牛智有,劉芳宏,劉 鳴,任鄒弘,李 培
平行極板電容傳感器介電式顆粒飼料水分檢測儀設(shè)計與試驗
牛智有1,2,劉芳宏1,劉 鳴1,任鄒弘1,李 培1
(1. 華中農(nóng)業(yè)大學(xué)工學(xué)院,武漢 430070;2. 農(nóng)業(yè)部長江中下游農(nóng)業(yè)裝備重點實驗室,武漢 430070)
為了實現(xiàn)顆粒飼料含水率的快速、無損檢測,設(shè)計了以STM32F103ZET6單片機(jī)為控制芯片的顆粒飼料水分檢測儀,采用平行極板電容傳感器、溫度傳感器、質(zhì)量傳感器和相應(yīng)的檢測電路分別檢測顆粒飼料樣品的電容、溫度和容積密度,經(jīng)過單片機(jī)進(jìn)行處理后實現(xiàn)顆粒飼料的含水率檢測,并在OLED顯示屏上顯示檢測結(jié)果。采用自制顆粒飼料水分檢測儀,分析了含水率、溫度、容積密度對顆粒飼料相對介電常數(shù)的影響規(guī)律,并建立了相對介電常數(shù)與含水率、溫度、容積密度之間的關(guān)系模型,模型的決定系數(shù)為0.996 8。同時對顆粒飼料水分檢測儀的檢測精度進(jìn)行了檢驗,含水率實測值與儀器檢測值之間的決定系數(shù)為0.990 3。試驗結(jié)果表明,與烘干法相比,所設(shè)計檢測儀的絕對測量誤差值在±0.6%以內(nèi),具有一定的實用價值。該研究為顆粒飼料水分快速、無損在線檢測提供一種新的方法和技術(shù)支撐。
無損檢測;含水率;傳感器;電容傳感器;顆粒飼料;檢測儀;介電特性
飼料是種植業(yè)和養(yǎng)殖業(yè)的重要聯(lián)結(jié),在農(nóng)業(yè)產(chǎn)業(yè)鏈中居于關(guān)鍵地位[1]。經(jīng)過四十多年的持續(xù)發(fā)展,中國成為世界上主要飼料生產(chǎn)大國之一,占世界總產(chǎn)量的20%[2]。顆粒飼料是飼料產(chǎn)品的主要物理形態(tài),具有營養(yǎng)全面、穩(wěn)定性好的特點[3-4]。含水率是顆粒飼料品質(zhì)的基本指標(biāo),直接影響飼料產(chǎn)品的質(zhì)量及其貯藏性能。顆粒飼料的含水率過高,會使其容易發(fā)霉變質(zhì),不利于保存,還會使?fàn)I養(yǎng)成分的含量相對減少,降低了顆粒飼料的能量;顆粒飼料的含水率過低,會影響飼料口味并造成過大的重量損失[5-6]。因此,在顆粒飼料的加工、儲存應(yīng)用中,含水率的檢測非常重要。
介電特性是表達(dá)不同生物體在不同環(huán)境中的差異性的物理參數(shù)之一,通過研究這一參數(shù)可以獲得豐富的生物信息[7-9]。介電特性的研究覆蓋了醫(yī)藥、地質(zhì)、農(nóng)業(yè)等眾多領(lǐng)域,基于不同的研究目的,側(cè)重點也有所差異。陳曉敏等[10]利用阻抗分析儀分析了頻率為0.01~100 MHz下血液的介電參數(shù)與血液指標(biāo)的關(guān)系。結(jié)果表明,血沉與血液介電參數(shù)呈線性相關(guān)。宋文等[11]利用時域有限差分法模擬出4種不同介電特性差異的土壤層次的土體模型,再結(jié)合雷達(dá)電磁波實現(xiàn)對潮土區(qū)農(nóng)田土體構(gòu)型層次的無損探測。邊紅霞等[12]利用萬能試驗機(jī)和平行板電極法測量了不同壓力下蘋果的介電參數(shù)。結(jié)果表明,蘋果的相對介電常數(shù)和損耗因數(shù)會隨著靜壓力的延長而增大,這為根據(jù)果品的介電特性快速評價其受傷程度提供了理論指導(dǎo)。
農(nóng)業(yè)物料的介電特性主要應(yīng)用于新鮮度檢測[13-14]、分級篩選[15-16]、品種檢測[17-18]、含水率預(yù)測[19-21]等領(lǐng)域。其中,基于介電特性的農(nóng)業(yè)物料含水率預(yù)測是一種常見的、應(yīng)用廣泛的檢測方法[22]。不同含水率的農(nóng)業(yè)物料的介電特性不同,根據(jù)這一原理,國內(nèi)外學(xué)者普遍采用通過測量農(nóng)業(yè)物料的介電參數(shù),建立與對應(yīng)含水率的數(shù)學(xué)模型,從而達(dá)到預(yù)測農(nóng)業(yè)物料水分的目的[23-25]。但是,僅考慮含水率對農(nóng)業(yè)物料介電特性的影響,會降低數(shù)學(xué)模型精度,影響預(yù)測效果。因此,需要考慮溫度、容積密度、含水率等因素對農(nóng)業(yè)物料介電特性的影響。將這些因素融合處理,可以提高對農(nóng)業(yè)物料含水率的檢測精度[26-28]。
顆粒飼料含水率測定方法主要是烘干法。該方法雖然測量精度高,結(jié)果穩(wěn)定,但測定過程繁瑣,費工耗時,無法實現(xiàn)快速、無損測量[29]。目前,市場上已有的水分檢測儀多適用于谷類作物及其他經(jīng)濟(jì)作物,尚未有專門用于測量顆粒飼料含水率的檢測儀[30-33]。因此,為了實現(xiàn)顆粒飼料含水率的快速、無損檢測,本文利用顆粒飼料的介電特性,研制一種基于介電特性的便攜式顆粒飼料水分測定裝置,旨在為顆粒飼料水分快速、無損在線檢測提供一種新的方法和技術(shù)支撐。
顆粒飼料水分檢測儀總體結(jié)構(gòu)如圖1所示。主要包含電容傳感器、溫度溫度傳感器、質(zhì)量傳感器和電路板保護(hù)殼等。電路板保護(hù)殼使用Creo4.0軟件設(shè)計,尺寸為110 mm×110 mm×27 mm,用3D打印技術(shù)制作,耗材采用光敏樹脂;溫度傳感器放置在電容傳感器內(nèi),而電容傳感器置于質(zhì)量傳感器上,質(zhì)量傳感器固定在電路板保護(hù)殼上。
圖1 顆粒飼料水分檢測儀結(jié)構(gòu)示意圖
系統(tǒng)模塊結(jié)構(gòu)如圖2所示主要包括單片機(jī)控制模塊、電容傳感器、質(zhì)量傳感器、溫度傳感器、電源模塊、顯示模塊、按鍵電路等。
圖2 顆粒飼料水分檢測系統(tǒng)模塊結(jié)構(gòu)圖
將被測顆粒飼料樣品裝入料筒,樣品的電容值由電容傳感器及電容檢測電路檢測到,并直接以數(shù)字信號發(fā)送至單片機(jī),單片機(jī)內(nèi)部通過運算將電容值轉(zhuǎn)換成相對介電常數(shù);同時,質(zhì)量傳感器檢測到顆粒飼料樣品的質(zhì)量,將質(zhì)量信號通過A/D轉(zhuǎn)換電路發(fā)送給單片機(jī),單片機(jī)內(nèi)部通過運算將質(zhì)量轉(zhuǎn)換成容積密度;溫度傳感器直接測量到被測顆粒飼料樣品的溫度,并將測量結(jié)果直接以數(shù)字量的形式發(fā)送給單片機(jī)。單片機(jī)內(nèi)部將得到的相對介電常數(shù)、容積密度、溫度進(jìn)行處理,通過建立的水分預(yù)測模型計算,實現(xiàn)測試顆粒飼料樣品的水分測試,并將含水率數(shù)值顯示在顯示屏上。表1為顆粒飼料水分檢測儀檢測性能參數(shù)。
表1 顆粒飼料水分檢測儀檢測性能參數(shù)表
1.2.1 電容傳感器模塊設(shè)計
采用平行極板式電容傳感器。它由2塊平行金屬板和之間的絕緣介質(zhì)組成,設(shè)置兩極板間的距離為40 mm。為了減小電容器的邊緣效應(yīng),極板的有效面積越大越好,考慮到電容器的體積,取極板的長度為100 mm,寬為80 mm。同時,在極板的邊緣增加等位環(huán)和選取更薄的極板都有利于進(jìn)一步減弱邊緣效應(yīng)。極板采用導(dǎo)電性良好、溫度系數(shù)較小的紫銅,板厚1 mm。2個極板分別引出2條屏蔽線用于和電路板連接,并貼在由亞克力板制成的料筒外壁組成帶有電容傳感器的料筒,如圖3所示。
圖3 帶有電容傳感器的料筒
不同含水率的樣品其相對介電常數(shù)不同,而相對介電常數(shù)與電容之間存在線性關(guān)系[34],因此可以通過測量樣品的電容間接得到其相對介電常數(shù)。與常見采用大量分布式電子元件搭建的檢測微小電容電路相比,本文采用數(shù)字電容轉(zhuǎn)換器AD7745芯片來進(jìn)行微小電容檢測,極大的簡化了電路,增強了電容檢測的準(zhǔn)確、穩(wěn)定性[35-37]。
AD7745的默認(rèn)容性動態(tài)測量范圍為(±4.096) pF,為擴(kuò)大電容檢測范圍,就需要設(shè)計相應(yīng)的電容檢測范圍擴(kuò)展電路,如圖4所示。電容檢測范圍擴(kuò)展電路中的運算放大器 AD8515 用作低阻抗信號源,確保AD7745在開始采樣時,被檢測電容就已經(jīng)充滿電。C1、C33在電路中起去耦作用,C2在電路中起濾波作用。將電容傳感器引出的2根屏蔽線錫焊在Csens1和CIN(+)即可。
1.2.2 質(zhì)量檢測模塊設(shè)計
質(zhì)量檢測模塊包含質(zhì)量傳感器及相應(yīng)的測量電路。其功能是通過檢測出電容傳感器腔內(nèi)所盛顆粒飼料質(zhì)量,再根據(jù)電容傳感器腔內(nèi)體積來得到被測顆粒飼料的容積密度。
圖4 電容檢測范圍擴(kuò)展電路
質(zhì)量傳感器選取應(yīng)變式電阻傳感器,量程為5 kg,測量精度為±1 g。電阻應(yīng)變式質(zhì)量傳感器輸出的是mV級的電壓信號,這是一種較小的模擬電信號,由于外界信號干擾,單片機(jī)直接采集傳感器輸出電壓將產(chǎn)生較大的誤差,須經(jīng)過質(zhì)量檢測電路中的HX711芯片將模擬電信號放大一定的倍數(shù)后再轉(zhuǎn)換成數(shù)字電信號后,單片機(jī)才能夠接受、處理。質(zhì)量檢測電路如圖5所示。
圖5 質(zhì)量檢測電路
1.2.3 溫度檢測模塊設(shè)計
溫度檢測模塊的作用是檢測出被測顆粒飼料樣品的溫度。溫度檢測模塊采用DS18B20單總線式數(shù)字溫度傳感器,其與單片機(jī)通信僅需一個I/O口,即可將顆粒飼料溫度轉(zhuǎn)換成數(shù)字信號輸出。接口電路如圖6所示。
圖6 DS18B20 接口電路圖
1.2.4 信號處理與顯示模塊設(shè)計
為了實現(xiàn)對電容、質(zhì)量、溫度等數(shù)據(jù)信號的采集與處理,單片機(jī)的控制模塊設(shè)計以STM32最小系統(tǒng)為基礎(chǔ),主要包括STM32F103ZET6芯片、時鐘電路、復(fù)位電路、下載電路等??刂聘鞴δ苣K實現(xiàn)操作者意圖。顯示模塊主要采用OLED顯示屏,大小為27 mm×26 mm,通過8080并行方式與單片機(jī)通信,用于顯示顆粒飼料的溫度、相對介電常數(shù)、容積密度、含水率等。鍵盤采用4個獨立式按鍵,用來實現(xiàn)不同的顯示要求。
系統(tǒng)檢測主程序流程如圖7所示,主要包含電容采集子程序、質(zhì)量采集子程序、溫度采集子程序,含水率計算子程序、按鍵識別子程序、OLED顯示子程序及各主要芯片的初始化。含水率計算子程序是軟件設(shè)計的關(guān)鍵,直接關(guān)系到含水率的檢測精度。主要實現(xiàn)的功能是,將轉(zhuǎn)換后的相對介電常數(shù)和容積密度和采集到的溫度值代入到后續(xù)試驗得到的相對介電常數(shù)與主要影響因素的關(guān)系式求解含水率。按鍵識別子程序主要實現(xiàn)按鍵識別、被按鍵功能子程序調(diào)用等功能。OLED顯示子程序負(fù)責(zé)被測顆粒飼料樣品相對介電常數(shù)、容積密度、溫度、含水率顯示。
圖7 系統(tǒng)檢測主程序流程圖
試驗所用顆粒飼料來自湖北省某大型飼料企業(yè)所生產(chǎn)的豬顆粒飼料,直徑為3.5 mm。試驗前,用篩網(wǎng)篩掉破粒和碎粒,選用顆粒完好、形狀大小較均勻的顆粒飼料,裝入到密封袋保存。
試驗在自主設(shè)計的顆粒飼料水分檢測儀上進(jìn)行。采用烘干法(GB/T6435-2014)測定顆粒飼料的初始水分。所用儀器包括DHG-9240A型電熱鼓風(fēng)干燥箱(武漢市環(huán)試檢測設(shè)備有限公司)和AUY220型電子分析天平(日本島津?qū)嶒炂鞑挠邢薰荆?。試驗樣品的初始含水率?1.8%。
為了獲得不同含水率顆粒飼料樣品,使用BT45A10型電子天平(深圳博途電子科技有限公司)稱取3份初始含水率的顆粒飼料樣品,每份約為1 000 g。將3份樣品平攤在托盤中,放入到35 ℃、濕度為80%的RGS-250B型人工氣候培養(yǎng)箱(上海市坤天儀器有限公司)內(nèi)。在高溫、高濕的環(huán)境下,低水分的顆粒飼料會自動吸收空氣中的水分。通過控制顆粒飼料放置在高溫、高濕的人工氣候箱內(nèi)的時間長短,就可以獲得不同高含水率的顆粒飼料樣品。為了得到1組低含水率顆粒飼料樣品,取1 000 g初始含水率的顆粒飼料平攤在托盤中,放入到105 ℃干燥箱內(nèi),烘干10 min,即可獲得低含水率的顆粒飼料樣品。直接從顆粒飼料樣品原樣中稱取1 000 g用于試驗。試驗前,通過烘干法測量得到9.0%、11.8%、14.2%、15.7%、18.0%的顆粒飼料樣品。
試驗時,先將5種不同含水率的樣品放入到35 ℃的烘箱內(nèi)升溫,待樣品升到35 ℃取出試驗,把各個含水率下的樣品以無壓實、輕壓實、重壓實裝入顆粒飼料水分檢測儀的電容傳感器中。無壓實狀態(tài)是將顆粒飼料樣品以自由落體方式裝滿電容傳感器。輕壓實和重壓實是對裝填中的樣品通過振動和加壓來改變?nèi)萜鲀?nèi)的樣品質(zhì)量,從而改變?nèi)莘e密度。不同含水率、壓實度下的容積密度如表2所示。
表2 各含水率下顆粒飼料的容積密度值
將裝滿顆粒飼料樣品的檢測儀放置到人工氣候培養(yǎng)箱內(nèi),調(diào)節(jié)人工氣候培養(yǎng)箱的溫度,當(dāng)顆粒飼料樣品溫度分別降到30、25、20、15、10 ℃時,通過OLED顯示屏記錄相應(yīng)的相對介電常數(shù)。
2.3.1 介電常數(shù)影響因素分析
圖8為無壓實狀態(tài)下,含水率和溫度對顆粒飼料相對介電常數(shù)的影響規(guī)律。由圖8可以看出,在含水率增加或溫度升高的條件下,顆粒飼料的相對介電常數(shù)均呈單調(diào)遞增的趨勢。在高含水率和高溫下,顆粒飼料的相對介電常數(shù)變化的更為明顯。這種現(xiàn)象出現(xiàn)的原因是因為在常溫下,水的相對介電常數(shù)遠(yuǎn)遠(yuǎn)大于顆粒飼料,水在飼料體積中占的比例越大,則相對介電常數(shù)就會越大。當(dāng)溫度升高時,會加速飼料內(nèi)自由水的布朗運動和加速極性分子的取向運動,從而也會使得相對介電常數(shù)增加[38]。在輕壓實、重壓實狀態(tài)下也有相同的規(guī)律。
圖9為室溫20 ℃下,容積密度對不同含水率顆粒飼料樣品相對介電常數(shù)的影響。由圖9可以看出,在各個含水率下,顆粒飼料的相對介電常數(shù)皆隨著容積密度的增大而增大。這種現(xiàn)象出現(xiàn)的原因是因為顆粒飼料的容積密度越大,意味著單位體積內(nèi)可以容納更多的顆粒飼料,可以存儲更多的電場能,從而使相對介電常數(shù)增加。該規(guī)律也被發(fā)現(xiàn)于其他測試溫度下。
圖8 顆粒飼料含水率和溫度對相對介電常數(shù)的影響
圖9 20 ℃下容積密度對顆粒飼料相對介電常數(shù)的影響
2.3.2 介電常數(shù)模型建立與驗證
由2.3.1研究結(jié)果可以看出,顆粒飼料的相對介電常數(shù)在不同的含水率、溫度、容積密度下,有著明顯的變化規(guī)律。因此,在建立模型時要充分考慮含水率、溫度、容積密度對顆粒飼料相對介電常數(shù)的影響。使用Design-Expert10軟件對試驗數(shù)據(jù)進(jìn)行多元回歸擬合[39],得到關(guān)于顆粒飼料相對介電常數(shù)與含水率、溫度、容積密度之間的一階模型、2因素交互模型、二階模型、三階模型,各模型決定系數(shù)見表3。
表3 各模型決定系數(shù)
由表3可以看出,在各個模型中,三階模型的決定系數(shù)和預(yù)測決定系數(shù)最大。所以,采用三階模型,該模型的擬合回歸方程見式(1)
式中′為相對介電常數(shù);為溫度,℃;為容積密度,kg/m3;為含水率,%。
為驗證式(1)模型的可靠性,隨機(jī)配制12份含水率在9%~18%之間的顆粒飼料樣品,以任意方式裝滿電容傳感器內(nèi),容積密度在577.1~633.3 kg/m3,測量在10~30 ℃下的實際相對介電常數(shù)。把容積密度、溫度、含水率代入式(1)得到預(yù)測相對介電常數(shù)。
以橫坐標(biāo)為實際相對介電常數(shù),縱坐標(biāo)為預(yù)測相對介電常數(shù)。采用一元線性回歸的方法,得到實際相對介電常數(shù)與預(yù)測相對介電常數(shù)之間的相關(guān)圖,如圖10所示。
圖10 實際相對介電常數(shù)與預(yù)測相對介電常數(shù)相關(guān)圖
由圖10可以看出,實際相對介電常數(shù)與預(yù)測相對介電常數(shù)之間有很好的線性相關(guān)性,其決定系數(shù)2為0.992 9。表明式(1)能較好的描述相對介電常數(shù)與容積密度、溫度、含水率的關(guān)系。
2.3.3 水分檢測儀檢測精度驗證
將顆粒飼料樣品的含水率作為未知量,溫度、容積密度、相對介電常數(shù)作為已知量,對式(1)進(jìn)行移項變形,得到式(2)。
在水分檢測儀檢測到顆粒飼料樣品的相對介電常數(shù)、溫度值、容積密度的情況下,方程就變?yōu)橐粋€關(guān)于含水率的一元三次方程,采用二分迭代法編寫含水率計算的子程序,解出方程的根就是含水率的計算值。
為了檢驗顆粒飼料水分檢測儀測量含水率的準(zhǔn)確性,以湖北省某飼料企業(yè)生產(chǎn)的豬顆粒飼料為對象,制成6組不同含水率的樣品,通過烘干法測量得到的實測值,分別為10.0%、11.6%、13.1%、14.8%、16.8%、17.6%。將不同含水率的樣品分成3份,以任意方式裝滿本文所設(shè)計的顆粒飼料水分檢測儀,在30、25、20、15、10 ℃下,通過水分檢測儀的OLED顯示屏讀取含水率檢測值。
以橫坐標(biāo)為含水率實測值,縱坐標(biāo)為含水率的檢測值。采用一元線性回歸的方法,得到含水率實測值與含水率檢測值之間的相關(guān)圖,如圖11所示。
圖11 顆粒飼料水分檢測儀含水率檢測值與烘干法含水率測量值相關(guān)圖
由圖11可以看出,含水率實測值與含水率檢測值之間有很好的線性相關(guān)性,其決定系數(shù)為0.990 3。在含水率為9%~18%范圍內(nèi),本儀器的水分檢測誤差在±0.6%以內(nèi),含水率檢測響應(yīng)時間小于5 s。
1)采用平行極板電容傳感器、溫度傳感器、質(zhì)量傳感器和相應(yīng)的檢測電路等設(shè)計了顆粒飼料水分檢測儀的硬件系統(tǒng);采用C語言編寫了系統(tǒng)軟件。
2)測量了含水率在9%~18%,溫度在10~30 ℃,容積密度在558.3~662.5 kg/m3內(nèi)顆粒飼料樣品的相對介電常數(shù),研究顆粒飼料相對介電常數(shù)與容積密度、溫度、含水率之間的關(guān)系,建立顆粒飼料含水率預(yù)測模型。結(jié)果表明,顆粒飼料相對介電常數(shù)隨容積密度、溫度、含水率的增大而增大;所建立的含水率預(yù)測模型的決定系數(shù)為0.996 8。經(jīng)實際驗證,該模型能夠較好的描述相對介電常數(shù)與容積密度、溫度、含水率的關(guān)系。
3)對顆粒飼料水分檢測儀的性能進(jìn)行驗證。結(jié)果表明,含水率在9%~18%,溫度在10~30 ℃,容積密度在577.1~633.3 kg/m3,與烘干法相比本檢測儀的絕對測量誤差值在±0.6%以內(nèi),含水率檢測響應(yīng)時間小于5 s。
[1] Zhang X, Zhang Y, Chen H, et al. Study on spatial autocorrelation in China’s animal feed industry[J]. New Zealand Journal of Agricultural Research, 2007, 50(5): 831-838.
[2] Fu W G. China’s feed industry in transition: The case of New Hope Group-an industry perspective[J]. Journal of Agribusiness in Developing and Emerging Economies, 2011, 1(2): 162-178.
[3] Abdollahi M R, Ravindran V, Svihus B. Pelleting of broiler diets: An overview with emphasis on pellet quality and nutritional value[J]. Animal Feed Science and Technology, 2013, 179(1/2/3/4): 1-23.
[4] Veizajdelia E, Sala F. The effect of farinose and pellet feed on production parameters of weaned piglets[J]. Macedonian Journal of Animal Science, 2011: 287-291.
[5] Moritz J S, Cramer K R, Wilson K J, et al. Feed manufacture and feeding of rations with graded levels of added moisture formulated to different energy densities[J]. The Journal of Applied Poultry Research, 2003, 12(3): 371-381.
[6] Hott J M, Buchanan N P, Cutlip S E, et al. The effect of moisture addition with a mold inhibitor on pellet quality, feed manufacture, and broiler performance[J]. The Journal of Applied Poultry Research, 2008, 17(2): 262-271.
[7] 孫俊,莫云南,戴春霞,等. 基于介電特性與IRIV-GWO-SVR算法的番茄葉片含水率檢測[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(14):188-195.
Sun Jun, Mo Yunnan, Dai Chunxia, et al. Detection of moisture content of tomato leaves based on dielectric properties and IRIV-GWO-SVR algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(14): 188-195. (in Chinese with English abstract)
[8] 商亮,谷靜思,郭文川. 基于介電特性及ANN的油桃糖度無損檢測方法[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(17):257-264.
Shang Liang, Gu Jingsi, Guo Wenchuan. Non-destructively detecting sugar content of nectarines based on dielectric properties and ANN[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(17): 257-264. (in Chinese with English abstract)
[9] 沈靜波,張海紅,吳龍國,等. 基于介電頻譜的靈武長棗可溶性固形物含量的預(yù)測模型[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(增刊2):369:375.
Shen Jingbo, Zhang Haihong, Wu Longguo, et al. LingWu long jujube soluble solids content predicting model research based on dielectric spectra[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(Supp.2): 369-375. (in Chinese with English abstract)
[10] 陳曉敏,豐明俊,王力,等. 血液介電參數(shù)與血液學(xué)指標(biāo)的相關(guān)性分析[J]. 生物醫(yī)學(xué)工程學(xué)雜志,2011,28(4):694-697.
Chen Xiaomin, Feng Mingjun, Wang Li, et al. The correlation analysis between dielectric parameters and haematological parameters in whole blood cell[J]. Journal of Biomedical Engineering, 2011, 28(4): 694-697. (in Chinese with English abstract)
[11] 宋文,張敏,吳克寧,等. 潮土區(qū)農(nóng)田土體構(gòu)型層次的探地雷達(dá)無損探測試驗[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(16):129-138.
Song Wen, Zhang Min, Wu Kening, et al. Test on nondestructive detection of farmland solum structure in fluvo-aquic soil area using ground penetrating radar[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(16): 129-138. (in Chinese with English abstract)
[12] 邊紅霞,屠鵬. 基于介電參數(shù)同步監(jiān)測蘋果靜壓過程生理變化[J]. 中國食品學(xué)報,2019,19(8):279-285.
Bian Hongxia, Tu Peng. The simultaneous monitoring of physiological change of apple based on dielectric parameters in static pressure[J]. Journal of Chinese Institute of Food Science and Technology, 2019, 19(8): 279-285. (in Chinese with English abstract)
[13] 張立彬,胥芳,周國君,等. 蘋果的介電特性與新鮮度的關(guān)系研究[J]. 農(nóng)業(yè)工程學(xué)報,1996,12(3):190-194.
Zhang Libin, Xu Fang, Zhou Guojun, et al. Study on correlations between dielectric properties and freshness of apples[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 1996, 12(3): 186-190. (in Chinese with English abstract)
[14] 沈靜波,張海紅,馬雪蓮,等. 基于介電特性的靈武長棗新鮮度預(yù)測[J]. 食品與機(jī)械,2016,32(1):117-120.
Shen Jingbo, Zhang Haihong, Ma Xuelian, et al. Prediction on fresheness degree of lingwu long jujube on dielectric properties[J]. Food and Machinery, 2016, 32(1): 117-120. (in Chinese with English abstract)
[15] 坎雜,谷趁趁,王麗紅,等. 脫絨棉種介電分選參數(shù)的優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報,2010,26(9):114-119.
Kan Za, Gu Chenchen, Wang Lihong, et al. Optimization of parameters for delinted cottonseeds dielectric selection[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(9): 114-119. (in Chinese with English abstract)
[16] 蔡騁,李永超,馬惠玲,等. 基于介電特征選擇的蘋果內(nèi)部品質(zhì)無損分級[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(21):279-287.
Cai Cheng, Li Yongchao, Ma Huiling, et al. Nondestructive classification of internal quality of applebased on dielectric feature selection[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(21): 279-287. (in Chinese with English abstract)
[17] 王轉(zhuǎn)衛(wèi),趙春江,商亮,等. 基于介電頻譜技術(shù)的甜瓜品種無損檢測[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(9):290-295.
Wang Zhuanwei, Zhao Chunjiang, Shang Liang, et al. Nondestructive testing of muskmelons varieties based on dielectric spectrum technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(9): 290-295. (in Chinese with English abstract)
[18] 唐燕,張繼澍. 基于介電特性的獼猴桃和桃果實品種識別研究[J]. 食品科學(xué),2012,33(3):1-4.
Tang Yan, Zhang Jishu. Identification of kiwifruit and peach varieties based on dielectric properties[J]. Food Science, 2012, 33(3): 1-4. (in Chinese with English abstract)
[19] 郭文川,王婧,朱新華. 基于介電特性的燕麥含水率預(yù)測[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(24):272-279.
Guo Wenchuan, Wang Jing, Zhu Xinhua. Moisture content prediction of oat seeds based on dielectric property[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(24): 272-279. (in Chinese with English abstract)
[20] 于啟洋,張付杰,楊薇. 基于介電特性小粒咖啡含水率的檢測研究[J]. 農(nóng)產(chǎn)品加工,2016,12:35-38.
Yu Qiyang, Zhang Fujie, Yang Wei. Predicating moisture content of coffee beans based on dielectric properties[J]. Farm Products Processing, 2016, 12: 35-38. (in Chinese with English abstract)
[21] 桑田,宋春芳,袁冬明,等. 基于微波干燥的黑莓介電特性研究[J]. 浙江農(nóng)業(yè)學(xué)報,2016,28(2):345-351.
Sang Tian, Song Chunfang, Yuan Dongming, et al. Dielectric properties of blackberries based on microwave drying[J]. Acta Agriculturae Zhejiangensis, 2016, 28(2): 345-351. (in Chinese with English abstract)
[22] Tan L B, Ji H Y. Study on grain moisture detection system based on the theory of dielectric properties[J]. Applied Mechanics and Materials, 2013, 333/334/335(2): 1558-1563.
[23] 羅承銘,師帥兵. 電容法糧食物料含水率與介電常數(shù)關(guān)系研究[J]. 農(nóng)機(jī)化研究,2011,33(4):149-151.
Luo Chengming, Shi Shuaibing. Research on the correlation between moisture content and dielectric constant of grain products based on capacitance method[J]. Journal of Agricultural Mechanization Research, 2011, 33(4): 149-151. (in Chinese with English abstract)
[24] Solar M, Solar A. Non-destructive determination of moisture content in hazelnut[J]. Computers & Electronics in Agriculture, 2016, 121: 320-330.
[25] Trabelsi S, Nelson S O, Lewis M A. Microwave nondestructive sensing of moisture content in shelled peanuts independent of bulk density and with temperature compensation[J]. Sensing & Instrumentation for Food Quality & Safety, 2009, 3(2): 114-121.
[26] Sacilik K, Colak A, Tarihi G. Dielectric properties of opium poppy seed[J]. Journal of Agricultural Sciences, 2005(1): 104-109.
[27] Torrealba-Melendez R, Sosa-Morales M E, Olvera-Cervantes J L, et al. Dielectric properties of beans at different temperatures and moisture content in the microwave range[J]. International Journal of Food Properties, 2016, 19(3): 564-577.
[28] 郭文川,王婧,劉馳. 基于介電特性的薏米含水率檢測方法研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2012,43(3):113-117.
Guo Wenchuan, Wang Jing, Liu Chi. Predicating moisture content of pearl barley based on dielectric properties[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(3): 113-117. (in Chinese with English abstract)
[29] 陶志云,刁彩霞. 飼料質(zhì)量控制過程中水分測定的方法比較[J]. 現(xiàn)代化農(nóng)業(yè),2010,3:43-44.
[30] Kovaleva A A, Saitov R I, Zaporozhets A S, et al. Microwave moisture meter for cereal gsrains[J]. Measurement Techniques, 2017, 59(10): 1056-1060.
[31] 劉志壯,呂貴勇. 基于電容法的稻谷含水率檢測[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2013,44(7):179-182.
Liu Zhizhuang, Lv Guiyong. Moisture content detection of paddy rice based on capacitance approach[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(7): 179-182. (in Chinese with English abstract)
[32] 趙麗清,尚書旗,高連興,等. 基于同心軸圓筒式電容傳感器的花生仁水分無損檢測技術(shù)[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(9):212-218.
Zhao Liqing, Shang Shuqi, Gao Lianxing, et al. Nondestructive measurement of moisture content of peanut kernels based on concentric cylindrical capacitance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 212-218. (in Chinese with English abstract)
[33] 郭文川,趙志翔,楊沉陳. 基于介電特性的小雜糧含水率檢測儀設(shè)計與試驗[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2013,44(5):188-193.
Guo Wenchuan, Zhao Zhixiang, Yang Chenchen. Moisture meter for coarse cereals based on dielectric psroperties[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(5): 188-193. (in Chinese with English abstract)
[34] Carlos M, Luisa G F, Alfonso G, et al. Measurement of moisture in wood for application in the restoration of old buildings[J]. Sensors, 2016, 16(5): 697-706.
[35] Zhao L Q, Wang D W, Yin Y Y, et al. Design of a peanut moisture detector based on STM32 and MATLAB[J]. Emirates Journal of Food and Agriculture, 2018, 30(10): 893-902.
[36] 郭文川,劉馳,楊軍. 小麥秸稈含水率測量儀的設(shè)計與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(1):33-40.
Guo Wenchuan, Liu Chi, Yang Jun. Design and experiment on wheat straw moisture content meter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(1): 33-40. (in Chinese with English abstract)
[37] 周利明,張小超,苑嚴(yán)偉. 小麥播種機(jī)電容式排種量傳感器設(shè)計[J]. 農(nóng)業(yè)工程學(xué)報,2010,26(10):99-103.
Zhou Liming, Zhang Xiaochao, Yuan Yanwei. Design of capacitance seed rate sensor of wheat planter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(10): 99-103. (in Chinese with English abstract)
[38] Wang S, Monzon M, Gazit Y, et al. Temperature-dependent dielectric properties of selected subtropical and tropical fruits and associated insect pests[J]. Transactions of the ASAE, 2005, 48(5): 1873-1881.
[39] 葛宜元. 試驗設(shè)計方法與Design-Expert軟件應(yīng)用[M]. 哈爾濱市:哈爾濱工業(yè)大學(xué)出版社,2014:81-85.
Design of dielectric pellet feed moisture detector based on parallel plate capacitance sensor
Niu Zhiyou1,2, Liu Fanghong1, Liu Ming1, Ren Zouhong1, Li Pei1
(1.,,430070,; 2.430070,)
The moisture content of pellet feed directly affects the quality of pellet feed. At present, the drying method is widely used for the detection of moisture in pellet feed. The shortcomings of this method are long detection time and single detection means. In order to increase the pellet feed moisture detection method and realize the non-destructive detection of pellet feed moisture, the STM32F103ZET6 single-chip microcomputer was used as the control chip for the pellet feed moisture detector, which mainly included the capacitance detection module, the temperature detection module and the weight detection module. The capacitance detection module uses parallel plate capacitance sensor and range expansion detection circuit with a digital capacitor converter AD7745 chip as the core. The weight detection module uses a strain resistance sensor and an A/D conversion circuit whose core is HX711 chip. The temperature detection module uses DS18B20 temperature sensor. After the initialization of each module, the capacitance, weight and temperature of the tested sample were sequentially collected, and the capacitance and weight therein were converted into relative permittivity and bulk density. The obtained relative permittivity, bulk density, and temperature were substituted into a moisture content calculation subroutine based on the binary iterative method to obtain a moisture content detection value of the sample and the detection result was displayed on the OLED display. The self-made pellet feed moisture detector was used to analyze the influence of moisture content (9%~18%), temperature (10~30 ℃) and bulk density (558.3~662.5 kg/m3) on the relative permittivity of pellet feed. The prediction model between relative permittivity and moisture content, temperature and bulk density was established. 12 samples of pellet feed with moisture content ranging from 9% to 18% were randomly prepared. The actual relative permittivity at different temperatures was measured by filling the capacitance sensor in any way. Then, the bulk density, temperature, and moisture content were substituted into the established model to obtain the predicted relative permittivity. The actual relative permittivity was compared with the predicted relative permittivity to verify the prediction effect of the established model. The detection accuracy of the dielectric pellet feed moisture detector based on the parallel plate capacitive sensor was tested. The results showed that the relative permittivity of pellet feed increased with the increase of temperature, moisture content and bulk density. The determination coefficient of the established relative permittivity and moisture content, temperature and bulk density model was 0.996 8. There was a good linear correlation between the measured relative permittivity and the predicted relative permittivity, the coefficient of determination was 0.992 9, indicating that the established model could describe the relative permittivity and bulk density, temperature and moisture content relationship well; The coefficient of determination between the measured value of the moisture content of the pellet feed and the detected value of the designed detector was 0.990 3. Compared with the drying method, the absolute measurement error of the measured value and the detected value was within ±0.6%. The research provides a new method and technical support for fast and non-destructive on-line detection of pellet feed moisture content.
nondestructive detection; moisture content; sensor; capacitance sensor; pellet feeds; detector; dielectric properties
牛智有,劉芳宏,劉 鳴,任鄒弘,李 培. 平行極板電容傳感器介電式顆粒飼料水分檢測儀設(shè)計與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(18):36-43.doi:10.11975/j.issn.1002-6819.2019.18.005 http://www.tcsae.org
Niu Zhiyou, Liu Fanghong, Liu Ming, Ren Zouhong, Li Pei. Design of dielectric pellet feed moisture detector based on parallel plate capacitance sensor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(18): 36-43. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.18.005 http://www.tcsae.org
2019-05-10
2019-08-28
中央高?;究蒲袠I(yè)務(wù)費專項資金資助項目(2662018PY081)
牛智有,教授,博士生導(dǎo)師,研究方向:從事農(nóng)產(chǎn)品加工技術(shù)與裝備。Email:nzhy@mail.hzau.edu.cn
10.11975/j.issn.1002-6819.2019.18.005
S237
A
1002-6819(2019)-18-0036-08