測(cè)在畜牧業(yè)中CLE的非法使用。
金納米粒子還具有優(yōu)異的電子傳遞效能,同時(shí)較大的比表面積使其可以負(fù)載更多的目標(biāo)捕獲分子,同電化學(xué)檢測(cè)技術(shù)相結(jié)合,既可發(fā)揮電化學(xué)檢測(cè)方法的儀器設(shè)備簡(jiǎn)單、方法特異性和靈敏度高,且試驗(yàn)操作簡(jiǎn)單、成本低廉等特點(diǎn)[44],也可將生物反應(yīng)的特異性同電化學(xué)分析方法的靈敏性結(jié)合在一起,進(jìn)一步提高傳感器的檢測(cè)性能,也拓展了電化學(xué)傳感技術(shù)的應(yīng)用領(lǐng)域[45]。Yan等[46]將AuNPs作為反應(yīng)基底和電子傳遞加速器,以克倫特羅的多克隆抗體為目標(biāo)物的識(shí)別原件,借助于量子點(diǎn)構(gòu)建了競(jìng)爭(zhēng)性的電化學(xué)發(fā)光免疫傳感器,實(shí)現(xiàn)了對(duì)鹽酸克倫特羅的超靈敏檢測(cè),方法有效線性范圍為0.02~50 ng/mL,檢測(cè)限為0.008 4 ng/mL。該傳感器表現(xiàn)出良好的穩(wěn)定性、特異性和重現(xiàn)性。并將該傳感器用于豬肉和豬肝樣品的檢測(cè),其添加回收率為76%~122%,進(jìn)一步證明了免疫傳感器在實(shí)際樣品中的適用性較好。如圖3所示,Yang等[47]利用AuNPs/PPDA/GR復(fù)合材料修飾玻碳電極,以此來增加電極表面固定的RAC適配體的量,并提高生物傳感器的信號(hào)傳導(dǎo)性能,采用示差脈沖伏安法()檢測(cè)適配體與靶標(biāo)的結(jié)合前后電流信號(hào)變化,從而實(shí)現(xiàn)了對(duì)RAC的超靈敏檢測(cè)。該傳感器的線性范圍為1.0×10-12~1.0×10-8mol/L,檢測(cè)限為5.0×10-13mol/L。在動(dòng)物尿液檢測(cè)中表現(xiàn)出良好的穩(wěn)定性和重現(xiàn)性。同樣,Zhu等[48]采用AuNPs/PDA/GR復(fù)合材料作為信號(hào)放大器,同時(shí)增大抗原和抗體負(fù)載量,并結(jié)合量子點(diǎn)電化學(xué)發(fā)光法來檢測(cè)RAC,該方法的線性范圍為0.01~1 000 ng/mL,最低檢測(cè)限為2.6 pg/mL。Li等[49]將AuNPs、殼聚糖(Chitosan)及抗原溶液按1:1:1比例固定在陣列絲網(wǎng)印刷工作電極上,利用自制的單孔四擲開關(guān),實(shí)現(xiàn)了針對(duì)多種“瘦肉精”成分近同時(shí)的電化學(xué)發(fā)光檢測(cè),以RAC和SAL為檢測(cè)對(duì)象,二者的檢測(cè)限分別為8.5和17 pg/mL。該方法由于采用低成本的絲網(wǎng)印刷電極,成本低廉,適合大量樣本的快速篩查,應(yīng)用前景廣闊。表1整理了以上基于金納米材料的“瘦肉精”檢測(cè)方法的相關(guān)文獻(xiàn)。
圖2 基于金納米粒子的競(jìng)爭(zhēng)性表面增強(qiáng)拉曼散射免疫傳感器檢測(cè)克倫特羅原理圖[42]
圖3 基于金納米粒子的電化學(xué)適配體傳感器檢測(cè)萊克多巴胺原理圖[47]
表1 基于金納米材料的“瘦肉精”檢測(cè)方法對(duì)比
在功能納米材料中,碳納米材料也是研究及應(yīng)用最廣泛的納米材料之一。依據(jù)不同的維度,碳納米材料可劃分為:零維結(jié)構(gòu)的富勒烯、碳點(diǎn);一維結(jié)構(gòu)的碳納米管、碳納米纖維;二維結(jié)構(gòu)的石墨烯等[50-52]。碳納米材料具有獨(dú)特的化學(xué)/物理穩(wěn)定性、高耐熱性和耐腐蝕性、大的比表面積、超高的導(dǎo)電性、催化活性、光學(xué)性能、強(qiáng)機(jī)械強(qiáng)度和良好的生物相容性等優(yōu)異性能,自問世以來就被認(rèn)為是開發(fā)高性能傳感器的良好候選材料[53-54]。
碳基納米材料,尤其是碳納米管(CNTs)、石墨烯(GR)、有序介孔碳(OMCs)等,由于具有高表面積、可接受的生物相容性、化學(xué)和電化學(xué)穩(wěn)定性以及良好的導(dǎo)電性,在電極設(shè)計(jì)的生物分析領(lǐng)域極具吸引力,基于碳納米材料的傳感器通常具有比傳統(tǒng)傳感器更高的靈敏度和更低的檢測(cè)限[55]。近年碳納米材料在“瘦肉精”的傳感檢測(cè)中應(yīng)用也十分廣泛。如圖4所示,Liu等[56]借助多壁碳納米管(MWNTs)建立了一種新的蛋白傳感層的方法,首先利用MWNTs將羊抗鼠二抗固定于電極表面,然后通過抗體間的特異性識(shí)別作用將CLB的單抗組裝于電極表面,利用辣根過氧化物酶(HRP)-CLB復(fù)合物與樣品中游離的CLB競(jìng)爭(zhēng)結(jié)合該單克隆抗體,測(cè)定HRP催化底物產(chǎn)生的電流信號(hào)變化來實(shí)現(xiàn)對(duì)目標(biāo)物的檢測(cè),線性范圍為0~10 ng/mL,檢測(cè)限為0.1 ng/mL。該蛋白的組裝方法與化學(xué)共軛法相比,具有較高的靈敏度和較好的重現(xiàn)性,響應(yīng)時(shí)間短,且由于該傳感裝置攜帶了一次性絲網(wǎng)印刷電極,可滿足現(xiàn)場(chǎng)快速檢測(cè)的要求。
圖4 基于多壁碳納米管的電化學(xué)免疫傳感器檢測(cè)克倫特羅原理圖[54]
陳昌云等[57]建立了一種基于碳納米管和離子液體復(fù)合物修飾電極的免疫傳感器檢測(cè)萊克多巴胺的方法,將MWNTs與室溫離子液體1-丁基-3-甲基咪唑四氟硼酸鹽([BMIM]BF4)復(fù)合物同偶聯(lián)了牛血清蛋白(BSA)的RAC抗原,使用Nafion一同修飾在玻碳電極表面,利用RAC抗體和抗原之間特定反應(yīng)的競(jìng)爭(zhēng)模式,以K3Fe(CN)6為探針, 通過循環(huán)伏安法和差分脈沖伏安法監(jiān)測(cè)反應(yīng)信號(hào),實(shí)現(xiàn)對(duì)溶液中RAC的濃度的檢測(cè).,該方法的線性范圍1~1 500 ng/mL,檢測(cè)限為0.3 ng/mL,對(duì)豬飼料樣本進(jìn)行檢測(cè),回收率在85%~99%之間,該免疫傳感器的重復(fù)性、穩(wěn)定性和再生良好。張媛媛等[58]利用改性的殼聚糖來包埋固定羧基化的MWNTs和RAC抗體,同樣以K3Fe(CN)6為探針,構(gòu)建了RAC的免疫傳感檢測(cè)方法,該方法的線性范圍0.05~4.05 ng/mL,最低檢測(cè)限為0.08 ng/mL。該法用于豬肉、羊肉等樣品的檢測(cè),其結(jié)果與采用高效液相色譜法的國標(biāo)方法一致,效果良好。由于MWNTs具有較小的粒徑、大的比表面積以及表面的功能基團(tuán),它的應(yīng)用一方面可以顯著的提高特異性識(shí)別分子(如抗體、適配體等)的固載量;另一方面,多孔結(jié)構(gòu)的碳納米管良好的三維微環(huán)境也不會(huì)破壞抗體等的免疫活性;同時(shí),適當(dāng)?shù)姆肿娱g的間隔也有助于提高抗體對(duì)目標(biāo)物的選擇性,最終提高了傳感器的信噪比。但是,碳納米管的自組裝性能有時(shí)不夠理想,穩(wěn)定性還有待提高。
近年,單原子厚度的二維石墨烯因其機(jī)械強(qiáng)度高、光學(xué)性能可調(diào)、比表面積大、高電導(dǎo)性等特點(diǎn)引起了人們的廣泛關(guān)注。石墨烯家族還包括結(jié)構(gòu)和化學(xué)衍生物,如多層石墨烯、氧化石墨烯(GO)及還原石墨烯(rGO)等[59]。由于GO和rGO更易于表面修飾和可調(diào)節(jié)的導(dǎo)電性能,在生物傳感領(lǐng)域應(yīng)用更多[60-61]。Wu等[62]通過對(duì)比發(fā)現(xiàn)在玻碳、石墨烯、還原石墨烯及氧化石墨烯中,氧化石墨烯表現(xiàn)出更強(qiáng)的信號(hào)增強(qiáng)效應(yīng),可以大大提高RAC和CLE的氧化信號(hào),進(jìn)而利用GO建立了對(duì)RAC和CLE的電化學(xué)檢測(cè)方法,通過檢測(cè)脈沖伏安(DPV)信號(hào)獲知目標(biāo)物的濃度,二者的線性范圍25~1 000 ng/mL,對(duì)應(yīng)的檢測(cè)限分別為17和15 ng/mL。該方法用于豬肉樣本的檢測(cè),其添加回收介于90.1%~98.6%之間,效果較好。Lin等[63]在修飾有石墨烯-Nafion膜的玻碳電極上電聚合酸性鉻蘭K,實(shí)現(xiàn)了8種“瘦肉精”成分的高靈敏檢測(cè),方法的檢測(cè)范圍為1.0~36.0 ng/mL,檢測(cè)限為0.58~1.46 ng/mL,對(duì)實(shí)際樣品豬肉添加CLE進(jìn)行檢測(cè),添加水平為0.01和0.02g/g,對(duì)應(yīng)的回收率為89.2%和91.3%。結(jié)果表明,該方法能較好地測(cè)定豬肉中克倫特羅的含量。Wang等[64]制備了異丙醇-Nafion膜-4-乙烯苯磺酸鈉-石墨烯納米復(fù)合材料用以修飾玻碳電極,構(gòu)建了用于豬肉中CLE檢測(cè)的靈敏伏安傳感器,該方法的線性范圍為7.5×10-8~2.5×10-5mol/L,檢測(cè)限為2.2×10-8mol/L。該方法中制備的修飾電極,穩(wěn)定性和重現(xiàn)性良好,4 ℃條件下可以保存一周,這在實(shí)際應(yīng)用過程中將提供極大便利。如圖5所示,Wang等[65]報(bào)道了一種利用競(jìng)爭(zhēng)策略快速同時(shí)分析RAC、CLE和SALSAL的多路電化學(xué)生物傳感器。試驗(yàn)首先將rGO固定在絲網(wǎng)印刷工作電極表面,然后將3種物質(zhì)的人工抗原分別固定在3個(gè)電極表面,采用銀鈀合金來標(biāo)記RAC、CLE和SAL的對(duì)應(yīng)抗體,利用競(jìng)爭(zhēng)策略,同時(shí)檢測(cè)RAC、SAL和CLE,相鄰電極之間不存在干擾,實(shí)現(xiàn)了對(duì)豬肉中3種物質(zhì)的同時(shí)檢測(cè),三者的檢測(cè)范圍介于0.01~100 ng/mL之間,對(duì)應(yīng)的檢測(cè)限分別為1.52、1.44及1.38 pg/mL。該方法消除了酶和介質(zhì)可能帶來的負(fù)面影響,降低了檢測(cè)成本。此外,絲網(wǎng)印刷電極價(jià)格低廉,易于實(shí)現(xiàn)商業(yè)化,有望成為一種新的食品安全快速檢測(cè)方法。Bai等[66]制備了分散性良好的石墨烯,并將金納米棒自組裝在石墨烯表面,將二者的復(fù)合物修飾在玻碳電極表面,構(gòu)建了RAC電化學(xué)傳感器,該傳感器檢測(cè)RAC的線性檢測(cè)范圍為1×10-9~2.7×10-6mol/L,檢測(cè)限為5.1×10-10mol/L。該方法靈敏度高,操作簡(jiǎn)便,對(duì)豬尿樣本進(jìn)行檢測(cè)其回收率介于99.2%~107.3%之間,效果良好。Jin等[67]將rGO電沉積在玻碳電極上,借助上轉(zhuǎn)化納米粒子(UCNPs),構(gòu)建了超靈敏的分子印跡電化學(xué)發(fā)光傳感器檢測(cè)克倫特羅,該傳感器具有良好的靈敏度、選擇性和穩(wěn)定性,方法的線性范圍為10~100mol/L,最低檢測(cè)限6.3 nmol/L。在對(duì)實(shí)際樣本豬肉,肝和腎的檢測(cè)中,其回收率介于89.0%~100.4%,在食品安全檢測(cè)領(lǐng)域具有廣闊的應(yīng)用前景。同時(shí),在該研究中,rGO不僅作為固定UCNPs的載體,而且由于其高導(dǎo)電性、優(yōu)越的電子傳輸速率和較大的比表面積,對(duì)提高UCNPs的電化學(xué)發(fā)光響應(yīng)具有顯著的影響。Li等[68]開發(fā)了基于納米金修飾的Fe3O4/GR分子印跡聚合物電化學(xué)傳感器,用于水中痕量RAC的高選擇性、高靈敏的檢測(cè),該方法的線性檢測(cè)范圍為0.002~0.1mol/L,最低檢測(cè)限可達(dá) 0.02 nmol/L。Zhai等[69]將GR與MWNTs聯(lián)合應(yīng)用,采用水分散磺化石墨烯片(SGSs)和氧功能化多壁碳納米管(MWCNS-COOH)組成的復(fù)合納米材料修飾玻璃碳電極,制備了一種新型靈敏的電化學(xué)傳感器檢測(cè)肝組織樣本中的克倫特羅,該傳感器的線性檢測(cè)范圍為0.01~5.0mol/L,檢測(cè)限為4.6 nmol/L?;谝陨涎芯勘砻?,rGO和GO是理想的石墨烯類似物,可用于生物傳感器的制備,并且研究發(fā)現(xiàn)由于石墨烯的表面官能團(tuán)能夠參與生物識(shí)別元素的共價(jià)固定,還可用于ssDNA、適配體和抗體的優(yōu)良載體[70]。
在碳納米材料中,孔徑在2~50 nm的有序介孔碳(OMCs)具有比表面積高、顆粒外形豐富、孔徑均一可調(diào),化學(xué)穩(wěn)定性好、以及導(dǎo)電性良好在生物傳感器、電容器電極、催化載體及吸附材料等方面有著良好的應(yīng)用前景[71-72]。Yang等[73]利用OMCs修飾玻璃碳電極,研制了一種靈敏的電化學(xué)傳感器來檢測(cè)RAC。試驗(yàn)結(jié)果表明OMCs可以顯著提高電催化活性,使峰值電流顯著增加,進(jìn)而實(shí)現(xiàn)對(duì)RAC的檢測(cè),該方法的線性檢測(cè)范圍為0.085~8.0mol/L,檢測(cè)限為0.06mol/L,且對(duì)RAC具有良好的靈敏度和選擇性。對(duì)實(shí)際樣品豬肉進(jìn)行檢測(cè),回收率在96.6%~104.5%之間,對(duì)傳感器的進(jìn)一步開發(fā)具有重要的實(shí)用價(jià)值。Ma等[74]利用OMCs和AuNPs修飾絲網(wǎng)印刷電極,并結(jié)合免疫印跡技術(shù)制備了一次性電化學(xué)傳感器,用于RAC的測(cè)定,該方法的線性檢測(cè)范圍為5.0×10-11~1.0×10-9mol/L,檢測(cè)限為4.23×10-11mol/L。試驗(yàn)結(jié)果表明,該傳感器具有快速的平衡孵育時(shí)間(100 s),對(duì)RAC有高親和力以及選擇性,實(shí)際樣品豬尿的回收率介于95.7%~99.3%。表2整理了以上基于碳納米材料的“瘦肉精”檢測(cè)方法的相關(guān)文獻(xiàn)。
圖5 基于還原氧化石墨烯的電化學(xué)生物傳感器同時(shí)檢測(cè)RAC、克倫特羅和沙丁胺醇原理圖[63]
表2 基于碳納米材料的“瘦肉精”檢測(cè)方法對(duì)比
量子點(diǎn)(quantum dots, QDs),也稱半導(dǎo)體納米晶體,直徑約為2~10 nm,具有光穩(wěn)定性好、寬激發(fā)譜和窄發(fā)射譜,以及生物相容性好、熒光壽命長(zhǎng)等獨(dú)特的性質(zhì),在物理、化學(xué)、生物等諸多領(lǐng)域得到了廣泛的應(yīng)用[75-76]。量子點(diǎn)組成元素在元素周期表中通??梢詣澐譃镮I-VI、III-V或IV-VI族,同時(shí)也可以由2種或2種以上的復(fù)合材料形成核殼結(jié)構(gòu),如CdTe、CdSe/ZnS以及CdSe/ZnSe/ZnS等[77-78]。目前,在“瘦肉精”檢測(cè)領(lǐng)域中與電化學(xué)發(fā)光方法聯(lián)合應(yīng)用組成高靈敏度的量子點(diǎn)-電化學(xué)發(fā)光傳感器應(yīng)用較多,建立了諸多基于CdSe量子點(diǎn)與其他納米材料聯(lián)合應(yīng)用的傳感檢測(cè)技術(shù)。如圖6所示,Yao等[79]建立了基于CdSe QDs的鹽酸克倫特羅的ECL免疫傳感器。通過層層組裝的方式將量子點(diǎn)、人工抗原及抗體組裝至電極表面,進(jìn)步一步結(jié)合酶的放大作用大大提高了傳感器的檢測(cè)靈敏度,方法的線性范圍介于0.05~1 000 ng/mL之間,最低檢出限為0.02 ng/mL。該傳感器具有良好的穩(wěn)定性和重現(xiàn)性,應(yīng)用于實(shí)際樣品豬肉和肝臟的檢測(cè),回收率為82.6%~108.3%,表明該免疫傳感器在實(shí)際樣品的分析中具有一定的適用性。Yan等[46]以AuNPs作為反應(yīng)基底,將CLE抗體固定于CdSe量子點(diǎn)上,通過競(jìng)爭(zhēng)法實(shí)現(xiàn)對(duì)克倫特羅的超靈敏檢測(cè),該方法線性范圍為0.02~50 ng/mL,檢測(cè)限為0.008 4 ng/mL。Dong等[80]同樣利用AuNPs和CdSe量子點(diǎn),建立了檢測(cè)新型“瘦肉精”溴布特羅的電化學(xué)發(fā)光免疫傳感器,方法的線性范圍為0.01~1 000 ng/mL,檢測(cè)限為0.003 ng/mL。同時(shí),該傳感器的特異性和穩(wěn)定性良好,將其應(yīng)用于實(shí)際樣品中豬肉和飼料的測(cè)定,回收率為87%~111%,結(jié)果令人滿意。Zhu等[48]將AuNPs、石墨烯復(fù)合同量子點(diǎn)CdSe進(jìn)行組合,構(gòu)建了電化學(xué)發(fā)光免疫傳感器實(shí)現(xiàn)RAC的檢測(cè),該方法的線性范圍為0.01~1 000 ng/mL,最低檢測(cè)限為2.6 pg/mL。Raksawong等[81]利用雜交分子印跡聚合物(MIP)包覆CdTe量子點(diǎn),開發(fā)了檢測(cè)SAL熒光免疫傳感器,實(shí)現(xiàn)了動(dòng)物飼料和肉中SAL的高靈敏和特異性的檢測(cè),方法的線性范圍為0.10~25.0g/L,檢測(cè)限為0.034g/L。在測(cè)試的3種動(dòng)物飼料(豬、牛、禽)和2種肉類(豬肉和牛肉)的所有樣本的添加回收介于85.1%~98.0%,為復(fù)雜樣本中SAL的檢測(cè)提供了一種可靠的方法。Tang等[82]利用CdSe量子點(diǎn),并借助HRP的放大作用,建立了苯乙醇胺A的電化學(xué)發(fā)光免疫檢測(cè)方法,該方法的線性范圍0.05~1 000 ng/mL,最低檢測(cè)限為15 pg/mL,在實(shí)際樣本豬肉和豬肝檢測(cè)中,加標(biāo)回收率為85.6%~110.4%,并與HPLC的檢測(cè)結(jié)果進(jìn)行了對(duì)比,結(jié)果表明兩者間的檢測(cè)結(jié)果無顯著差別,可以滿足實(shí)際樣本的檢測(cè)需求。Dong等[83]利用AuNPs及經(jīng)SiO2包覆的CdSe量子點(diǎn)建立了雙重信號(hào)放大的電化學(xué)發(fā)光免疫傳感器實(shí)現(xiàn)了對(duì)豬肉和飼料中SAL的超靈敏檢測(cè),方法的線性范圍是0.001~1 000 ng/mL,檢測(cè)限為0.17 pg/mL,在實(shí)際樣品豬肉和飼料中,回收率為83%~116%。該方法操作穩(wěn)定,靈敏度高,選擇性好,同時(shí)為其他小分子的分析檢測(cè)提供了技術(shù)參考,具有更廣泛的應(yīng)用價(jià)值。Hu等[84]將一種新型的鋅基有機(jī)框架(ZnMOFs)同rGO及CdTe量子點(diǎn)結(jié)合,將CdTe量子點(diǎn)固定于rGO上,用于提高反應(yīng)信號(hào),構(gòu)建電化學(xué)發(fā)光傳感器實(shí)現(xiàn)了克倫特羅的高靈敏檢測(cè),該方法的線性范圍為3.0×10-13~6.0×10-10mol/L,最低檢測(cè)限為1.0×10-13mol/L。該傳感器具有良好的重復(fù)性和穩(wěn)定性,在豬肉樣本的檢測(cè)中,添加回收為94.0%~102%。同時(shí),該研究中采用的ZnMOF-rGO-CdTe QDs雜化技術(shù)為CLB檢測(cè)提供了新的方法。表3整理了以上基于量子點(diǎn)納米材料的“瘦肉精”檢測(cè)方法的相關(guān)文獻(xiàn)。
圖6 基于量子點(diǎn)的電化學(xué)發(fā)光免疫傳感器檢測(cè)克倫特羅原理圖[77]
表3 基于量子點(diǎn)納米材料的“瘦肉精”檢測(cè)方法對(duì)比
磷烯(Phosphorene)又稱黑磷烯或二維黑磷,是由塊體黑磷剝離成的具有原子層厚度的二維層狀新型半導(dǎo)體材料,具有能帶可調(diào)的直接帶隙結(jié)構(gòu)和高載流子遷移率以及良好的導(dǎo)電導(dǎo)熱能力等獨(dú)特的性質(zhì),在電子和光電應(yīng)用領(lǐng)域具有獨(dú)特的優(yōu)勢(shì),現(xiàn)已在晶體管、光通訊、能源、生物醫(yī)學(xué)等領(lǐng)域顯示出極大的應(yīng)用潛力,自2014年出現(xiàn)以來就備受關(guān)注[85-88]。如圖7所示,Ge等[89]制備了磷烯-Nafion的納米復(fù)合材料,并將其修飾于玻碳電極表面,構(gòu)建了檢測(cè)CLE伏安傳感器,方法的線性范圍為0.06~24mol/L,檢測(cè)限3.7 nmol/L,該傳感器應(yīng)用于牛肉和牛血清中CLB的測(cè)定,當(dāng)添加量為9mol時(shí),二者的添加回收分別為102.22%和100.33%。該研究中制備的納米復(fù)合材料與以往報(bào)道的磷烯不同,該納米復(fù)合材料對(duì)水和氧具有很好的穩(wěn)定性,使其可以成功地應(yīng)用于電化學(xué)生物傳感器領(lǐng)域。
圖7 基于黑色磷烯納米復(fù)合材料的伏安傳感器檢測(cè)克倫特羅原理圖[89]
Janus粒子是表面由2個(gè)或2個(gè)以上不同物理性質(zhì)的成分構(gòu)成的特殊類型的納米顆粒,可以將2種具有相反作用功能基團(tuán)組裝于表面,如兩親性Janus粒子是在對(duì)立面分別含有親水基、疏水基2種不同化學(xué)基團(tuán)[90]。Janus粒子獨(dú)特的結(jié)構(gòu)和組成多樣性使其表現(xiàn)出特殊的性能,這種非對(duì)稱材料可以提高表面活性、催化或生物傳感器的性能,作為一種新型納米材料受到廣泛的關(guān)注[91]。如圖8所示,Zhou等[92]建立了基于適配體和Janus粒子的電化學(xué)傳感器,該傳感器首先將通過Janus粒子的疏水結(jié)構(gòu)將其固定于玻碳電極表面,另一側(cè)的親水基團(tuán)用于金納米粒子的組裝,進(jìn)而與目標(biāo)物的適配體連接,實(shí)現(xiàn)對(duì)RAC的檢測(cè)。在此過程中,Janus粒子可以增加電極上生物分子的負(fù)載量,從而放大電化學(xué)反應(yīng)的信號(hào)。采用DPV法對(duì)RAC濃度進(jìn)行定量分析,根據(jù)RAC的濃度建立起2條檢測(cè)曲線,其檢測(cè)范圍分別是1.0×10?13~1.0×10?11mol/L及1.0×10?11~1.0×10?7mol/L,方法的檢測(cè)限為3.3×10?14mol/L,與其他方法相比,該檢測(cè)限是目前報(bào)道的有關(guān)RAC功能化電極的最低檢測(cè)限。該方法用于人尿樣本的檢測(cè),添加回收率為94.3%~103.0%,與LC-MS/MS的結(jié)果有很好的一致性,說明所建立的方法可用于測(cè)定人體尿液中RAC的含量。同時(shí),該研究中對(duì)于Janus粒子的開發(fā)和應(yīng)用也為其他分析檢測(cè)提供一種通用的思路參考。
圖8 基于Janus顆粒的電化學(xué)適配體傳感器檢測(cè)萊克多巴胺原理圖[90]
鈰(Ce)元素是稀土元素中含量最豐富的元素,二氧化鈰(CeO2)是鈰最穩(wěn)定的氧化物。CeO2納米晶體為螢石狀結(jié)構(gòu),晶格內(nèi)部的氧原子極易脫出形成氧空位,隨著氧空位的生成,與其相連的2個(gè)Ce+被還原成Ce3+[93],因此,CeO2具有非常強(qiáng)大的儲(chǔ)氧和放氧能力,且在該過程中,其晶體結(jié)構(gòu)保持不變,是一種非常理想的循環(huán)材料[94-95]。同時(shí),CeO2超強(qiáng)的氧釋放能力也使其成為優(yōu)秀的催化材料,在催化劑、新能源電池、傳感器、半導(dǎo)體等行業(yè)有著廣泛應(yīng)用。Xiao等[96]采用熱處理方法合成了具有明顯電催化活性的多層結(jié)構(gòu)的CeO2納米顆粒,該納米顆粒經(jīng)nafion修飾后固定于玻碳電極表面,建立了克倫特羅的電化學(xué)傳感器,該方法的線性范圍0.39~2.79 mmol/L,檢測(cè)限為0.08 mmol/L,添加試驗(yàn)結(jié)果表明,在豬尿樣本中回收為率91.59%~102.53%,適于實(shí)際樣本的檢測(cè)。同時(shí),該傳感器具有良好的穩(wěn)定性和重現(xiàn)性,在食品安全分析和藥物殘留微量分析領(lǐng)域具有廣闊的應(yīng)用前景。表4整理了基于其他新型納米材料的“瘦肉精”檢測(cè)方法的相關(guān)文獻(xiàn)。
表4 基于其他新型納米材料的“瘦肉精”檢測(cè)方法對(duì)比
本文綜述了近年來基于納米材料的“瘦肉精”傳感器技術(shù)的研究進(jìn)展,重點(diǎn)圍繞金納米材料、碳質(zhì)納米材料、量子點(diǎn)以及其他新型納米材料進(jìn)行了介紹??傮w來說,通過納米材料及復(fù)合納米材料的使用,在作為反應(yīng)基底、裝載特異性識(shí)別分子、提高導(dǎo)電性能、表面增強(qiáng)效應(yīng)、信號(hào)傳導(dǎo)性能、催化性能及良好的生物相容性等方面對(duì)傳感器的靈敏度、重現(xiàn)性以及響應(yīng)時(shí)間等方面具有巨大的提升作用。
未來,為使傳感檢測(cè)技術(shù)朝著更加靈敏、選擇性更好、操作更簡(jiǎn)便、成本更低的方向發(fā)展,對(duì)于納米材料的種類及其應(yīng)用方式還有待進(jìn)一步提高:
1)現(xiàn)有納米材料性能需要提升,特別是對(duì)于無標(biāo)簽的納米傳感器,其對(duì)目標(biāo)物的特異性還有待提升,否則很難適應(yīng)實(shí)際檢測(cè)的需要。
2)開發(fā)、篩選新的功能納米材料,一方面開發(fā)全新種類的新型納米材料,擴(kuò)大傳感領(lǐng)域可供選擇納米材料的范圍,另一方面,對(duì)現(xiàn)有納米材料進(jìn)行改進(jìn),合成包含2種或2種以上元素種類的納米材料以及具有特殊結(jié)構(gòu)的納米材料,獲得具有優(yōu)越性能的復(fù)合納米材料,以金納米粒子為例,如金-銀雙金屬納米粒子、金-金屬氧化物復(fù)合物,金-碳納米管納米復(fù)合材料,金-石墨烯/氧化石墨烯復(fù)合材料、核-殼金包覆磁性納米粒子(如Fe3O4-AuNPs)等,從而獲得具有全新性能的納米材料。
3)研究納米材料的增強(qiáng)機(jī)制,并對(duì)識(shí)別分子的修飾方法進(jìn)行創(chuàng)新,現(xiàn)有已明晰的納米材料對(duì)信號(hào)的增強(qiáng)放大效應(yīng)包括其良好的生物相容性、表面效應(yīng)、宏觀量子隧道效應(yīng)、高比表面積和高表面能等,未來不斷探索新的增強(qiáng)機(jī)制有利于納米材料性能的進(jìn)一步提升,同時(shí),新的具有潛力的修飾方法如層層自組裝法、等離子體聚合膜技術(shù)以及利用蛋白質(zhì)工程技術(shù)直接實(shí)現(xiàn)抗體等的定向固定,這些方法的應(yīng)用必將為傳感器的性能提升提供巨大的空間。
今后,隨著納米技術(shù)不斷取得新的進(jìn)展,傳感器將朝著以下幾個(gè)方面發(fā)展:更加集成及微型化,便于攜帶,以利于現(xiàn)場(chǎng)和野外等場(chǎng)景的特殊需求;自動(dòng)化程度更高,可以實(shí)現(xiàn)實(shí)時(shí)在線的檢測(cè),及自動(dòng)化分析;高通量及多組分并行檢測(cè),以利于規(guī)?;暮Y查應(yīng)用。同時(shí),將納米材料同新型檢測(cè)技術(shù)相結(jié)合,不斷滿足質(zhì)檢領(lǐng)域的新要求。
[1] Blanca J, Munoz P, Morgado M, et al. Determination of clenbuterol, ractopamine and zilpaterol in liver and urine by liquid chromatography tandem mass spectrometry[J]. Analytica Chimica Acta, 2005, 529(1): 199-205.
[2] Strydom P E, Frylinck L, Montgomery J L, et al. The comparison of three beta-agonists for growth performance, carcass characteristics and meat quality of feedlot cattle[J]. Meat Science, 2009, 81(3): 557-564.
[3] Zhang Y T, Zhang Z J, Sun Y H, et al. Development of an analytical method for the determination of2-agonist residues in animal tissues by high-performance liquid chromatography with on-line electrogenerated [Cu(HIO6)2]5--luminol chemiluminescence detection[J]. Journal of Agricultural and Food Chemistry, 2007, 55(13): 4949-4956.
[4] Pulce D, Lamaison G, Keck C. Collective human food poisonings by clenbuterol residues in veal liver, Vet. Hum[J]. Toxicol. 1991, 33: 480-481.
[5] Courtheyn D, Bizec B L, Brambilla G, et al. Recent developments in the use and abuse of growth promoters[J]. Analytica Chimica Acta, 2002, 473(1/2): 71-82.
[6] Barbosa J, Cruz C, Martins J, et al. Food poisoning by clenbuterol in Portugal[J]. Food Additives and Contaminants, 2005, 22(6): 563-566.
[7] Morales-Trejo F, León S V Y, Escobar-Medina A, et al. Application of high-performance liquid chromatography-UV detection to quantification of clenbuterol in bovine liver samples[J]. Journal of Food and Drug Analysis, 2013, 21(4): 414-420.
[8] Yan K, Zhang H, Hui W, et al. Rapid screening of toxic salbutamol, ractopamine, and clenbuterol in pork sample by high-performance liquid chromatography-UV method[J]. Journal of Food and Drug Analysis, 2016, 24(2): 277-283.
[9] He L M, Su Y J, Zeng Z L, et al. Determination of ractopamine and clenbuterol in feeds by gas chromatography–mass spectrometry[J]. Animal Feed Science and Technology, 2007, 132(3/4): 316-323.
[10] Daniele D C, Veronica M, Marco P, et al. Simultaneous determination of2-agonists in human urine by fast-gas chromatography/mass spectrometry: Method validation and clinical application[J]. Biomedical Chromatography BMC, 2010, 24(4): 358-366.
[11] Gallo P, Brambilla G, Neri B, et al. Purification of clenbuterol-like2-agonist drugs of new generation from bovine urine and hair by alpha1-acid glycoprotein affinity chromatography and determination by gas chromatography- mass spectrometry[J]. Analytica Chimica Acta, 2007, 587(1): 67-74.
[12] Guo C C, Shi F, Gong L P, et al. Ultra-trace analysis of 122-agonists in pork, beef, mutton and chicken by ultrahigh- performance liquid-chromatography-quadrupole-orbitrap tandem mass spectrometry[J]. Journal of Pharmaceutical and Biomedical Analysis, 2015, 107: 526-534.
[13] Mastrianni K R, Metavarayuth K, Brewer W E, et al. Analysis of 10 beta-agonists in pork meat using automated dispersive pipette extraction and LC-MS/MS[J]. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1084: 64-68.
[14] Xiong L, Gao Y Q, Li W H, et al. Simple and sensitive monitoring of2-agonist residues in meat by liquid chromatography-tandem mass spectrometry using a QuEChERS with preconcentration as the sample treatment[J]. Meat Science, 2015, 105: 96-107.
[15] Us M F, Alshana U, Lubbad I, et al. Dispersive liquid-liquid microextraction based on solidification of floating organic drop combined with field-amplified sample injection in capillary electrophoresis for the determination of beta(2)-agonists in bovine urine[J]. Electrophoresis, 2013, 34(6): 854-861.
[16] Jin W, Xu X, Jiang L. Determination of-agonists in pig feed, pig urine and pig liver using capillary electrophoresis with electrochemical detection[J]. Meat Science, 2010, 85(2): 302-305.
[17] Ji X, He Z, Ai X, et al. Determination of clenbuterol by capillary electrophoresis immunoassay with chemiluminescence detection[J]. Talanta, 2006, 70(2): 353-357.
[18] Jiang D N, Cao B Y, Wang M Y, et al. Development of a highly sensitive and specific monoclonal antibody based enzyme-linked immunosorbent assay (ELISA) for the detection of a new-agonist phenylethanolamine a in food samples[J]. Journal of the Science of Food & Agriculture, 2016, 97(3): 1001-1009.
[19] Ma L, Nilghaz A, Choi J R, et al. Rapid detection of clenbuterol in milk using microfluidic paper-based ELISA [J]. Food Chemistry, 2018, 246: 437-441.
[20] Zhang M Z, Wang M Z, Chen Z L. et al. Development of a colloidal gold-based lateral-flow immunoassay for the rapid simultaneous detection of clenbuterol and ractopamine in swine urine[J]. Analytical & Bioanalytical Chemistry, 2009, 395(8): 2591-2599.
[21] Zhu G, Hu Y, Gao J, et al. Highly sensitive detection of clenbuterol using competitive surface-enhanced Raman scattering immunoassay[J]. Analytica Chimica Acta, 2011, 697(1/2): 61-66.
[22] Du W, Lei C M, Zhang S R, et al. Determination of clenbuterol from pork samples using surface molecularly imprinted polymers as the selective sorbents for microextraction in packed syringe[J]. Journal of Pharmaceutical and Biomedical Analysis, 2014, 91: 160-168.
[23] Pe?uela-Pinto O, Armenta S, Esteve-Turrillas F A, et al. Selective determination of clenbuterol residues in urine by molecular imprinted polymer-Ion mobility spectrometry[J]. Microchemical Journal, 2017, 134: 62-67.
[24] Wong C S, Chen Y D, Chang J L, et al. Biomolecule-free, selective detection of clenbuterol based on disposable screen-printed carbon electrode[J]. Electrochemistry Communications, 2015, 60: 163-167
[25] Feng F, Zheng J, Qin P, et al. A novel quartz crystal microbalance sensor array based on molecular imprinted polymers for simultaneous detection of clenbuterol and its metabolites[J]. Talanta, 2017, 167: 94-102.
[26] Liu Y J, Liu Y X, Qiao L, et al. Advances in signal amplification strategies for electrochemical biosensing[J]. Current Opinion in Electrochemistry, 2018, 12: 5-12.
[27] Xiao T, Huang, J S, Wang, D W, et al. Au and Au-Based nanomaterials: Synthesis and recent progress in electrochemical sensor applications[J/OL]. Talanta, 2020, 206: 120-210.
[28] Wang P L, Lin Z Y, Su X O, et al. Application of Au based nanomaterials in analytical science[J]. Nano Today, 2017, 12: 64-97.
[29] Cobley C M, Chen J, Cho E C, et al. Gold, nanostructures: a class of multifunctional materials for biomedical applications[J]. Chemical Society Reviews, 2010, 40(1): 44-56.
[30] Beloglazkina E K, Majouga A G, Romashkina R B, et al. Gold nanoparticles modified with coordination compounds of metals: Synthesis and application[J]. Russian Chemical Reviews, 2012, 81(1): 65-90.
[31] Kim Z H, Leone S R. High-resolution apertureless near-field optical imaging using gold nanosphere probes[J]. The Journal of Physical Chemistry B, 2006, 110(40): 19804-19809.
[32] Zhang L, Xia K, Lu Z, et al. Efficient and facile synthesis of gold nanorods with finely tunable plasmonic peaks from visible to Near-IR range[J]. Chemistry of Materials, 2014, 26(5): 1794-1798.
[33] Bhattarai S R, Derry P J, Aziz K, et al. Gold nanotriangles: scale up and X-ray radiosensitization effects in mice[J]. Nanoscale, 2017, 9(16): 5085-5093.
[34] Gong S, Schwalb W, Wang Y, et al. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires[J]. Nature Communications, 2014, 5: 3132-3141.
[35] Thiele M, Soh J.Z.E, Knauer A, et al. Gold nanocubes-Direct comparison of synthesis approaches reveals the need for a microfluidic synthesis setup for a high reproducibility[J]. Chemical Engineering Journal, 2016, 288: 432-440.
[36] Ghosh S K, Pal T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications[J]. Chemical Reviews, 2007, 107(11): 4797-4862.
[37] 王慎. 基于金納米材料傳感器的構(gòu)建及應(yīng)用研究[D]. 新鄉(xiāng):河南師范大學(xué),2018.
Wang Shen. Preparation of Gold Nanomaterials and Their Analytical Applications[D]. Xinxiang: Henan Normal University, 2018. (in Chinese with English abstract)
[38] Wang P L, Su X O, Shi L Y, et al. An aptamer based assay for the-adrenergic agonist ractopamine based on aggregation of gold nanoparticles in combination with a molecularly imprinted polymer[J]. Microchimica Acta, 2016, 183(11): 2899-2905.
[39] Simon T, Shellaiah M, Steffi P, et al. Development of extremely stable dual functionalized gold nanoparticles for effective colorimetric detection of clenbuterol and ractopamine in human urine samples[J]. Analytica Chimica Acta, 2018, 1023: 96-104.
[40] Peng T, Wang J Y, Zhao S J, et al. Highly luminescent green-emitting Au nanocluster-based multiplex lateral flow immunoassay for ultrasensitive detection of clenbuterol and ractopamine[J]. Analytica Chimica Acta, 2018, 1040: 143-149.
[41] Li L, Steiner U, Mahajan S. Single nanoparticle sers probes of ion intercalation in metal-oxide electrodes[J]. Nano Letters, 2014, 14(2): 495-498.
[42] Zhu G C, Hu Y J, Gao J, et al. Highly sensitive detection of clenbuterol using competitive surface-enhanced Raman scattering immunoassay[J]. Analytica Chimica Acta, 2011, 697(1): 61-66.
[43] Cheng J, Wang S, Zhang S, et al. Rapid and sensitive determination of clenbuterol residues in animal urine by surface-enhanced Raman spectroscopy[J]. Sensors and Actuators B: Chemical, 2019, 279: 7-14.
[44] Varmira K, Saed-mocheshi M, Jalalvand A R. Electrochemical sensing and bio-sensing of bisphenol A and detection of its damage to DNA: A comprehensive review[J]. Sensing and Bio-Sensing Research, 2017, 15: 17-33.
[45] Ju H X. Functional nanomaterials and nanoprobes for amplified biosensing[J]. Applied Materials Today, 2018, 10: 51-71.
[46] Yan P P, Tang Q H, Deng A P, et al. Ultrasensitive detection of clenbuterol by quantum dots based electrochemiluminescent immunosensor using gold nanoparticles as substrate and electron transport accelerator[J]. Sensors and Actuators B: Chemical, 2014, 191: 508-515.
[47] Yang F, Wang P L, Wang R G, et al. Label free electrochemical aptasensor for ultrasensitive detection of ractopamine[J]. Biosensors and Bioelectronics, 2016, 77: 347-352.
[48] Zhu Q, Liu H X, ZHang J, et al. Ultrasensitive QDs based electrochemiluminescent immunosensor for detecting ractopamine using AuNPs and Au nanoparticles@ PDDA-graphene as amplifier[J]. Sensors and Actuators B: Chemical, 2017, 243: 121-129.
[49] Li Z Y, Wang Y H, Kong W J, et al. Highly sensitive near-simultaneous assay of multiple “l(fā)ean meat agent” residues in swine urine using a disposable electrochemiluminescent immunosensors array[J]. Biosensors and Bioelectronics, 2013, 39(1): 311-314.
[50] 唐偉. 基于碳納米材料的柔性氣體傳感器的研究進(jìn)展[J]. 硅酸鹽通報(bào),2019,38(2):398-409.
Tang Wei. Research progress of flexible gas sensors based on carbon nanomaterials[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(2): 398-409. (in Chinese with English abstract)
[51] Angione M D, Pilolli R, Cotrone S, et al. Carbon based materials for electronic bio-sensing[J]. Materials Today, 2011, 14(9): 424-433.
[52] Muniandy S, Teh S J, Thong K L, et al. Carbon nanomaterial-based electrochemical biosensors for foodborne bacterial detection[J]. Critical Reviews in Analytical Chemistry, 2019: 1-24. DOI: 10.1080/10408347.2018. 1561243.
[53] Yao Y, Ping J F. Recent advances in graphene-based freestanding paper-like materials for sensing applications[J]. TrAC Trends in Analytical Chemistry, 2018, 105: 75-88.
[54] Zhao F N, Wu J, Ying Y B, et al. Carbon nanomaterial-enabled pesticide biosensors: Design strategy, biosensing mechanism, and practical application[J]. TrAC Trends in Analytical Chemistry, 2018, 106: 62-83.
[55] Zhu Z, Garcia-Gancedo L, Flewitt A J, et al. A Critical review of glucose biosensors based on carbon nanomaterials: Carbon nanotubes and graphene [J]. Sensors, 2012, 12(5): 5996-6022.
[56] Liu G, Chen H D, Peng H Z, et al. A carbon nanotube-based high-sensitivity electrochemical immunosensor for rapid and portable detection of clenbuterol[J]. Biosensors and Bioelectronics 2011, 28(1): 308-313.
[57] 陳昌云,張紅琳,柳閩生,等. 基于碳納米管和離子液體復(fù)合物修飾電極的免疫傳感器檢測(cè)萊克多巴胺[J]. 化學(xué)學(xué)報(bào),2011,69(23):2865-2869.
Chen Changyun, Zhang Honglin, Liu Minsheng, et al. An electrochemical immunosensor for the determination of ractopamine based on multi-walled carbon nanotubes and ionic liquid composite[J]. Acta Chimica Sinica, 2011, 69(23): 2865-2869. (in Chinese with English abstract)
[58] 張媛媛,王瑞鑫,李秋薇,等. 基于多壁碳納米管免疫傳感器法快速測(cè)定食品中的萊克多巴胺[J]. 食品科學(xué),2016,37(8):170-175.
Zhang Yuanyuan, Wang Ruixin, Li Qiuwei, et al. An Immunosensor for rapid determination of ractopamine in foods based on multi-walled carbon nanotubes[J]. Food Science, 2016, 37(8): 170-175. (in Chinese with English abstract)
[59] Tiwari J N, Vij V, Kemp K C, et al. Engineered carbon-nanomaterial based electrochemical sensors for biomolecules[J]. Acs Nano, 2015, 10(1): 46-80.
[60] Zhang J, Zhang F, Yang H, et al. Graphene oxide as a matrix for enzyme immobilization[J]. Langmuir, 2010, 26(9): 6083-6085.
[61] Kang S M, Park S, Kim D, et al. Simultaneous reduction and surface functionalization of graphene oxide by mussel-inspired chemistry[J]. Advanced Functional Materials, 2011, 21(1): 108-112.
[62] Wu C, Sun D, Li Q, et al. Electrochemical sensor for toxic ractopamine and clenbuterol based on the enhancement effect of graphene oxide[J]. Sensors and Actuators B: Chemical, 2012, 168: 178-184.
[63] Lin X Y, Ni Y N, Kokot S. A novel electrochemical sensor for the analysis of-agonists: The poly (acid chrome blue K)/ graphene oxide-nafion/glassy carbon electrode[J]. Journal of Hazardous Materials, 2013, 260: 508-517.
[64] Wang L, Yang R, Chen J, et al. Sensitive voltammetric sensor based on Isopropanol-Nafion-PSS-GR nanocomposite modified glassy carbon electrode for determination of Clenbuterol in pork[J]. Food Chemistry, 2014, 164: 113-118.
[65] Wang H, Zhang Y, Li H, et al. A silver-palladium alloy nanoparticle-based electrochemical biosensor for simultaneous detection of ractopamine, clenbuterol and salbutamol[J]. Biosensors and Bioelectronics, 2013, 49: 14-19.
[66] Bai W Q, Huang H Y, Li Y, et al. Direct preparation of well-dispersed graphene/gold nanorod composites and their application in electrochemical sensors for determination of ractopamine[J]. Electrochimica Acta, 2014, 117: 322-328.
[67] Jin X C, Fang G Z, Pan M F, et al. A molecularly imprinted electrochemiluminescence sensor based on upconversion nanoparticles enhanced by electrodeposited rGO for selective and ultrasensitive detection of clenbuterol[J]. Biosensors and Bioelectronics, 2018, 102: 357-364.
[68] Li Y, Xu W K, Zhao X R, et al. Electrochemical sensors based on molecularly imprinted polymer on Fe3O4/graphene modified by gold nanoparticles for highly selective and sensitive detection of trace ractopamine in water[J]. The Analyst, 2018, 143: 5094-5102.
[69] Zhai H Y, Liu Z P, Chen Z G, et al. A sensitive electrochemical sensor with sulfonated graphene sheets/oxygen-functionalized multi-walled carbon nanotubes modified electrode for the detection of clenbuterol[J]. Sensors and Actuators B: Chemical, 2015, 210: 483-490.
[70] Muniandy S, Teh S J, Thong K L, et al. Carbon nanomaterial-based electrochemical biosensors for foodborne bacterial detection[J]. Critical Reviews in Analytical Chemistry, 2019: 1-24.
[71] Ma T Y, Liu L, Yuan Z Y. Direct synthesis of ordered mesoporous carbons[J]. Chemical Society Reviews, 2013, 42(9): 3977-4003.
[72] 康洪權(quán). 有序介孔碳的功能化修飾及其電化學(xué)性能研究[D]. 青島:青島科技大學(xué),2018.
Kang Hong Quan. Functional Modification of Ordered Mesoporous Carbon and Its Electrochemical Performance[D]. Qingdao: Qingdao University of Science & Technology, 2018. (in Chinese with English abstract)
[73] Yang X, Feng B, Yang P, et al. Electrochemical determination of toxic ractopamine at an ordered mesoporous carbon modified electrode[J]. Food Chemistry, 2014, 145: 619-624.
[74] Ma M, Zhu P, Pi F W, et al. A disposable molecularly imprinted electrochemical sensor based on screen-printed electrode modified with ordered mesoporous carbon and gold nanoparticles for determination of ractopamine[J]. Journal of Electroanalytical Chemistry, 2016, 775: 171-178.
[75] Cunha C R A, Oliveira A, Firmino T V C, et al. Biomedical applications of glyconanoparticles based on quantum dots[J]. Biochimica et Biophysica Acta (BBA) - General Subjects, 2018, 1862(3): 427-439.
[76] Molaei M J. A review on nanostructured carbon quantum dots and their applications in biotechnology, sensors, and chemiluminescence[J]. Talanta, 2019, 196: 456-478.
[77] 張殿偉,王金菊,王艷萍. 量子點(diǎn)傳感體系在有機(jī)磷農(nóng)藥殘留檢測(cè)中的應(yīng)用[J].食品研究與開發(fā),2019,40(1):214-219.
Zhang Dianwei, Wang Jinju, Wang Yanping. Application of sensing system based on quantum dots on the detection of organophosphate pesticide residues[J]. Food Research And Development, 2019, 40(1): 214-219. (in Chinese with English abstract)
[78] Probst C E, Zrazhevskiy P, Bagalkot V, et al. Quantum dots as a platform for nanoparticle drug delivery vehicle design[J]. Advanced Drug Delivery Reviews, 2013, 65(5): 703-718.
[79] Yao X, Yan P P, Tang Q H, et al. Quantum dots based electrochemiluminescent immunosensor by coupling enzymatic amplification for ultrasensitive detection of clenbuterol[J]. Analytica Chimica Acta, 2013, 798: 82-88.
[80] Dong T T, Yang X K, Zhao K, et al. Signal amplification strategy for highly sensitive detecting brombuterol with electrochemiluminescent immunoassay by using CdSe QDs as label and gold nanoparticle as substrate[J]. Electroanalysis, 2016, 28(8): 1847-1855.
[81] Raksawong P, Chullasat K, Nurerk P, et al. A hybrid molecularly imprinted polymer coated quantum dot nanocomposite optosensor for highly sensitive and selective determination of salbutamol in animal feeds and meat samples[J]. Analytical and Bioanalytical Chemistry, 2017, 409(20): 4697-4707.
[82] Tang Q H, Cai F D, Deng A P, et al. Ultrasensitive competitive electrochemiluminescence immunoassay for the-adrenergic agonist phenylethanolamine A using quantum dots and enzymatic amplification[J]. Microchimica Acta, 2014, 182(1/2): 139-147.
[83] Dong T T, Tang Q H, Zhao K, et al. Ultrasensitive electrochemiluminescent salbutamol immunoassay with dual-signal amplification using CdSe@SiO2as label and gold nanoparticles as substrate[J]. Microchimica Acta, 2017, 184(3): 961-968.
[84] Hu X X, Zhang H, Chen S H, et al. A signal-on electrochemiluminescence sensor for clenbuterol detection based on zinc-based metal-organic framework–reduced graphene oxide-CdTe quantum dot hybrids[J]. Analytical and Bioanalytical Chemistry, 2018, 410(30): 7881-7890.
[85] 趙岳濤,王懷雨,喻學(xué)鋒. 二維黑磷的制備及表面修飾技術(shù)研究進(jìn)展[J]. 科學(xué)通報(bào),2017,62(20):102-111.
Zhao Yuetao, Wang Huaiyu, Yu Xuefeng. Progress of fabrication and surface modification of 2D black phosphorus[J]. Chinese Science Bulletin, 2017, 62(20): 102-111. (in Chinese with English abstract)
[86] 賈蕾,雷天民. 二維黑磷物理性質(zhì)及化學(xué)穩(wěn)定性的研究進(jìn)展[J]. 材料導(dǎo)報(bào),2018,32(7):1100-1106.
Jia Lei, Lei Tianmin. Research progress on physical properties and chemical stability of two-dimensional black phosphorus[J]. Materials Review, 2018, 32(7): 1100-1106. (in Chinese with English abstract)
[87] Xia F N, Wang H , Jia Y C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics[J]. Nature Communications, 2014, 5: 4458-4464.
[88] Woomer A H, Farnsworth T W, Hu J, et al. Phosphorene: synthesis, scale-up, and quantitative optical spectroscopy[J]. ACS Nano, 2015, 9: 8869-8884.
[89] Ge Y, Camarada M B, Xu L J, et al. A highly stable black phosphorene nanocomposite for voltammetric detection of clenbuterol[J]. Microchimica Acta, 2018, 185(12): 566-576.
[90] 張立平. Janus顆粒的制備與應(yīng)用研究進(jìn)展[J]. 山東化工,2018,47:56-60.
Zhang Liping. Preparation and application of Janus particles[J]. Shandong Chemical Industry, 2018, 47: 56-60. (in Chinese with English abstract)
[91] Wang F, Paulettg M, Wang J T, et al. Dual surface- functionalized Janus nanocomposites of polystyrene/ Fe3O4@SiO2for simultaneous tumor cell targeting and stimulus-induced drug release[J]. Advanced Materials, 2013, 25(25): 3485-3489.
[92] Zhou Y, Yang Y J, Deng X, et al. Electrochemical sensor for determination of ractopamine based on aptamer/ octadecanethiol Janus particles[J]. Sensors and Actuators B: Chemical, 2018, 276: 204-210.
[93] Karl M, Chinnu A B, Vijai k, et al. Formation and characterisation of CeO2and Gd:CeO2nanowires/rods for fuel cell applications[J]. Journal of Experimental Nanoscience, 2015, 10(7): 520-531.
[94] Chinnu M K, Anand K V, Kumar R M, et al. Synthesis and structural, optical and thermal properties of ceria and rare earth doped Ceria nanocrystals[J]. 2013, 7(11/12): 976-979.
[95] Huang K, Lei M, Wang Y J, et al. Green hydrothermal synthesis of CeO2NWs-reduced graphene oxide hybrid with enhanced photocatalytic activity[J]. Powder Diffraction, 2014, 29(1): 8-13.
[96] Xiao X, Wang Y H, Tan W, et al. Simple synthesis of multilayer-shaped CeO2nanomaterial and its electrochemical detection of clenbuterol[J]. Electroanalysis, 2018, 30: 2744-2749.
Review on sensing detection progress of “l(fā)ean meat agent” based on functional nanomaterials
Zhao Jie, Liang Gang, Li An, Man Yan, Jin Xinxin, Pan Ligang※
(1.,100097,;2.(),100097)
The “l(fā)ean meat agents” is a class of-agonists with a similar structure, which had been abused as an animal growth promoter to improve carcass lean meat rate. However, the drug residue accumulation in meat and body tissues would cause acute poisoning after eating, which gave rise to muscular pain, dizziness, cardiacpalpitation and vomiting, so China has banned its application for growth promotion in animal breeding processes since 2010. But the illegal abuse of “l(fā)ean meat agents” still frequently occurs in some animal farms. Besides, the plenty of substitutes and increasingly concealing performance still pose a great threat to the safety of animal products and human health. The frequently abused ‘‘lean meat agents’’ include clenbuterol (CLE), ractopamine (RAC), salbutamol (SAL), terbutaline, cimaterol, phenylethanolamine A, etc. At present, various analytical methods have been developed to detect the drug residue, including high performance liquid chromatography (HPLC), gas chromatography mass spectrometry (GC-MS), liquid chromatography mass spectrometry (LC-MS), capillary electrophoresis (CE) and enzyme-linked immunoassay (ELISA), lateral flow chromatography, surface-enhanced Raman immunity, and molecular imprinting polymers, and so on. While these chromatographic methods all require complicated sample pre-treatments, which is not only laborious and time consuming but also sophisticated and large apparatus. Thus, they are most often used as precise quantitative and confirmatory methods, and not fit to the rapid screening. The ELISA and lateral flow chromatography are suitable for field analysis and extensive screening, but the sensitivity is not unsatisfactory in most time. So the routine methods have been unable to meet the requirements of multiple application scenarios and the complex sample substrates. In the past decades, the nanotechnology has made great progress. The functional nanomaterials possess a lot of extraordinary property, such as large surface-to-volume ratio, excellent electrical conductivity, high chemical stability, good biological compatibility, etc. At the time, sensors have interdisciplinary applications in many fields, including chemistry, biology and electronics, industry, agriculture, clinical medicine, environmental protection, food safety jaince and the other fields. The special structure and properties of functional nanomaterials have greatly improved the performance of the existing sensing technologies, making the sensing technologies develop towards the direction of sensitivity, efficiency, simplicity, low cost and increasing anti-interference ability. In addition, the sensing instrument is easier to be miniaturized, portable and automatic, combining with the functional nanomaterials, which is expected to achieve real-time, online, simple, sensitive, high-flux and portable drug residue detection, having a promising application prospects. So far, the wide and common use functional nanomaterials in sensing detection include gold nanomaterials, carbon nanomaterials, quantum dots and other new nanomaterials (such as Phosphorene, Janus nanoparticles, CeO2nanoparticles), so the above-mentioned functional nanomaterials were summarized with the various detection principle of sensing test, such as colorimetric methods, surface enhanced Raman scattering, immunoassay, electrochemical and electrochemiluminescence methods in this review. In generally, functional nanomaterials and composite nanomaterials usually improve sensor performance from the following aspects, as a reaction substrate, load the specific molecular recognition, improve electrical conductivity, surface enhancement effect, signal conduction properties, catalytic properties and good biocompatibility, and so on. In the future, in order to improve the performance of sensor, the functional nanomaterials can be improved in the following aspects. Firstly, the specificity of the nanomaterials in free-label sensor should be enhanced to ensure the detection methods suitable to the needs of actual detection. Secondly, development and screening of new kind of functional nanomaterial, or synthesis the nanomaterial contains two or more elements or has special structure, to obtain the superior performance. Thirdly, make further study of the strengthening mechanism of nanomaterial, and innovate the modification methods for identifying molecules. With the rapid development in nanotechnology, the functional nanomaterials in sensing technology will make greater function to develop more sensitive, accurate, simple, high throughput and low-cost detection methods for drug residue detection.
sensors; nanotechnology; non destructive inspection; nanomaterials; lean meat agents
趙 杰,梁 剛,李 安,滿 燕,靳欣欣,潘立剛. 功能納米材料的“瘦肉精”傳感檢測(cè)技術(shù)研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(18):255-266.doi:10.11975/j.issn.1002-6819.2019.18.031 http://www.tcsae.org
Zhao Jie, Liang Gang, Li An, Man Yan, Jin Xinxin, Pan Ligang. Review on sensing detection progress of “l(fā)ean meat agent” based on functional nanomaterials[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(18): 255-266. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.18.031 http://www.tcsae.org
2019-05-25
2019-08-26
北京市農(nóng)林科學(xué)院博士后科研基金(2018-ZZ-020);北京市農(nóng)林科學(xué)院科技創(chuàng)新能力建設(shè)專項(xiàng)(KJCX20170420);北京市自然科學(xué)基金(6194038、L182031)
趙杰,博士,研究方向?yàn)檗r(nóng)產(chǎn)品質(zhì)量安全。Email:zhaojie20090127@126.com
潘立剛,博士,研究員。研究方向?yàn)檗r(nóng)產(chǎn)品質(zhì)量安全。Email:panlg@brcast.org.cn
10.11975/j.issn.1002-6819.2019.18.031
S879.2
A
1002-6819(2019)-18-0255-12