• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fast Scene Reconstruction Based on Improved SLAM

    2019-11-07 03:12:38ZhenlongDuYunMaXiaoliLiandHuiminLu
    Computers Materials&Continua 2019年10期

    Zhenlong Du,Yun MaXiaoli Li and Huimin Lu

    Abstract:Simultaneous location and mapping(SLAM)plays the crucial role in VR/AR application,autonomous robotics navigation,UAV remote control,etc.The traditional SLAM is not good at handle the data acquired by camera with fast movement or severe jittering,and the efficiency need to be improved.The paper proposes an improved SLAM algorithm,which mainly improves the real-time performance of classical SLAM algorithm,applies KDtree for efficient organizing feature points,and accelerates the feature points correspondence building.Moreover,the background map reconstruction thread is optimized,the SLAM parallel computation ability is increased.The color images experiments demonstrate that the improved SLAM algorithm holds better realtime performance than the classical SLAM.

    Keywords:SLAM,thread optimization,scene reconstruction,feature point match.

    1 Introduction

    With the development of virtual reality(VR)/augmented reality(AR)technology and the hardware performance upgrading,more and more VR/AR applications have been involving into our life and bringing the great convenience to modern people.At the same time,VR/AR related technology has attracted the wide and extensive attention,and VR/AR requirements prompt the related investigation forward.Moreover,the scene localization and the mapping generation are required by automatous robotics navigation,it is urgent to capture the external environment information,reconstruct the previously unknown scene in real-time.In the paper the simultaneous localization and mapping(SLAM)[Zhou,Lian,Yang et al.(2018);Zhang,Liu,Dong et al.(2016);Zhang,He,Chen et al.(2016)]algorithm is investigated.

    Although SLAM has made some progresses in recent years,it still encountered some difficulties in practical applications[Cui,McIntosh and Sun(2018)].Till now,SLAM includes MonoSLAM[Davison,Reid,Molton et al.(2007);Bresson,Feraud,Aufrere et al.(2015)],parallel tracking and mapping(PTAM)[Klein and Murray(2007)],largescale direct monocular SLAM(LSD-SLAM)[Engel,Schps and Cremers(2014)],EKFSLAM[Barrau and Bonnabel(2015)],SLAM with RGB-D camera(RGBD-SLAM)[Kerl,Stuckler and Cremers(2015)],these SLAM methods include tracking,depth map estimation and map optimization,three stages.The traditional SLAM is difficult to achieve high performance[Davison,Reid,Molton et al.(2007)],is not good at process camera with fast movement and severe jittering.The powerful chip occurrence improves SLAM performance,furthermore SLAM operates from the offline to online processing.The vision technology and the sensor promotion make the map construction more intuitive,especially the positioning in the previously unknown scene.

    The paper presents an improved SLAM algorithm,which includes the feature point match acceleration based on KDtree,homography plane iterative estimation,and background process optimization for image prefetch,updation and expansion.The presented improved SLAM algorithm can handle camera with fast movement and rapid jittering,and fast reconstruct the prior unknown scene.Compared with the classical ORB-SLAM[Mur-Artal,Montiel and Tardos(2015)]and RGBD-SLAM[Kerl,Stuckler and Cremers(2015)],the improved SLAM algorithm could fast reconstruct the scene,optimize the camera trajectory according to the scene and camera posture,and achieve the lowest RMSE.

    2 Related works

    SLAM technique originally is applied to the autonomous robotics navigation,and it depends on the sensors such as laser range-finders and sonar for rapidly sensing the surrounding environment.Due to the camera holds the advantages of compact,accurate,noninvasive,cheap and ubiquitous,etc.,the vision community has accumulated many achievements on structure-from-motion(SFM),recently sensor based SLAM has moved to the vision based SLAM.

    LSD-SLAM based on monocular vision[Engel,Schps and Cremers(2014)]performs semi-dense mapping on large-scale scene,could construct the camera trajectory,and detect the scale drift when the scene changes significantly.The depth map can be constructed by iterative introducing the keyframe,and the good pixels are selected for modeling both the depth restoration and the depth map updating.LSD-SLAM achieves the consistent map via the constraint optimization.In large-scale environment,LSDSLAM achieves the good semi-dense global consistency mapping,moreover it can run on CPU.Semi-direct visual odometry(SVO)[Forster,Pizzoli and Scaramuzza(2014)]directly on pixel intensities,estimates 3D points with the probabilistic mapping method that explicitly models outlier measurements,greatly eliminates the computation costs of feature point matching,can handle images at high rate acquisition.

    Kalman filter is generally used for estimating the system state with maximum likelihood,it is employed for the scene point prediction in EKF-SLAM[Barrau and Bonnabel(2015)].EKF-SLAM inevitability includes the error accumulation,when the current state prediction is beyond the threshold,the system could not achieve the real-time performance.

    PTAM[Klein and Murray(2007)]is a keyframe-based monocular parallel SLAM algorithm,it adopts the two parallel threads,foreground threads mainly captures and matches the feature points and estimates the camera posture,while the background one mainly performs the map extension.FAST(features from accelerated segment testing)feature descriptor[Rosten,Porter and Drummond(2010)]is applied to extract the feature points within the region.The selected keyframes are cached in the keyframe queue,and the mapping thread only extracts the feature points and reconstructs the 3D points from the keyframe queue.The camera tracking thread performs the feature points match,optimizes the camera posture of current frame according to the feature points correspondence.

    3 Fast scene reconstruction via the improved SLAM

    The improved SLAM adopts the parallel framework,the foreground thread manages the feature point match optimization and the local map expansion,the background thread performs the loop detection and improves the system efficiency.The improved SLAM algorithm includes the feature point match acceleration via KDtree,homography plane determination,and background thread optimization,mainly concentrates on the SLAM execution performance improvement.

    3.1 Perspective transformation

    3D pointP=[xw,yw,zw,1]Tis transformed to 2D point[xc,yc,zc,1]Tby the acquisition device.Generally,operator takes the images with camera,mobile or Kinect.As Fig.1 illustration,camera captures multiple 3D pointsXp={P1,P2,P3,…}within object,and the camera performs continuous acquisition from multiple angles,such as,camera posturesC1,C2,C3,….SLAM infers the camera position and posture from the successive images via multi-view geometry principle.The camera pose is composed of a 3×3 rotation matrix Rnand a translation vector tn.P=[xw,yw,zw,1]Tis transformed from the world coordinate system to the local camera coordinate system as Eq.(1).

    Figure 1:The camera takes object with multiple postures

    Eq.(1)is the homogeneous coordinate representation of perspective transformation.Eq.(2)is the nonhomogeneous coordinate representation of Eq.(1).

    In which Kis the camera parameter matrix,Riis the rotation matrix at postureCi,tiis the camera translational vector atis a function as.

    3.2 Feature points match acceleration

    Points match[Gao,Xia,Zhang et al.(2018)]plays an important role in SLAM,it searches the matched points among images for determining the camera posture and predicting the map expansion.ORB(Oriented FAST and Rotated BRIEF)[Mur-Artal,Montiel and Tardos(2015)]feature descriptor bears the strong feature extraction and representation ability,it is applied in SLAM for the feature points match.SLAM need handle gigantic feature points and quickly find the matched feature points,then,the search strategy is crucial for SLAM.ORB-SLAM need artificially set the threshold for feature points match.If the threshold is set inappropriately,the number of matched points is readily influenced,reduces the matching accuracy.In the paper,KDtree is employed for accelerating the feature points match.

    ORB-SLAM uses the brute force method for matching the feature points,as shown in Fig.2,the computation costs is heavy and the real-time performance is difficult guaranteed.Inspired by the work[Forster,Carlone,Dellaert et al.(2017)],KDtree is exploited for improving SLAM execution efficiency.Additionally,for further improving the feature points match efficiency,region of interest(ROI)is utilized,it reduces the region with few feature points,as Fig.3 depiction.

    Figure 2:Conventional ORB-SLAM feature points match

    KDtree includes the search tree building and the search speeding strategy.The search tree building establishes the search space based on the distance measurement on the feature points in imageItand imageIt+1.Supposemias the base point,KDtree searches the matched feature points under the measurement criteria.The search tree building constructs the candidate points for each feature point.KDtree has the special search speeding strategy,for any pointmiinIt,it starts from the tree root node,firstly locates the starting branch based on the points similarity measurement,then accesses the nodes of this branch for getting the mostly matched feature point.Meanwhile,backtracing is used to determine whether the branch holds the closer feature point.If the backtrace time is less than the threshold,the branch with the smallest distance is selected from the queue as points closer tomi.The improved SLAM feature points correspondence procedure constructs matched feature point inIt+1for any feature point inmiinIt.

    Figure 3:Rich feature points region determination by ROI

    Figure 4:Feature points correspondence building by KDtree

    Fig.4 demonstrates that the improved feature points approach can build the feature points correspondence,and the used feature point number is smaller than the one of ORB-SLAM.

    3.3 Homography plane determination

    When feature points fall within the same plane or the parallax of two images is small,the camera posture is restored with aid of the homography plane.There exist some planar planes(such as tables,walls,etc.)in the indoor scenario.

    Figure 5:Homography plane

    As the Fig.5 showing,feature pointsm1=(u1, v1,1) Tandm2=(u2, v2,1) Tseparately on the imageItandIt+1both fall within the planeγ,which follow the equation.

    In which K is the camera intrinsic parameter matrix,R is the rotation matrix fromIttoIt+1,t is the translation vector fromIttoIt+1.

    Assume the homography matrixH3×3stands for,then Eq.(4)has the following form.

    His decided by Eq.(6)and Eq.(7).The improved SLAM exploits the homography feature tracking method for adapting the camera with strong rotation and fast movement.Homography plane estimation is heavy computation procedure,furthermore the homography evaluation of any image to current one also bears the high computation.In the paper for improving SLAM efficiency,the keyframeFkis served for the agent of prefetch images,and the homography matrix between keyframeFkand current imageIjis calculated,and it is expressed as the follow.

    In which Rjand tjare separately the rotation matrix and translation vector ofIj,represent the homography plane fromFktoIj.

    3.4 Background thread optimization

    Background thread plays the important role in SLAM,it manages the region prefetch,updation and expansion.The traditional SLAM could generate a rather good result from the stable capture.For the inexperienced or novice operator sometimes manipulates SLAM,or the strong lens rotation and fast movement often occur,these captured data causes SLAM to lose keyframes or cannot achieve the matched feature points.At the same time,there exists some difference between the calculated feature point and the real point,the camera posture and the actual gesture.Latif et al.[Latif,Cadena and Neira(2013)]proposed a camera pose optimization method to correct the scale drift at the loop procedure.When the camera moves smoothly,a constant velocity motion model can be used to predict the camera pose location.

    Object pointPjis projected to the pixelxjinIiunder cameraCi,this perspective transformation is represented byxj=F(Ci,Pj).In the paper,only the matched feature points are considered for being processed,thereafterxirepresents any feature point in any imageIi,it is the 2D point ofPj.

    stands for all feature points to its scene positions the in all images,Eq.(9)attempts to achieve all feature points corresponding to its scene position as close as possible,it is employed for background thread optimization for scene reconstruction.

    In whichδhis the Huber loss function.Eq.(10)is optimized for scene prefetch by homography transformation.

    The improved SLAM foreground thread calculates the local camera posture.If a certain amount of error is below a certain threshold,the prediction based on the prior information might cause the error accumulation.Although background thread optimization can maximize a posterior error,it does not well eliminate this kind of error.

    4 Experiments

    The improved SLAM algorithm proposed by the paper is implemented on the personal laptop with Intel(R)Core(TM)i5-6500 CPU@2.5 GHz,8G RAM.The experiment deployment OS is 64-bit Ubuntu 16.04.The discussed algorithm runs online and handles the color images which are captured by the handhold Kinect within the indoor environment.

    The routine hosted by the improved algorithm is robot operating system(ROS),which is open source code maintained by Open Source Robotics Foundation Inc.ROS is a flexible framework for developing robot related software,is a collection of cross-platform tools,libraries,and conventions that aim to simplify the task of handling complex and robust robot behavior.ROS execution threads cover the foreground and background threads,the foreground thread mainly captures and matches the feature points and estimates the camera posture through the homography tracking,while the background one mainly performs map extension,system loop detection and bundle adjustment(BA)[Vo,Narasimhan and Sheikh(2016)]optimization on the data obtained by the foreground thread.

    The traditional SLAM prefers the gray images for the performance consideration and requires to input the gray images.Direct operating on color images brings on the more process data,requires the heavy computational cost,the interaction performance is influenced too.However,in the experiment the algorithm directly operates the color images,the entire data flow also is based on color images.Meanwhile the frame rate is 20 frames per second,the algorithm real-time performance is improved than the conventional SLAM.

    In the paper the improved feature points match module is based on KDtree,it is used to rapidly match the feature points across frames via hierarchical manner with minimal matching error,greatly assures the real-time capability.Fig.6 is the feature points match result by the improved SLAM algorithm.

    Figure 6:Feature points obtained by the improved SLAM algorithm

    For overall evaluating the algorithm performance,the videos involving rapid movement and strong rotation acquired by Kinect are testified by the experiment.The improved SLAM is able to process video with depth,as shown in Fig.8,and the indoor scene is reconstructed with a sparse point cloud,and the red posture describes the keyframe location.

    Figure 7:Scene layout

    Figure 8:Camera trajectory optimization

    Fig.7 describes the experiment scene,which is a lab and includes the workbench,chair,bookcase,bookshelf and electric fan,the scene length is 15310 mm and the scene width is 15200 mm,the door is at the right wall and its width is 1200 mm.In this scene,all camera postures constitute the camera trajectory which is shown by blue sign,and the current camera posture is depicted by red symbol.

    Within the same scene as Fig.7,Fig.8 shows the camera trajectory optimization result,Fig.8(a)gives the camera trajectory without optimization,while Fig.8(b)demonstrates the camera trajectory with optimization.From camera trajectory comparison within the two brown rectangles in Fig.8(a)and Fig.8(b),it observed that the camera trajectory without optimization is rough,while the camera trajectory with optimization is more compact.

    Fig.9 shows the reconstructed scene with 3D point cloud,Fig.9(a)is the viewed from 45° view,and Fig.9(b)is the viewed from right top.From two views of Fig.9,it can be observed that the workbench,bookcase,bookshelf and chair are well reconstructed by the improved SLAM algorithm.

    Figure 9:3D point cloud of reconstructed scene

    Four data sets,Fr1/360,Fr1/floorandFr1/deskand one real-timeindoordata Indoor downloaded from https://vision.in.tum.de/data/datasets/ are employed for evaluating the algorithm performance amongORB-SLAM,RGBD-SLAMand the improved SLAM by the paper.RMSEis used as the comparison measure in Tab.1,it is observed that the improved SLAM approach achieves the lowest RMSE thanORB-SLAMandRGBDSLAMin four datasets.Additionally,Tab.1 shows that the proposed algorithm is more accurate than the originalORB-SLAMalgorithm in positioning accuracy,it can fast restore depth map thanRGBD-SLAMalgorithm.The generated depth map by the improved SLAM algorithm is accurate and satisfies the real-time object insertion requirement,as Fig.10 illustration.

    Table 1:Algorithms performance comparison

    Figure 10:Object real-time introduction

    5 Conclusion

    There exists monocular,stereo,RGB-D and ROS SLAM,these SLAM algorithms have been extensively investigated,and they can run on PC,mobile and robotics,three platforms.However,they still have the performance limitations,it is urgent for increasing SLAM real-time performance.With more types sensor involved by SLAM,more novel vision methods applied to SLAM,SLAM would be introduced and improved for handling more complicated scenario.

    In the paper an improved SLAM algorithm is proposed in which KDtree is introduced for accelerating the feature points match,therefore the efficiency of depth map acquisition and the map reconstruction are improved.Moreover,background map expansion thread is optimized and SLAM performance is increased via parallel threads.Additionally,the improved SLAM method processes color videos,while the classical SLAM deals with gray videos.

    With the big image/video emergence,such as,4K,SLAM confronts to process much bigger images/videos,and its efficiency and performance improvement need to be investigated further.

    Acknowledgement:This work is supported by the National Natural Science Foundation of China(Grant No.61672279),Project of “Six Talents Peak” in Jiangsu(2012-WLW-023),and Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Nanjing Hydraulic Research Institute,China(2016491411).

    久久久久国内视频| 成人特级av手机在线观看| 日韩欧美一区二区三区在线观看| 乱人视频在线观看| 久99久视频精品免费| 精品久久久久久久久久免费视频| 国产白丝娇喘喷水9色精品| 午夜影院日韩av| 亚洲av免费在线观看| а√天堂www在线а√下载| 亚洲人成伊人成综合网2020| 国内精品久久久久精免费| 亚洲国产精品合色在线| 日韩欧美精品v在线| 亚洲国产欧美人成| 欧美xxxx性猛交bbbb| 国产av一区在线观看免费| 亚洲欧美日韩东京热| 97碰自拍视频| 亚洲无线在线观看| 51国产日韩欧美| 亚洲人成网站高清观看| 国产午夜福利久久久久久| 亚洲美女视频黄频| 99riav亚洲国产免费| 亚洲avbb在线观看| 免费av不卡在线播放| 色噜噜av男人的天堂激情| 一级毛片久久久久久久久女| 简卡轻食公司| 日日夜夜操网爽| 国产一区二区三区视频了| 在线免费观看的www视频| 在线观看午夜福利视频| 久久人妻av系列| 亚洲av二区三区四区| 国产不卡一卡二| 成人午夜高清在线视频| 成年女人毛片免费观看观看9| 韩国av一区二区三区四区| 91午夜精品亚洲一区二区三区 | 精品久久久久久久久久久久久| 黄色一级大片看看| 久久久久久伊人网av| 国产高清有码在线观看视频| 午夜福利在线观看免费完整高清在 | 亚洲成人久久爱视频| 黄色欧美视频在线观看| 中文亚洲av片在线观看爽| 99国产极品粉嫩在线观看| 国产一区二区三区视频了| 丝袜美腿在线中文| 97超视频在线观看视频| 少妇被粗大猛烈的视频| avwww免费| 18禁黄网站禁片免费观看直播| 亚洲美女视频黄频| 色哟哟·www| 亚洲国产精品成人综合色| 欧美色视频一区免费| 蜜桃亚洲精品一区二区三区| 三级毛片av免费| 夜夜看夜夜爽夜夜摸| 午夜福利高清视频| 国产精品一及| 日韩欧美免费精品| 熟女电影av网| 国产女主播在线喷水免费视频网站 | 性色avwww在线观看| а√天堂www在线а√下载| 午夜免费激情av| 别揉我奶头 嗯啊视频| 成人高潮视频无遮挡免费网站| 亚洲美女黄片视频| 日韩av在线大香蕉| 精品久久久久久久久久久久久| 在线观看66精品国产| 草草在线视频免费看| 色播亚洲综合网| 亚洲av电影不卡..在线观看| 免费无遮挡裸体视频| 久久精品久久久久久噜噜老黄 | 动漫黄色视频在线观看| 亚洲精品粉嫩美女一区| 97超级碰碰碰精品色视频在线观看| 中文字幕av在线有码专区| 国产乱人视频| 日韩强制内射视频| 久久99热6这里只有精品| 色5月婷婷丁香| 亚洲自拍偷在线| 超碰av人人做人人爽久久| 久久99热6这里只有精品| 伦精品一区二区三区| 午夜福利18| 日韩欧美免费精品| 日韩欧美国产在线观看| 一进一出抽搐gif免费好疼| 久久精品影院6| 99在线视频只有这里精品首页| 啦啦啦韩国在线观看视频| 99久久久亚洲精品蜜臀av| 久久久久久大精品| 老司机福利观看| 变态另类成人亚洲欧美熟女| 少妇的逼好多水| 成人av在线播放网站| 99久久精品一区二区三区| 成人国产一区最新在线观看| 国产黄色小视频在线观看| 亚洲av不卡在线观看| 伦理电影大哥的女人| 久久久成人免费电影| 午夜免费激情av| 国产欧美日韩精品一区二区| 97人妻精品一区二区三区麻豆| 国产高清有码在线观看视频| 男女那种视频在线观看| 欧美又色又爽又黄视频| 国产黄色小视频在线观看| 国产一区二区激情短视频| 午夜精品在线福利| 中文资源天堂在线| 一级a爱片免费观看的视频| 少妇裸体淫交视频免费看高清| 免费看av在线观看网站| 国产高清不卡午夜福利| 琪琪午夜伦伦电影理论片6080| 色视频www国产| 人妻制服诱惑在线中文字幕| 国产精品一及| xxxwww97欧美| 黄色日韩在线| 亚洲精品色激情综合| 久9热在线精品视频| 成人欧美大片| 欧美日韩精品成人综合77777| 亚洲精品久久国产高清桃花| 99久久精品一区二区三区| 国产精品福利在线免费观看| 性插视频无遮挡在线免费观看| 国产成人a区在线观看| 永久网站在线| 久久久午夜欧美精品| 毛片一级片免费看久久久久 | 久久午夜亚洲精品久久| 久久久久久国产a免费观看| 色哟哟·www| 最近中文字幕高清免费大全6 | 熟妇人妻久久中文字幕3abv| 日韩欧美精品v在线| 99久久无色码亚洲精品果冻| 最近最新中文字幕大全电影3| 三级国产精品欧美在线观看| 日本免费a在线| 久久精品国产亚洲av天美| 亚洲中文字幕日韩| 日本免费a在线| 亚洲不卡免费看| 午夜福利在线观看免费完整高清在 | 国产精品久久久久久久电影| 亚洲av日韩精品久久久久久密| 国产亚洲av嫩草精品影院| 日本在线视频免费播放| 欧美潮喷喷水| 老熟妇乱子伦视频在线观看| 国产精品无大码| 国产精品久久久久久精品电影| 精品免费久久久久久久清纯| 中文字幕精品亚洲无线码一区| 99热这里只有精品一区| 赤兔流量卡办理| 不卡一级毛片| 国产蜜桃级精品一区二区三区| 亚洲国产精品成人综合色| 如何舔出高潮| 日韩在线高清观看一区二区三区 | 99久久精品热视频| 精品久久国产蜜桃| 国产精品久久视频播放| 成人亚洲精品av一区二区| 亚洲国产日韩欧美精品在线观看| 国产女主播在线喷水免费视频网站 | 99热这里只有是精品在线观看| 99热精品在线国产| 亚洲色图av天堂| 日韩中字成人| 午夜亚洲福利在线播放| 午夜福利视频1000在线观看| 老司机福利观看| 淫妇啪啪啪对白视频| 女同久久另类99精品国产91| 黄片wwwwww| 在线观看美女被高潮喷水网站| 桃色一区二区三区在线观看| 又黄又爽又刺激的免费视频.| 国产白丝娇喘喷水9色精品| 大型黄色视频在线免费观看| 九色成人免费人妻av| 日本一二三区视频观看| 老师上课跳d突然被开到最大视频| 搞女人的毛片| 男人舔奶头视频| 国产高清视频在线观看网站| 亚洲五月天丁香| 男人狂女人下面高潮的视频| 精品久久久久久久久久免费视频| 成人国产综合亚洲| 午夜福利欧美成人| 国产伦人伦偷精品视频| 欧美3d第一页| 免费av观看视频| 12—13女人毛片做爰片一| 亚洲av成人av| 亚洲图色成人| 国产三级在线视频| 精品人妻熟女av久视频| 在线天堂最新版资源| 成人特级av手机在线观看| 亚洲美女搞黄在线观看 | 12—13女人毛片做爰片一| 日韩中字成人| 亚洲国产精品成人综合色| 色尼玛亚洲综合影院| 黄色配什么色好看| 国产私拍福利视频在线观看| 国产精品久久久久久久久免| 国产三级中文精品| 国产亚洲av嫩草精品影院| 久久精品国产亚洲av涩爱 | 搡女人真爽免费视频火全软件 | 亚洲精品乱码久久久v下载方式| 成人特级黄色片久久久久久久| 深夜精品福利| 最近在线观看免费完整版| 亚洲人成网站高清观看| 1000部很黄的大片| 日本精品一区二区三区蜜桃| 精品久久久久久久末码| 亚洲精华国产精华精| 国产精品美女特级片免费视频播放器| 天堂av国产一区二区熟女人妻| 97人妻精品一区二区三区麻豆| 69av精品久久久久久| 啦啦啦啦在线视频资源| 国产精品99久久久久久久久| 国产免费一级a男人的天堂| 18禁黄网站禁片免费观看直播| 狠狠狠狠99中文字幕| 很黄的视频免费| 国产av麻豆久久久久久久| 我的老师免费观看完整版| 国产一区二区激情短视频| aaaaa片日本免费| 久久久久免费精品人妻一区二区| 欧美+亚洲+日韩+国产| 国产国拍精品亚洲av在线观看| 午夜激情欧美在线| 国产免费男女视频| 婷婷精品国产亚洲av在线| 国产黄色小视频在线观看| 91麻豆av在线| 欧美日韩综合久久久久久 | 舔av片在线| 最新在线观看一区二区三区| 国产精品亚洲美女久久久| 一区福利在线观看| 久久久久九九精品影院| 日韩国内少妇激情av| 国产精品av视频在线免费观看| 午夜免费激情av| 国产激情偷乱视频一区二区| 精品久久久久久久久亚洲 | 欧美日韩综合久久久久久 | 毛片女人毛片| 成人欧美大片| 欧美又色又爽又黄视频| 嫩草影院新地址| 精品午夜福利视频在线观看一区| 亚洲经典国产精华液单| 国产精品久久久久久精品电影| 乱系列少妇在线播放| 99视频精品全部免费 在线| 狠狠狠狠99中文字幕| 18+在线观看网站| 亚洲熟妇中文字幕五十中出| 乱系列少妇在线播放| 亚洲国产日韩欧美精品在线观看| 人人妻,人人澡人人爽秒播| 99国产精品一区二区蜜桃av| 色尼玛亚洲综合影院| 国内精品美女久久久久久| 亚洲性夜色夜夜综合| 淫妇啪啪啪对白视频| 一级a爱片免费观看的视频| 99国产精品一区二区蜜桃av| a级毛片免费高清观看在线播放| 99热6这里只有精品| 国产精品亚洲美女久久久| 久久精品国产自在天天线| 日本欧美国产在线视频| 日韩一区二区视频免费看| 嫩草影视91久久| 免费看美女性在线毛片视频| 亚洲一区高清亚洲精品| 91在线观看av| 精品人妻视频免费看| 啪啪无遮挡十八禁网站| 黄色丝袜av网址大全| 国产高潮美女av| 男女之事视频高清在线观看| 中文在线观看免费www的网站| 1000部很黄的大片| 免费观看人在逋| 精品人妻一区二区三区麻豆 | 日韩国内少妇激情av| 99热只有精品国产| 中文字幕精品亚洲无线码一区| 亚洲色图av天堂| 国产国拍精品亚洲av在线观看| 久久草成人影院| 色哟哟哟哟哟哟| 天美传媒精品一区二区| 久久国产精品人妻蜜桃| 国产一区二区在线观看日韩| 91精品国产九色| 久久人人精品亚洲av| 国产欧美日韩一区二区精品| 999久久久精品免费观看国产| 一区二区三区免费毛片| 欧美区成人在线视频| 欧美成人a在线观看| 免费看光身美女| 久久久精品欧美日韩精品| 午夜视频国产福利| or卡值多少钱| 18+在线观看网站| 色综合站精品国产| netflix在线观看网站| 国产一区二区在线av高清观看| 午夜精品一区二区三区免费看| 99久久精品热视频| 天堂影院成人在线观看| 91麻豆精品激情在线观看国产| 别揉我奶头 嗯啊视频| avwww免费| 欧美极品一区二区三区四区| www日本黄色视频网| 啦啦啦啦在线视频资源| 97人妻精品一区二区三区麻豆| 最新在线观看一区二区三区| 97人妻精品一区二区三区麻豆| 免费看av在线观看网站| 日韩中字成人| 亚洲国产精品久久男人天堂| 日日撸夜夜添| 成人美女网站在线观看视频| 亚洲内射少妇av| 男女那种视频在线观看| 欧美精品国产亚洲| 黄色欧美视频在线观看| 女生性感内裤真人,穿戴方法视频| 99热精品在线国产| 色综合站精品国产| 中国美白少妇内射xxxbb| 极品教师在线免费播放| 不卡视频在线观看欧美| 一个人免费在线观看电影| 国产午夜精品论理片| 乱人视频在线观看| 伊人久久精品亚洲午夜| 欧美日韩乱码在线| 99久久九九国产精品国产免费| 日日干狠狠操夜夜爽| 欧美精品啪啪一区二区三区| 嫩草影院入口| av.在线天堂| 给我免费播放毛片高清在线观看| 成年女人看的毛片在线观看| 好男人在线观看高清免费视频| 免费在线观看影片大全网站| 热99re8久久精品国产| 此物有八面人人有两片| 久久久国产成人精品二区| 国产精品福利在线免费观看| 欧美成人免费av一区二区三区| 午夜福利欧美成人| 精品久久久久久久久久久久久| 久久久久久久久大av| 九色国产91popny在线| 精品午夜福利在线看| 人妻丰满熟妇av一区二区三区| 99在线人妻在线中文字幕| 亚洲在线观看片| 十八禁网站免费在线| av专区在线播放| a级毛片免费高清观看在线播放| 在线国产一区二区在线| 国产精品1区2区在线观看.| 亚洲国产精品成人综合色| 黄色日韩在线| 午夜精品在线福利| 嫩草影视91久久| xxxwww97欧美| 国产不卡一卡二| 国内久久婷婷六月综合欲色啪| www.色视频.com| 级片在线观看| 久久久久久久久大av| 内地一区二区视频在线| 99热只有精品国产| 99久久精品一区二区三区| 日韩强制内射视频| 成人高潮视频无遮挡免费网站| 亚洲黑人精品在线| 日本黄色视频三级网站网址| 熟女人妻精品中文字幕| 国产三级在线视频| 国产精品久久电影中文字幕| 99热只有精品国产| 中文字幕高清在线视频| 免费看美女性在线毛片视频| 伦理电影大哥的女人| 欧美成人一区二区免费高清观看| 1000部很黄的大片| 亚洲成a人片在线一区二区| 亚洲成人中文字幕在线播放| 精品人妻一区二区三区麻豆 | 床上黄色一级片| 精品久久久久久久人妻蜜臀av| 淫秽高清视频在线观看| 亚洲国产精品合色在线| 嫁个100分男人电影在线观看| 成年女人看的毛片在线观看| 三级毛片av免费| 亚洲精品一区av在线观看| 男人狂女人下面高潮的视频| 丰满的人妻完整版| 国内精品久久久久精免费| 亚洲精品国产成人久久av| 熟妇人妻久久中文字幕3abv| 成人无遮挡网站| 亚洲第一区二区三区不卡| 熟女人妻精品中文字幕| 97人妻精品一区二区三区麻豆| 色尼玛亚洲综合影院| 亚洲18禁久久av| 日韩一区二区视频免费看| 欧美一区二区亚洲| 国产白丝娇喘喷水9色精品| 午夜福利视频1000在线观看| 此物有八面人人有两片| 中文字幕免费在线视频6| 欧美性猛交黑人性爽| 日日夜夜操网爽| 欧美性感艳星| 亚洲专区国产一区二区| 99在线视频只有这里精品首页| 欧美性猛交黑人性爽| 黄色欧美视频在线观看| 最近视频中文字幕2019在线8| 欧美激情国产日韩精品一区| 日韩欧美精品免费久久| 亚洲 国产 在线| 免费看日本二区| 他把我摸到了高潮在线观看| 看片在线看免费视频| 美女xxoo啪啪120秒动态图| 亚洲国产精品合色在线| 午夜精品在线福利| 亚洲精品在线观看二区| 非洲黑人性xxxx精品又粗又长| 1000部很黄的大片| 真人一进一出gif抽搐免费| 春色校园在线视频观看| 精品久久久久久久人妻蜜臀av| 在线观看一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 精品人妻视频免费看| 色视频www国产| 人人妻人人澡欧美一区二区| 国产淫片久久久久久久久| 成人毛片a级毛片在线播放| 久久久国产成人免费| 免费观看在线日韩| 欧美成人一区二区免费高清观看| 搞女人的毛片| 天美传媒精品一区二区| 久久久久久久久中文| 琪琪午夜伦伦电影理论片6080| 久久久久久久久中文| 欧美zozozo另类| 日本黄大片高清| 久久99热6这里只有精品| 久久婷婷人人爽人人干人人爱| 精品久久久噜噜| 黄色视频,在线免费观看| 波野结衣二区三区在线| 麻豆成人午夜福利视频| www日本黄色视频网| 淫妇啪啪啪对白视频| 美女xxoo啪啪120秒动态图| 小说图片视频综合网站| 一进一出抽搐动态| 热99在线观看视频| 国产伦精品一区二区三区四那| 国产高清有码在线观看视频| av在线蜜桃| 久久草成人影院| 88av欧美| 国产探花极品一区二区| 午夜福利视频1000在线观看| 亚洲成人精品中文字幕电影| 国产精品一区二区免费欧美| 听说在线观看完整版免费高清| 亚洲av五月六月丁香网| 亚洲成人久久爱视频| avwww免费| 可以在线观看毛片的网站| 天美传媒精品一区二区| 国产一区二区三区视频了| 成人二区视频| 精品午夜福利在线看| 国产av麻豆久久久久久久| 狂野欧美激情性xxxx在线观看| 日韩欧美在线乱码| 亚洲专区中文字幕在线| 国产精品免费一区二区三区在线| 国产在视频线在精品| 婷婷色综合大香蕉| 精品99又大又爽又粗少妇毛片 | 亚洲成人久久爱视频| 99久久久亚洲精品蜜臀av| 好男人在线观看高清免费视频| 一区二区三区高清视频在线| 在线看三级毛片| 欧美bdsm另类| 久久国产精品人妻蜜桃| 国产一区二区亚洲精品在线观看| 熟妇人妻久久中文字幕3abv| 欧美xxxx黑人xx丫x性爽| 精品一区二区三区人妻视频| 午夜激情欧美在线| av国产免费在线观看| 最近最新中文字幕大全电影3| 国国产精品蜜臀av免费| 不卡视频在线观看欧美| 日韩高清综合在线| 欧美一区二区精品小视频在线| 国产单亲对白刺激| 他把我摸到了高潮在线观看| av专区在线播放| 亚洲av第一区精品v没综合| 99视频精品全部免费 在线| 国产美女午夜福利| 精品久久久久久,| 日本三级黄在线观看| 少妇的逼好多水| 日韩国内少妇激情av| 啪啪无遮挡十八禁网站| 网址你懂的国产日韩在线| 国产欧美日韩一区二区精品| 国产精品福利在线免费观看| 亚洲第一电影网av| 床上黄色一级片| 日韩国内少妇激情av| 最近最新免费中文字幕在线| 成人特级黄色片久久久久久久| 亚洲精品久久国产高清桃花| 亚洲国产精品合色在线| 久久九九热精品免费| 国产三级在线视频| 国产av一区在线观看免费| 国产av不卡久久| 久久久久久久久中文| 欧美激情在线99| 亚洲成人免费电影在线观看| av女优亚洲男人天堂| 又粗又爽又猛毛片免费看| 性欧美人与动物交配| 久久亚洲精品不卡| 观看免费一级毛片| 成年女人永久免费观看视频| 亚洲性久久影院| 一区二区三区免费毛片| 日韩中文字幕欧美一区二区| 能在线免费观看的黄片| 久久久午夜欧美精品| 美女高潮的动态| 精品一区二区免费观看| 淫妇啪啪啪对白视频| 国产精品爽爽va在线观看网站| 少妇熟女aⅴ在线视频| 少妇猛男粗大的猛烈进出视频 | 欧美中文日本在线观看视频| 久久欧美精品欧美久久欧美| 国产人妻一区二区三区在| av天堂在线播放| 国产69精品久久久久777片| 日日啪夜夜撸| 午夜激情福利司机影院| av国产免费在线观看| 观看免费一级毛片| 九九热线精品视视频播放| 欧美日韩瑟瑟在线播放| 亚洲精华国产精华精| 国产一区二区三区视频了| xxxwww97欧美| 哪里可以看免费的av片| .国产精品久久| 国产精品伦人一区二区| 亚洲国产欧美人成| 日韩中文字幕欧美一区二区| 一卡2卡三卡四卡精品乱码亚洲| 亚洲性夜色夜夜综合|