• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Privacy-Aware Service Subscription in People-Centric Sensing:A Combinatorial Auction Approach

    2019-11-07 03:12:22YuanyuanXuShanLiandYixuanZhang
    Computers Materials&Continua 2019年10期

    Yuanyuan Xu,Shan Li and Yixuan Zhang

    Abstract:With the emergence of ambient sensing technologies which combine mobile crowdsensing and Internet of Things,large amount of people-centric data can be obtained and utilized to build people-centric services.Note that the service quality is highly related to the privacy level of the data.In this paper,we investigate the problem of privacy-aware service subscription in people-centric sensing.An efficient resource allocation framework using a combinatorial auction(CA)model is provided.Specifically,the resource allocation problem that maximizes the social welfare in view of varying requirements of multiple users is formulated,and it is solved by a proposed computationally tractable solution algorithm.Furthermore,the prices of allocated resources that winners need to pay are figured out by a designed scheme.Numerical results demonstrate the effectiveness of the proposed scheme.

    Keywords:Privacy-aware service subscription,combinatorial auction,winner determination.

    1 Introduction

    In recent years,various sensing technologies emerge covering mobile crowdsensing and Internet of things,which have been widely used for health care[Islam,Kwak,Kabir et al.(2015)],banking,cyber security,commerce,and transportation[Pham,Tsai,Nguyen et al.(2015)].These technologies enable sensing data sharing,and accordingly,large amount of people-centric sensing data can be collected.The collected data can be analyzed(e.g.,through machine learning algorithms)to build people-centric services for customers.However,the collection and analysis of raw data may pose a threat to people's privacy which is closely related to the provided service quality.For example,higher service quality can be achieved by disclosing more data of individuals[Zhang,Shi,Zhang et al.(2013)].The relation between the privacy level and the service quality is analyzed in Alsheikh et al.[Alsheikh,Niyato,Leong et al.(2017)].

    In this paper,we investigate the problem of privacy-aware service subscription in peoplecentric sensing.That is,how to efficiently allocate the privacy-aware services to accommodate various demands of the crowdsensing users,while achieving high resource utilization and the capability of resource customization.Therefore,an efficient resource allocation mechanism needs to be designed to achieve these goals.

    Also,it is worth noting that there are a variety of people-centric services,which are complementarities or substitutions for each other.Complementary services are associated services or concurrently required to satisfy the customers' needs,while substituted services are similar or comparable services that can be replaced with each other.Due to the complementarities or substitutions among various services,customers are not just interested in subscribing a particular type of service but sets of services(sometimes termed as bundles)[De Vries and Vohra(2003)].Accordingly,we use a combinatorial auction approach to perform service allocation.Auction-based mechanisms have been widely applied for resource allocation in different areas,e.g.,radio resource allocation[Wang,Xu,Song et al.(2015)],cloud resource allocation[Zaman and Grosu(2013);Zhang,Xie,Zhang et al.(2018);Zhang,Jiang,Li et al.(2016);Samimi,Teimouri and Mukhtar(2016)],and wireless virtualization[Cao,Lang,Li et al.(2015);Zhu and Hossain(2016);Zhu,Cheng,Chen et al.(2017)].

    Specifically,for applying combinatorial auction for privacy-aware people-centric service allocation,the following issues need to be addressed,which are the design of combinatorial auction model,the formulation of the winner determination problem(WDP),its solution algorithm,and the design of an incentive compatible pricing scheme.The main contributions of this work that address these issues are listed as follows:

    · A combinatorial auction model is designed for the service subscription problem,where one-sided auction is performed among one service provider and multiple users.

    · A computationally efficient algorithm is proposed to determine the winners in the combinatorial auction.

    · The prices of allocated services are figured out by a designed scheme.

    The organization for the rest of this paper is as follows.System model and combinatorial auction model are presented in Section 2.In Section 3,the service allocation for peoplecentric services is investigated.The allocation problem is formulated and the corresponding solution algorithm and pricing scheme are presented.Numerical results are analyzed in Section 4.Section 5 concludes the paper.

    2 System model and assumptions

    The system model of people-centric service allocation is shown in Fig.1.Crowdsensing users sense and collect data through multiple devices,such as mobile devices,Internet of things gadgets and other devices.The raw data are sent to service provider.The service provider should pay the cost of the raw data to crowdsensing users and apply data analytics to build people-centric services.Then the service provider sends the advertisement of the peoplecentric services to customers,and customers bid for their required bundles of services.Finally,the service provider decides winner lists and final prices that customers should pay.The major entities involved in the people-centric services can be described as follow:

    · Crowdsensing participants are the providers of raw sensing data.

    · The service provider buys raw data from the crowdsensing users,which are used to build the people-centric services.

    · Customers are the consumers of people-centric services,who buy services from the service provider.

    Figure 1:System model of people-centric service allocation

    Specifically,we consider one service provider providing a set of K services to N users,where K represents the number of service types which are classified by the functions of services,and each type of service owns Q service levels which are sorted by the corresponding privacy levels.

    Moreover,we show the tradeoff between the service quality and the privacy level.The privacy level and the service quality are closely related.The higher the privacy level,the less true data the service provider can buy from crowdsensing participants,so the service provider will have a lower quality of service,and vice versa.A utility function u(·)can be used to measure the quality of service,given a privacy levelr,where r∈[0,1].There are three assumptions about the service quality.The first is that u(·)is nonnegative,because the service quality can only be zero or positive.Secondly,u(·)is inversely proportional to r.This is an empirical assumption,since the quality of data analytics degrades as the privacy level increases.The third assumption is that u(·)is convex and decreases at an increasing rate over r.According to these three assumptions,Dwork[Dwork(2008)]concluded that the relationship between the utility function of data u(·)and the privacy level r in people-centric services can be obtained as follows:

    where α1,α2,and α3are the curve fitting parameters that can be obtained empirically.From(1),Dwork[Dwork(2008)]concluded that the quality of service is inversely proportional to the privacy level.The best fitting parameters,α1,α2,and α3,can be obtained by solving[Dwork(2008)]

    whereBis the number of measurements in the experiment,while r(i)and τ(i)are the privacy level and the measured real-world service quality during the it?measurement,respectively.

    2.1 The proposed combinatorial auction model

    In the proposed combinatorial auction model,the service provider acts as the seller that maximizes her own prof it and tries to meet services requirements of customers who act as buyers.Also,the service provider acts as the auctioneer who collects bids,decides allocation lists,and figures out final prices.In general,an auction can be describe as follows:

    · Bidding:According to his own valuation viof the services bundle,a bidder i places a bid bi.The valuation is the evaluation of the services bundle which the bidder i wants to bid,and this personal information can be private or public.Valuations for the same bundle may be varying with different bidders.

    · Allocation:After bid collection from all the bidders,the auctioneer has to decide the service allocation among the bidders.A bidder who will be given his required service is a winner.

    · Pricing:After winner determination or service allocation,the auctioneer has to figure out the price piwhich is the charge for each winner i.

    In this paper,the proposed combinatorial auction is a single-seller multiple-buyer auction model,and the seller also acts as the auctioneer.In this model,the buyers place bids for their required services bundles,and bidders can only obtain resources from a single seller.We define bias the users' bids.Assume that the service provider hasKdifferent types of services,denoted as S1,S2,··,SK.Each service SihasQlevels of services,denoted as SSi1,SSi2,··,SSiQ,which are classified by the privacy levels of people-centric data.In addition,the service provider has a type of service,S0,which is the network bandwidth.We assume that S0also hasQlevels of varying network bandwidth that users can choose to support their required services.Each type of service Sihas two basic attributes which are computing capability Ciand running memory size Mi.Privacy level,computing capacity and memory size are all important factors related to the service quality.For example,the automated detection of cancer cells is a people-centric service that is used in the field of medical diagnosis.The characteristics and regularities of cancer cells are obtained by deep learning.The lower the privacy level,the more accurate the results of the data analysis.As we all know,data analysis(e.g.,through deep learning)requires high computing capacity and large memory size.In this case,users should choose suitable services to satisfy their needs.Bidders must convey their requirements and valuations clearly,and how to express the bids will be detailed in Section 3.1.

    2.2 Utility functions and social welfare

    1)Utility functions:In our combinatorial auction model,each bidder is assumed to be selfinterested who chooses a bidding strategy carefully to maximize his own utility with the knowledge of auction mechanism(i.e.,service allocation and pricing schemes).Specially,the utility of bidderiis defined as follows:

    where uiis the utility of bidderi.The set U={u1,u2,··,ui}can be used to represent the utilities of all the bidders.

    2)Social welfare:To perform auction on a service bundle,a single-item auction can be performed repeatedly for each included item.However,due to possible substituted or complementary services,the value of the bundle may be different from the sum of individual services' values.Therefore,a combinatorial auction is a better choice that allows the bidders to bid for combinations or bundles of people-centric services.If a bidderiwins,he can receive the required service bundle that has a value vi.In a combinatorial auction,multiple winning bidders exist.The social welfare can be expressed as the sum of valuations of all the winners.Specifically,it could be represented as:

    whereVrepresents the social welfare.In our scheme,social efficiency can be achieved in combinatorial auction if all bidders place truthful bids.

    3 Services allocation as a combinatorial auction

    In this section,the above combinatorial auction model is used to perform service allocation.The bidding expressions of bidders,the WDP problem with its solution,and an incentive compatible pricing scheme are presented.

    3.1 Bidding expressions

    We consider the case that users convey their service demands in an explicit way in auctions for services allocation.Each user is assumed to be single-minded who submits a bid for only one bundle in each round.A useridemands particular services and needs related hardware support.In this case,the bid Biof userican be represented as:

    where viis the useri's valuation to his required bundle.is a vector that represents the useri's demand on the jt?type of service,which can be further expressed as follows:

    3.2 Problem formulation

    We consider the case that the service provider is self-interested who wishes to maximize her prof it,with the following assumptions.

    3.2.1 Assumption

    In real world,each type of service has no preference over users and it can be allocated to every user.

    However,these services are limited by the service provider's computing capacity and memory size.In the case of S0,it is limited by the provider's network bandwidth.

    3.2.2 Assumption

    Privacy level of each service is transparent.

    With these assumptions,the WDP for services allocation can be formulated as:

    where xiis a binary variable to represent whether useriis a winner.Mis the total memory of the service provider such as the cloud computing platforms.InC2,Crepresents the computing capacity of the service provider.In addition,Wis the maximum network bandwidth which the service provider can provide.The first constraint in the formulation(7)ensures that if the following users' requirements for services are beyond the total memory,they will be never allocated,unless in next auction round,because the auctions could run periodically.The second constraint ensures that the sum of the required computing capacity cannot exceed the total of computing capacityCof the service provider.The third and fourth constraints mean that the users' requirements of each type of services cannot be more than the maximum allocated memory and computing capacity for that service.The constraintC5ensures that all the network bandwidth required by all the users cannot exceedW.The constraintC6guarantees that a usericould only choose one service level SSjtfor each type of services Sj.The last two constraints represent whether the service or the bundle is allocated,where1represents that it is allocated and0vice versa.

    3.3 Solution of WDP

    The formulated problem is an NP-hard integer programming problem.With a sufficiently small problem scale or restricted allowable bid combinations,the optimal solution can be found by exhaustive search.However,considering the problem scale and the limited computation capability of the auctioneer in our case,a computationally efficient algorithm is needed to find approximate optimal solutions.Motivated by Sandholm[Sandholm(2000)],a greedy solution algorithm is proposed considering the “density” of bids.This greedy solution is shown in Algorithm 1:

    A buyeri's bid density can be defined as.The greedy algorithm first queues the users according to their bid density,and then allocates their required bundles starting from the user with the largest bid density until the resources are exhausted.In this way,the winners are determined in a greedy way.

    3.4 The VCG pricing scheme

    Having the winners,we need to determine the final prices.A proper pricing scheme should be incentive compatible with which that all bidders can bid truthfully.The VCG scheme[Gao,Li,Pan et al.(2016)]generalizes a second-price auction model for multiple items,and achieves the incentive compatibility.However,the maximization of the seller's revenue is not considered in the VCG scheme.The resulting revenue is far from the optimal one in some cases.

    To address this issue,we design a modified-VCG pricing scheme,where each resource has a minimum base price.If a userkis the one with the highest valuation when the winneriis not participated in the auction,the charged price for the useriis calculated as follows:

    4 Performance evaluation

    For numerical analysis,we consider users requesting 10 kinds of people-centric services from a service provider,and each type of service is divided into 10 service levels.The number of users varies from 100 to 350.For performance evaluations,we assume that the service provider is equipped with 1000GB memory,10000 MIPS computing capacity,and 1000Mbyte network bandwidth.The memory size and computing capacity for each type of service are randomly selected from[10,100]and[0,10],respectively,according to a uniform distribution.Similarly,the privacy level of each people-centric service is randomly set to a value from 0 to 1.The parameters,α1,α2,and α3,related to the function of service quality in Eq.(1)are set to 0.822,0.004,and 2.813,respectively.

    For numerical analysis,three aspects of the performance for resource allocation are considered:total utility,resource utilization(i.e.,the proportion of allocated services),and user satisfaction(i.e.,the percentage of users who get the requested services).Also,four algorithms are compared,which are the proposed scheme(termed as “APProx”),the proposed scheme with group buying discounts(termed as “Approx-GB”)which gives a discount price if the number of users is larger than a threshold,a fixed allocation scheme(termed as “Fixed”)which allocates resources based on an existing contract,and a random allocation scheme(termed as “Rand”)that allocates resources randomly.

    Fig.2 presents comparison of total utilities of these schemes.It can be seen that the proposed scheme and its group-buying-discounts version can achieve higher utilities than other algorithms.The “Fixed” scheme charges the winners with a market price.However,the priority and competitiveness of users are not considered in the fixed resource allocation resulting a lower utility value.The performance of the random allocation is not as good as the proposed ones due to the same reason.Comparison of average resource utilization of the four schemes is shown in Fig.3.The trends in the results are similar to those for the total utility.

    Figure 2:Total utility with varying number of users

    Figure 3:Resource utilization with varying number of users

    Comparison of user satisfaction for explicit resource requests is presented in Fig.4.It can be seen that the user satisfaction ratios of all the four schemes decrease as the number of users increases.Among them,the proposed scheme can achieve higher satisfactions ratios than other three schemes.The reason is that the proposed scheme can choose the best combination from different resource combinations to accommodate the individual users'varying needs.

    Figure 4:User satisfaction with varying number of users

    5 Conclusion

    In this paper,a combinatorial auction model has been used for efficient resource allocation to maximize social welfare in people-centric sensing.Specifically,a single-seller multiplebuyer auction model has been used,and a winner determination problem(WDP)has been formulated in view of different people-centric service requirements and priorities of users.To solve the formulated problem,a greedy algorithm has been proposed to determine the winners in this one-side auction.An incentive compatible pricing scheme has been designed considering the seller's revenue.Finally,simulations have been conducted to show the effectiveness of the proposed scheme.

    Acknowledgement:This work was partially supported by National Natural Science Foundation of China under Grant No.61801167 and Natural Science Foundation of Jiangsu Province of China under Grant No.BK20160874.

    丰满的人妻完整版| 中文字幕高清在线视频| 久久草成人影院| 色视频www国产| 午夜老司机福利剧场| а√天堂www在线а√下载| 国内毛片毛片毛片毛片毛片| 国产高清有码在线观看视频| 亚洲精品粉嫩美女一区| 国产一区二区亚洲精品在线观看| 欧美一区二区亚洲| 岛国在线免费视频观看| 久久久久国内视频| 韩国av在线不卡| 午夜福利成人在线免费观看| 国产精品伦人一区二区| 一级黄片播放器| 非洲黑人性xxxx精品又粗又长| 真人一进一出gif抽搐免费| 国产人妻一区二区三区在| 无人区码免费观看不卡| 午夜激情欧美在线| 国产精品伦人一区二区| 久久久久精品国产欧美久久久| 级片在线观看| 联通29元200g的流量卡| 看黄色毛片网站| 国产精品99久久久久久久久| h日本视频在线播放| 不卡一级毛片| 一级a爱片免费观看的视频| 日本 av在线| 久久久久久久午夜电影| 欧美日韩乱码在线| 91精品国产九色| 亚洲最大成人中文| av在线蜜桃| 91麻豆精品激情在线观看国产| 欧美区成人在线视频| 又粗又爽又猛毛片免费看| 久久久成人免费电影| 色综合色国产| 国产 一区精品| 国产精品免费一区二区三区在线| 国产伦人伦偷精品视频| 久久久色成人| 色av中文字幕| 内射极品少妇av片p| 国产精品1区2区在线观看.| 一区二区三区激情视频| 狂野欧美白嫩少妇大欣赏| 欧美色视频一区免费| 国产精品伦人一区二区| 日日摸夜夜添夜夜添小说| 国语自产精品视频在线第100页| 不卡一级毛片| av中文乱码字幕在线| 天天一区二区日本电影三级| 级片在线观看| 国产伦精品一区二区三区四那| 国内精品一区二区在线观看| 色哟哟哟哟哟哟| 久久精品国产自在天天线| 狂野欧美激情性xxxx在线观看| 亚洲最大成人手机在线| 亚洲久久久久久中文字幕| 日日摸夜夜添夜夜添av毛片 | 成人av一区二区三区在线看| 日韩欧美一区二区三区在线观看| 国产高清有码在线观看视频| 亚洲一区高清亚洲精品| 日日夜夜操网爽| 精品不卡国产一区二区三区| 亚洲真实伦在线观看| 国产成人福利小说| 午夜老司机福利剧场| 亚洲男人的天堂狠狠| 特级一级黄色大片| 国内少妇人妻偷人精品xxx网站| 日韩欧美一区二区三区在线观看| 欧美激情在线99| 成人鲁丝片一二三区免费| 黄色欧美视频在线观看| 亚洲av二区三区四区| 搡老岳熟女国产| АⅤ资源中文在线天堂| 岛国在线免费视频观看| 亚洲成a人片在线一区二区| 淫妇啪啪啪对白视频| 麻豆成人av在线观看| 色在线成人网| 3wmmmm亚洲av在线观看| 18禁在线播放成人免费| 午夜激情福利司机影院| 男女那种视频在线观看| 91在线观看av| 99久久久亚洲精品蜜臀av| 国产亚洲精品久久久久久毛片| 婷婷六月久久综合丁香| 男女之事视频高清在线观看| 国产高清有码在线观看视频| 午夜精品久久久久久毛片777| 国产在视频线在精品| 国产精品人妻久久久久久| 变态另类成人亚洲欧美熟女| 精品国产三级普通话版| 偷拍熟女少妇极品色| 99久久精品国产国产毛片| 亚洲精品乱码久久久v下载方式| 99久久成人亚洲精品观看| 啦啦啦韩国在线观看视频| 久久久久国产精品人妻aⅴ院| 99久久久亚洲精品蜜臀av| 搡女人真爽免费视频火全软件 | 99国产极品粉嫩在线观看| 一进一出好大好爽视频| 舔av片在线| 国产亚洲av嫩草精品影院| 成年女人毛片免费观看观看9| 99热这里只有是精品50| 国产乱人伦免费视频| 少妇人妻一区二区三区视频| 长腿黑丝高跟| 午夜老司机福利剧场| 久久久精品大字幕| 无遮挡黄片免费观看| 亚洲av熟女| 亚洲第一电影网av| 午夜免费成人在线视频| 夜夜爽天天搞| 成人一区二区视频在线观看| 亚洲成人精品中文字幕电影| 日本欧美国产在线视频| 国产免费男女视频| 色综合亚洲欧美另类图片| 一本一本综合久久| 久久久久久久久久成人| 深夜精品福利| 国产v大片淫在线免费观看| 一个人看的www免费观看视频| 美女高潮喷水抽搐中文字幕| 久久久国产成人精品二区| 欧美不卡视频在线免费观看| 十八禁网站免费在线| 亚洲国产色片| av在线亚洲专区| 精品国产三级普通话版| 1024手机看黄色片| 白带黄色成豆腐渣| 国国产精品蜜臀av免费| 免费看日本二区| 直男gayav资源| 久久香蕉精品热| 亚洲熟妇熟女久久| 欧美日韩亚洲国产一区二区在线观看| 亚洲中文字幕日韩| 亚洲精品国产成人久久av| 干丝袜人妻中文字幕| 免费无遮挡裸体视频| 88av欧美| 一卡2卡三卡四卡精品乱码亚洲| 在线观看免费视频日本深夜| 国国产精品蜜臀av免费| 国产在视频线在精品| 亚洲专区中文字幕在线| 91在线精品国自产拍蜜月| av黄色大香蕉| 精品久久久久久,| 一区二区三区免费毛片| netflix在线观看网站| 色噜噜av男人的天堂激情| 亚洲四区av| 免费人成在线观看视频色| 亚洲国产精品sss在线观看| 亚洲五月天丁香| 国产欧美日韩精品一区二区| 国产蜜桃级精品一区二区三区| 18禁裸乳无遮挡免费网站照片| 国产欧美日韩精品一区二区| 色综合亚洲欧美另类图片| 国产成人aa在线观看| 天天一区二区日本电影三级| 亚州av有码| 久久99热6这里只有精品| 黄色日韩在线| 国国产精品蜜臀av免费| 51国产日韩欧美| 午夜日韩欧美国产| 男人舔奶头视频| 色吧在线观看| 欧美zozozo另类| 可以在线观看的亚洲视频| av专区在线播放| 成人av一区二区三区在线看| 精品午夜福利在线看| 最新在线观看一区二区三区| 三级国产精品欧美在线观看| 免费搜索国产男女视频| 国产午夜精品论理片| 91麻豆精品激情在线观看国产| 韩国av在线不卡| 三级男女做爰猛烈吃奶摸视频| 有码 亚洲区| 欧美另类亚洲清纯唯美| 在线观看av片永久免费下载| 成人无遮挡网站| 亚洲中文日韩欧美视频| 久久中文看片网| 欧美色欧美亚洲另类二区| 一级黄色大片毛片| 亚洲七黄色美女视频| 亚洲在线观看片| 亚洲欧美日韩无卡精品| 99精品久久久久人妻精品| 少妇熟女aⅴ在线视频| 免费高清视频大片| 蜜桃久久精品国产亚洲av| 一进一出抽搐gif免费好疼| 国产高清有码在线观看视频| 人人妻人人看人人澡| 久久婷婷人人爽人人干人人爱| 日韩 亚洲 欧美在线| 看十八女毛片水多多多| 18禁在线播放成人免费| 99热这里只有是精品50| 久久99热这里只有精品18| 麻豆国产av国片精品| 免费人成在线观看视频色| 久久天躁狠狠躁夜夜2o2o| 男人和女人高潮做爰伦理| 欧美日韩亚洲国产一区二区在线观看| av在线亚洲专区| 午夜免费成人在线视频| 最近视频中文字幕2019在线8| 久久国内精品自在自线图片| 老师上课跳d突然被开到最大视频| 麻豆成人av在线观看| 日韩欧美三级三区| 国产淫片久久久久久久久| 欧美激情在线99| 嫩草影院新地址| 亚洲四区av| 欧美成人免费av一区二区三区| 午夜视频国产福利| 人妻夜夜爽99麻豆av| 美女黄网站色视频| a在线观看视频网站| 直男gayav资源| 欧美区成人在线视频| 一进一出好大好爽视频| 97热精品久久久久久| 校园春色视频在线观看| 亚洲经典国产精华液单| 69人妻影院| 亚洲av中文字字幕乱码综合| 国产亚洲91精品色在线| 内地一区二区视频在线| 成人三级黄色视频| 成人av在线播放网站| 色综合色国产| 91在线精品国自产拍蜜月| 麻豆一二三区av精品| 99久久中文字幕三级久久日本| 久久草成人影院| 中文字幕av成人在线电影| 久久久久九九精品影院| 黄色日韩在线| 免费搜索国产男女视频| 黄色配什么色好看| 少妇裸体淫交视频免费看高清| 久久久精品大字幕| 日韩欧美一区二区三区在线观看| 精品久久久久久成人av| 日韩中字成人| 国产v大片淫在线免费观看| 大型黄色视频在线免费观看| 简卡轻食公司| 免费av不卡在线播放| 十八禁网站免费在线| 可以在线观看的亚洲视频| av专区在线播放| 永久网站在线| 国产主播在线观看一区二区| 天天躁日日操中文字幕| 国产69精品久久久久777片| 天天一区二区日本电影三级| 99热网站在线观看| 午夜爱爱视频在线播放| 小蜜桃在线观看免费完整版高清| 国产精品综合久久久久久久免费| 天堂√8在线中文| 能在线免费观看的黄片| 精品久久久久久久人妻蜜臀av| 日日啪夜夜撸| 观看美女的网站| 色av中文字幕| 精品不卡国产一区二区三区| 黄片wwwwww| 最后的刺客免费高清国语| 啦啦啦啦在线视频资源| 日韩精品中文字幕看吧| 亚洲av.av天堂| 欧美色视频一区免费| 国产在线男女| 国产一区二区三区视频了| 日韩欧美国产一区二区入口| 99热只有精品国产| 久久久国产成人免费| 婷婷丁香在线五月| 日韩精品中文字幕看吧| 精品国产三级普通话版| www.www免费av| 亚洲第一电影网av| 国产免费一级a男人的天堂| 乱人视频在线观看| 欧美日本视频| 国产一区二区三区在线臀色熟女| 国产精品人妻久久久久久| 九色成人免费人妻av| 国产aⅴ精品一区二区三区波| 国产不卡一卡二| 成人二区视频| av在线观看视频网站免费| 最近最新免费中文字幕在线| 日日摸夜夜添夜夜添小说| 亚洲精品一区av在线观看| 国产精品,欧美在线| 亚洲精品色激情综合| 国产亚洲av嫩草精品影院| 成人美女网站在线观看视频| 12—13女人毛片做爰片一| 国产成年人精品一区二区| 观看美女的网站| 中文字幕免费在线视频6| 国产熟女欧美一区二区| 免费电影在线观看免费观看| 免费大片18禁| 久久99热6这里只有精品| 天天一区二区日本电影三级| 少妇丰满av| 久久久久久久久久黄片| 午夜免费激情av| 国产精品野战在线观看| 欧美又色又爽又黄视频| 91久久精品国产一区二区成人| 精品久久久久久成人av| 熟女电影av网| 亚洲av第一区精品v没综合| 人人妻人人看人人澡| 国产一区二区亚洲精品在线观看| 小蜜桃在线观看免费完整版高清| 亚洲av免费在线观看| 国产单亲对白刺激| 国产熟女欧美一区二区| 免费av毛片视频| 午夜福利在线观看吧| 亚洲欧美精品综合久久99| 久久久久久久久久成人| 日韩欧美国产一区二区入口| a级毛片a级免费在线| 午夜激情福利司机影院| 日韩在线高清观看一区二区三区 | 久久精品国产亚洲av香蕉五月| 成人av在线播放网站| 国产毛片a区久久久久| 国产高清视频在线观看网站| 久久久国产成人精品二区| 欧美三级亚洲精品| 国内毛片毛片毛片毛片毛片| 亚洲在线观看片| 欧美日韩精品成人综合77777| 国产真实乱freesex| 国产毛片a区久久久久| 国产精品日韩av在线免费观看| 欧美国产日韩亚洲一区| 人人妻,人人澡人人爽秒播| 一边摸一边抽搐一进一小说| 国产亚洲精品av在线| 五月玫瑰六月丁香| 蜜桃久久精品国产亚洲av| 99国产极品粉嫩在线观看| 亚洲最大成人手机在线| 国产精品一区二区三区四区免费观看 | 永久网站在线| 99精品久久久久人妻精品| 国产爱豆传媒在线观看| 亚洲人与动物交配视频| 亚洲精品一区av在线观看| 午夜激情欧美在线| 亚洲第一区二区三区不卡| 最近中文字幕高清免费大全6 | 日韩在线高清观看一区二区三区 | 国产成年人精品一区二区| 午夜免费激情av| 亚洲精华国产精华液的使用体验 | 精品无人区乱码1区二区| 国产伦在线观看视频一区| 精品乱码久久久久久99久播| 最新在线观看一区二区三区| 不卡一级毛片| 免费搜索国产男女视频| 国产精品人妻久久久久久| 亚洲一级一片aⅴ在线观看| 成人亚洲精品av一区二区| 人人妻,人人澡人人爽秒播| 亚洲四区av| 99久久九九国产精品国产免费| 亚洲av日韩精品久久久久久密| 色尼玛亚洲综合影院| 日韩中文字幕欧美一区二区| 久久久久久久久久黄片| 最近在线观看免费完整版| 国产成人一区二区在线| 欧美黑人欧美精品刺激| 麻豆精品久久久久久蜜桃| 国产精品久久久久久久电影| 深爱激情五月婷婷| 亚洲在线自拍视频| 国产主播在线观看一区二区| 国产视频内射| 免费在线观看影片大全网站| 成人无遮挡网站| 白带黄色成豆腐渣| 我要看日韩黄色一级片| 大又大粗又爽又黄少妇毛片口| 日韩欧美一区二区三区在线观看| 国内精品久久久久久久电影| 一级黄色大片毛片| 久久久久久国产a免费观看| 桃色一区二区三区在线观看| 91狼人影院| 久久亚洲精品不卡| 天美传媒精品一区二区| 国产一区二区在线av高清观看| 非洲黑人性xxxx精品又粗又长| av天堂中文字幕网| 中文亚洲av片在线观看爽| 天美传媒精品一区二区| 免费一级毛片在线播放高清视频| 我的女老师完整版在线观看| 偷拍熟女少妇极品色| 国产亚洲精品久久久com| 国产探花极品一区二区| 波多野结衣高清作品| 尤物成人国产欧美一区二区三区| 国内揄拍国产精品人妻在线| 久久草成人影院| 悠悠久久av| 黄色视频,在线免费观看| 国产综合懂色| 国产不卡一卡二| 亚洲男人的天堂狠狠| 精品久久久久久,| 一个人免费在线观看电影| 欧美一区二区亚洲| 91狼人影院| 亚洲三级黄色毛片| 久久久久久久久久久丰满 | 美女cb高潮喷水在线观看| 色精品久久人妻99蜜桃| 午夜老司机福利剧场| 麻豆国产av国片精品| 久久久国产成人免费| 99热6这里只有精品| 美女cb高潮喷水在线观看| 国产成人aa在线观看| 99热这里只有是精品在线观看| 又爽又黄无遮挡网站| 亚洲美女搞黄在线观看 | 在线观看美女被高潮喷水网站| 精品欧美国产一区二区三| 亚洲国产精品久久男人天堂| 国产在线男女| 91久久精品电影网| 国产精品免费一区二区三区在线| 一个人观看的视频www高清免费观看| 免费看av在线观看网站| 免费av观看视频| 日韩人妻高清精品专区| 少妇猛男粗大的猛烈进出视频 | 麻豆成人av在线观看| 88av欧美| 麻豆国产av国片精品| 中文字幕av在线有码专区| 精品久久久久久久久亚洲 | 国产午夜精品论理片| 亚洲成人精品中文字幕电影| 免费看美女性在线毛片视频| 麻豆av噜噜一区二区三区| 欧美日本视频| 2021天堂中文幕一二区在线观| 最近视频中文字幕2019在线8| 非洲黑人性xxxx精品又粗又长| 成人一区二区视频在线观看| 91久久精品电影网| 成人特级av手机在线观看| 热99re8久久精品国产| 亚洲精华国产精华液的使用体验 | 黄色视频,在线免费观看| 国产日本99.免费观看| 在线观看舔阴道视频| 精品久久久久久久久av| 观看免费一级毛片| 搡老岳熟女国产| 国产精品嫩草影院av在线观看 | 亚洲国产高清在线一区二区三| 天堂√8在线中文| 麻豆精品久久久久久蜜桃| 成人国产综合亚洲| 国产一区二区激情短视频| 校园春色视频在线观看| 日韩人妻高清精品专区| 极品教师在线免费播放| 亚洲av不卡在线观看| .国产精品久久| 国产精品久久久久久精品电影| 久久久久九九精品影院| 久久久精品大字幕| 精品人妻偷拍中文字幕| 国产精品自产拍在线观看55亚洲| 国产视频内射| 精品乱码久久久久久99久播| 特大巨黑吊av在线直播| 91久久精品电影网| 亚洲av一区综合| 欧洲精品卡2卡3卡4卡5卡区| 国产熟女欧美一区二区| 欧美精品国产亚洲| 精品无人区乱码1区二区| 一个人看视频在线观看www免费| 国产免费av片在线观看野外av| 午夜精品在线福利| 国产亚洲精品av在线| 草草在线视频免费看| 国产亚洲av嫩草精品影院| 国产在线男女| 日本 av在线| 在线免费十八禁| 欧美日韩国产亚洲二区| 搡女人真爽免费视频火全软件 | 日韩一本色道免费dvd| 成人午夜高清在线视频| 又黄又爽又刺激的免费视频.| 亚洲av中文av极速乱 | 中文字幕久久专区| 欧美日本亚洲视频在线播放| 在线观看午夜福利视频| 日韩欧美在线乱码| 亚洲综合色惰| 国产日本99.免费观看| 又紧又爽又黄一区二区| or卡值多少钱| 级片在线观看| 人人妻,人人澡人人爽秒播| 久久亚洲真实| 天堂av国产一区二区熟女人妻| 日韩中字成人| 真人一进一出gif抽搐免费| 老司机深夜福利视频在线观看| 国产精品一及| 99热这里只有是精品在线观看| 欧美日韩综合久久久久久 | 毛片一级片免费看久久久久 | 亚洲国产日韩欧美精品在线观看| 精品国产三级普通话版| 国产精品美女特级片免费视频播放器| 欧美激情久久久久久爽电影| 久久人人爽人人爽人人片va| 人妻久久中文字幕网| 久久热精品热| 亚洲五月天丁香| netflix在线观看网站| 亚洲av.av天堂| 美女高潮的动态| 国产极品精品免费视频能看的| 一级毛片久久久久久久久女| 淫妇啪啪啪对白视频| 亚洲精品成人久久久久久| 麻豆国产av国片精品| 精品福利观看| 亚洲性夜色夜夜综合| 久久国产精品人妻蜜桃| 97人妻精品一区二区三区麻豆| 久久久国产成人免费| 在线观看66精品国产| 日韩欧美免费精品| 美女被艹到高潮喷水动态| 国产免费av片在线观看野外av| 成年免费大片在线观看| 午夜福利高清视频| 一边摸一边抽搐一进一小说| 亚洲无线观看免费| 波多野结衣高清作品| 日本三级黄在线观看| 午夜影院日韩av| 成人性生交大片免费视频hd| 变态另类成人亚洲欧美熟女| 欧美日韩乱码在线| 亚洲中文日韩欧美视频| 波多野结衣高清作品| 国产在视频线在精品| www日本黄色视频网| 亚洲人成伊人成综合网2020| 亚洲第一区二区三区不卡| 丝袜美腿在线中文| av在线亚洲专区| 有码 亚洲区| 日本一本二区三区精品| 久久久成人免费电影| 国产v大片淫在线免费观看| 波多野结衣高清无吗| 国产真实乱freesex| 国内精品美女久久久久久| 97热精品久久久久久| 亚洲色图av天堂|