• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modeling and Predicting of News Popularity in Social Media Sources

    2019-11-07 03:12:10KemalAkyolandBahaen
    Computers Materials&Continua 2019年10期

    Kemal Akyol and Baha ?en

    Abstract:The popularity of news,which conveys newsworthy events which occur during day to people,is substantially important for the spectator or audience.People interact with news website and share news links or their opinions.This study uses supervised learning based machine learning techniques in order to predict news popularity in social media sources.These techniques consist of basically two phrases:a)the training data is sent as input to the classifier algorithm,b)the performance of prelearned algorithm is tested on the testing data.And so,a knowledge discovery from the data is performed.In this context,firstly,twelve datasets from a set of data are obtained within the frame of four categories:Economic,Microsoft,Obama and Palestine.Second,news popularity prediction in social network services is carried out by utilizing Gradient Boosted Trees,Multi-Layer Perceptron and Random Forest learning algorithms.The prediction performances of all algorithms are examined by considering Mean Absolute Error,Root Mean Squared Error and the R-squared evaluation metrics.The results show that most of the models designed by using these algorithms are proved to be applicable for this subject.Consequently,a comprehensive study for the news prediction is presented,using different techniques,drawing conclusions about the performances of algorithms in this study.

    Keywords:News popularity,sentiment scores,social network services,Gradient Boosted Machines,Multi-Layer Perceptron,Random Forest.

    1 Introduction

    News conveys newsworthy events occurring in the course of day to people.News popularity is substantially important so as to predict the spectator or audience for a particular news or journal in modern mining problems[Alswiti and Rodan(2017)].It is measured through people's interaction with news website.They share links of news or their opinions[Lerman and Ghosh(2010)].Further,social sharing websites and news websites are used in order to read the various news.Online news popularity examines diverse factors such as sharing count,commenting count and liking count etc.on social media.Online examination of news content,which is a large and still growing market for traditional printed media,has undergone major changes[Canneyt,Leroux,Dhoedt et al.(2018)].

    Spread of news to large number of readers within a short period is very important for its popularity.Therefore,there exists a competition among different sources to produce content for a major subset of the population[Bandari,Asur and Huberman(2012)].Since user behaviors in social media are a reflection of event in the real world,researchers have discovered that they can use it to predict social media and for predictions about the future.Social media data provides an advantage of information acquisition which may be difficult to collect from relatively large acquisitions,large quantities and other sources of data.That is,news popularity can be measured by means of it[Lawrence,Chase,Kyle et al.(2017)].Evaluation of this subject is relatively novel for researchers.

    Some of the studies addressed for this subject are as follows:Alswiti and Rodan examined the effectiveness of feature selection on popularity prediction,by using different features,classification models and attribute ranking models.According to their studies,Random Forest classifier accomplished the best accuracy for all features.J48 and AdaBoost classifiers showed variant sensitivities depending on feature selection[Alswiti and Rodan(2017)].Canneyt et al.presented a model to predict online news popularity.By analyzing the capture view patterns of online news,they introduced suitable models via well-chosen based functions.By means of actual news dataset,they showed that the combination of the content,meta-data,and the temporal behavior features lead to significantly improved predictions.Gradient Tree Boosting algorithm proves to be more successful for news popularity predicting in their studies[Canneyt,Leroux,Dhoedt et al.(2018)].Bandari et al.[Bandari,Asur,Huberman et al.(2012)]built a multi-dimensional feature space derived from attributes of articles and evaluated the effect of these features for online article popularity.By using both regression and classification algorithms,they obtained an overall 84% accuracy on Twitter despite randomness in human behavior.Fletcher and Park explored the influence of individual trust on sharing preferences and online news engagement behaviors in news media across eleven countries[Fletcher and Park(2017)].Anil and Indiramma discussed the importance of recommendation systems,which is useful to find interesting items,different methodologies and social factors[Anil and Indiramma(2015)].Kywe et al.aimed to analyze the massive information and the huge number of people interacted through Twitter system by utilizing taxonomy[Kywe,Lim and Zhu 2012)].Keneshloo et al.dealt with the subject popularity,and built models using metadata,content,temporal,and social features.The study was applied to a real data at the Washington Post[Keneshloo,Wang,Han et al.(2016)].Uddin et al.focused on online news popularity prediction based on sharing the news before publication by using the Gradient Boosting Machine algorithm[Uddin,Patwary,Ahsan et al.(2016)].Lee et al.[Lee,Moon and Salamatian(2012)]proposed a framework for modelling and predicting the online contents popularity based on survival analysis.The framework infers the likelihood for which the content will be popular.A model was introduced by using a lifetime of content and the comment count popular metrics with a set of explanatory factors.Kümpel et al.reviewed the scientific,peer-reviewed 461 articles quantitatively and qualitatively.The articles dealt with the relationship between news sharing and social medias from the year 2004 to 2014[Kümpel,Karnowski and Keyling(2015)].Tatar et al.introduced a valuable study based on user comments.They analyzed the ranking effectiveness of the prediction models online news ranking automatically[Tatar,Antoniadis,Amorim et al.(2014)].Fernandes et al.[Fernandes,Vinagre and Cortez(2015)]introduced a proactive intelligent decision support system in order to detect earlier popularity of news information.Random Forest classifier gave the 73% best accuracy on the 39,000 articles which were taken from the Mashable website.Wu and Shen identified the properties of news propagation by tracing the data on Twitter.They implemented a news popularity prediction model that can predict the final number of retweets of a news tweet very quickly by utilizing these characteristics[Wu and Shen(2015)].Liu and Zhang[Liu and Zhang(2017)]explored that the grammatical construction of titles may affect news popularity positively.They calculated a score of traditional category and author features using logarithmic conversion,and presented a novel methodology in order to predict online news popularity before publication.As it can be seen in these studies,diversified features as input data are used for regression or classification approaches.This study handles out sentiment scores(title and headline),and the number of views in 2 days by interval 20 minutes of news,and presents the news popularity prediction models in social media sources by utilizing the Gradient Boosted Machines(GBM),Multi-Layer Perceptron(MLP)and Random Forest(RF)machine learning algorithms.These algorithms are used in many research areas like medicine,social media and other daily life areas.

    The main focus of this study is to carry out the modeling and predicting of news popularity in social media sources.In this context,this study consists of two modules.The first one is to apply the data pre-processing techniques on all datasets.The second one is to demonstrate the performance of boosting,neural networks and ensemble learning based machine learning algorithms.In this context,machine learning algorithms are implemented on the datasets and their performances are discussed in our study.

    The rest of the paper is organized as follows.Section 2 presents the materials and methods.Section 3 gives experimental study and results.Finally,the paper ends with conclusions in Section 4.

    2 Material and methods

    2.1 Data

    A set of the data consists of news items and their respective social feedback on multiple platforms:Facebook,Google+and Linkedln.This set is collected from public end-points of the social media sources that are already anonymized and aggregated by the data owners.News data file concerns the description of news items and consists of 93239 instances and each news item is described by 11 attributes,which are explained in Tab.1.The data descriptors are based on information obtained by querying the official media sources Google News and Yahoo News[Moniz and Tongo(2018)].

    A set of data files so called Feedbacks is concerned with the evolution of news items'popularity in the social media sources,Facebook,Google+and LinkedIn.News was collected during a two-year period,from January 7,2013 to January 7 2015,for each of the four categories,Economy,Microsoft,Obama and Palestine.News popularity is measured as the number of views 2 days by interval 20 minutes upon publication simultaneously.This set is composed of 12 data files,for all combinations of these categories and social media sources.

    Table 1:Descriptions of attributes in news data file

    The dataset,which includes enormous data,is a pre-processed and re-structured by discarding the instances which include N/A(null)value(s)from datasets.After preprocessing steps,the number of news in these categories is presented in Tab.2.

    Table 2:The number of instances in social media sources

    2.2 Methods

    In this study,modeling and prediction of news popularity in social media sources is performed by using GBM,MLP and RF which are among the popular evolutionary algorithms and experimental results were compared.

    Briefly,GBM conducts new models in repeatedly during learning to better predict the target variable.The goal is to create new basic learning models that will have maximum correlation with the negative gradient of the loss function associated with the whole ensemble[Friedman(2001)].

    Then she took her little oil-lamp, and went into her little room, drew off her fur cloak, and washed off the soot from her face and hands, so that her beauty shone forth9, and it was as if one sunbeam after another were coming out of a black cloud

    The back-propagated MLP is feed-forward networks updating the weights based on differences between the predicted and actual values for the target variable.The main idea is to minimize the mean square error between the actual and predicted values iteratively[Alpaydin(2010)].

    The RF introduced by Breiman is an ensemble learning algorithm created by random decision trees.The main difference of this algorithm from the decision tree is that the RF investigates the best attribute during the division of node while Decision tree investigates the best feature among the random subsets.Therefore,this algorithm gives better results considering better modeling[Breiman(2001)].Internal parameters of algorithms and their values were assigned as given in Tab.3.

    Table 3:Internal parameters for algorithms

    3 Experiments and results

    The proposed study consists of two main modules:data processing and machine learning.The first module carries out the prepared steps mentioned Pseudo Code 1 for machine learning module.In addition to the original data retrieved from the social media sources,the pre-processed dataset consists of the sentiment scores information of both the title and headline of the news items.Therefore,the pre-processed datasets are described by 147 attributes(2 sentiment values,title and headline,144 measurements and outcome variable,the new items' popularity).Flowchart of the proposed study is introduced in Fig.1.

    Figure 1:The flow chart of the study

    The information of attributes for these datasets is presented in Tab.4.All data collection and processing procedures mentioned in these steps are implemented in Python 2.7 on Anaconda platform.

    Table 4:The information of attributes for these datasets

    The second module,news popularity prediction,receives the processed data and splits it into training and test sets in order to evaluate the performance of prediction models,GBM,MLP and RF.This module steps mentioned Pseudo Code 2 are executed on ‘Knime'platform by integrated Python programming imported from the ‘protobuf' library.Python codes could run in a node on this platform.The ‘numpy' and ‘pandas' libraries are benefited during the build-up of both modules for practicing of the enormous data.

    In our study,the performances of the models are evaluated using measures such as Mean Absolute Error(MAE),Root Mean Squared Error(RMSE)and the R-squared coefficient(R2)to consider how well they are for predictions that match the actual results.These metrics are given by the following equations respectively.

    MAE and RMSE metrics are based on statistical summaries of ei(i=1,2,...,n).ei=Pi-Oiis described as individual model prediction error usually.n is the number of data instances,Piand Oiare the predicted and observed values respectively[Willmott and Matsuura(2005)].

    where y is the observed response variable,its mean andthe corresponding predicted values.R2coefficient measures the degree of variation in the target variable.This coefficient is a value between 0 and 1,where 1 equates to a perfect fit of the model[Alexander,Tropsha and Winkler(2015)].

    This study focuses on the analysis for the attributes of news data in social media sources and evaluates the performances of RF,GBM and MLP algorithms for news popularity prediction.%70 of data is used as a training set randomly,and remain is considered as the test set.Therefore,firstly the models are trained using the training sets and then tested on the test sets.R2,MAE and RMSE measures are used so as to evaluate the performances of the models in all experiments.Tabs.5-8 compares the performance of the models obtained according to Pseudo Code 2 algorithm on the datasets.This module also indicates that sentiment scores of news,and final value of the news items' popularity highly are influential in order to predict news popularity.Sentiment score also known as opinion mining is a field of text mining which examines people' opinions,judgments and ideas about entities[Liu and Zhang(2012)].Theqdap Rpackage[Rinker(2013)]is used in order to obtain this score.

    Tab.5 shows the performances of the models on social media sources for Economy dataset.As shown in this table;

    a)All algorithms have satisfactory performance on Facebook source for Economy dataset.Further,MAE measures are same for all models.The maximum R2and minimum RMSE measures are obtained with MLP based model on this source.

    b)All algorithms have satisfactory performance on Google+source for Economy dataset.Further,MAE measures are same for all models.The maximum R2and minimum RMSE measures are obtained with RF based model on this source.

    c)All algorithms have satisfactory performance on Linkedln source for Economy dataset.Further,MAE measure is same for all models.The maximum R2and minimum RMSE measures are obtained with RF based model on this source.

    Table 5:The performances of the models for Economy dataset

    Table 6:The performances of the models for Microsoft dataset

    Tab.6 shows the performances of the models on social media sources for Microsoft dataset.As shown in this table;

    a)All algorithms have satisfactory performance on Facebook source for Microsoft dataset.Further,MAE measures are same for all models.The maximum R2and minimum RMSE measures are obtained with RF based model on this source.

    b)All algorithms have satisfactory performance on Google+source for Microsoft dataset.Further,MAE measures are same for all models.The maximum R2and minimum RMSE measures are obtained with MLP based model on this source.

    c)All algorithms have satisfactory performance on Linkedln source for Microsoft dataset.Further,MAE measure is same for all models.The maximum R2and minimum RMSE measures are obtained with MLP based model on this source.

    Tab.7 shows the performances of the models on social media sources for Obama dataset.As shown in this table;all algorithms have satisfactory performance on Facebook,Google+and Linkedln sources for Obama dataset.Further,MAE measures are same for all models.The maximum R2and minimum RMSE measures are obtained with RF based model on for all sources.

    Table 7:The performances of the models for Obama dataset

    Table 8:The performances of the models for Palestine dataset

    Tab.8 shows the performances of the models on social media sources for Palestine dataset.As shown in this table;

    a)All algorithms have satisfactory performance on Facebook source for Palestine dataset.Further,MAE measures are same for all models.The maximum R2and minimum RMSE measures are obtained with MLP based model on this source.

    b)All algorithms have satisfactory performance on Google+source for Palestine dataset.Further,MAE measures are same for all models.The maximum R2and minimum RMSE measures are obtained with RF based model on this source.

    c)All algorithms have satisfactory performance on Linkedln source for Palestine dataset.Further,MAE measure is same for all models.The maximum R2and minimum RMSE measures are obtained with MLP based model on this source.

    Since the datasets used in this study were newly released in February 2018,there is no published study that uses these datasets.But the studies were performed on other datasets based on machine learning because this subject is popular.For this reason,sample studies on the use of machine learning for different datasets are presented in Tab.9.

    Table 9:Sample of studies performed on different datasets

    4 Conclusion

    News conveys newsworthy events which occur during day to people.News popularity is measured through people's interaction with news website or social media platforms.They cast in their opinions or news links.The scientists use the social media data since it is the reflection of user behaviors in the real world.This study uses a set of the data consisting of news items and their popularity in the social media sources:Facebook,Google+and LinkedIn.It is composed of 12 data files,for all combinations of the Economy,Microsoft,Obama and Palestine categories,and the social media sources.The study consists of two phrases which are the preparation of the data and the design of prediction models.The pre-processed datasets are described by 147 attributes(2 sentiment values,title and headline,144 measurements of popularity in 20-minute intervals for a total of 2 days and outcome variable,the new items' popularity).The prediction models designed by utilizing GBM,MLP and RF learning algorithms are introduced for twelve datasets and empirical tests are performed.The success of most models for each dataset is approximately same.Further,this study will provide a beneficial reference for news popularity prediction.

    Acknowledgement:The authors would like to thank the Fernandes et al.[Fernandes,Vinagre and Cortez(2015)]for providing the datasets.

    97超视频在线观看视频| 桃红色精品国产亚洲av| 香蕉丝袜av| 97人妻精品一区二区三区麻豆| 动漫黄色视频在线观看| 91久久精品国产一区二区成人 | 国产伦精品一区二区三区视频9 | ponron亚洲| 91久久精品国产一区二区成人 | 波多野结衣高清无吗| 一级作爱视频免费观看| 国产免费av片在线观看野外av| 女人高潮潮喷娇喘18禁视频| 91字幕亚洲| 亚洲中文字幕一区二区三区有码在线看 | 黄片小视频在线播放| 99久久精品热视频| 午夜福利18| 亚洲精品在线美女| 99国产精品一区二区三区| 老司机午夜福利在线观看视频| 熟女电影av网| 亚洲精品粉嫩美女一区| 亚洲精品一区av在线观看| 成年女人看的毛片在线观看| 国产精品自产拍在线观看55亚洲| 午夜日韩欧美国产| 欧美成人一区二区免费高清观看 | 国产日本99.免费观看| 国产高清视频在线观看网站| 午夜福利免费观看在线| 99国产极品粉嫩在线观看| 国内揄拍国产精品人妻在线| or卡值多少钱| 麻豆av在线久日| 日韩有码中文字幕| 90打野战视频偷拍视频| 国产精品久久视频播放| 国产69精品久久久久777片 | 国产精品1区2区在线观看.| 欧美不卡视频在线免费观看| 精品人妻1区二区| 久久99热这里只有精品18| 国产精品九九99| 男女之事视频高清在线观看| 成人性生交大片免费视频hd| 国产成人精品无人区| 999精品在线视频| 999久久久精品免费观看国产| 亚洲av五月六月丁香网| 97碰自拍视频| 国产91精品成人一区二区三区| 免费一级毛片在线播放高清视频| 老司机深夜福利视频在线观看| 亚洲精品粉嫩美女一区| 日韩欧美一区二区三区在线观看| 淫妇啪啪啪对白视频| 国产主播在线观看一区二区| 麻豆成人av在线观看| 欧美一区二区精品小视频在线| 日本与韩国留学比较| 日韩 欧美 亚洲 中文字幕| 成人无遮挡网站| 嫁个100分男人电影在线观看| 成年女人毛片免费观看观看9| 欧美成人性av电影在线观看| 亚洲专区国产一区二区| 我的老师免费观看完整版| 不卡一级毛片| 18禁观看日本| 美女高潮喷水抽搐中文字幕| 久久这里只有精品中国| 观看美女的网站| 国产伦人伦偷精品视频| av黄色大香蕉| 精品久久久久久,| 国产精品99久久99久久久不卡| 少妇的逼水好多| 成年人黄色毛片网站| 黄片小视频在线播放| 国产69精品久久久久777片 | 国产一区二区在线观看日韩 | 日本五十路高清| 亚洲自偷自拍图片 自拍| 校园春色视频在线观看| 国产69精品久久久久777片 | av中文乱码字幕在线| 国产亚洲精品av在线| 亚洲欧美精品综合一区二区三区| 国内少妇人妻偷人精品xxx网站 | 国产成人一区二区三区免费视频网站| 国产成人av教育| 久久久久九九精品影院| 男女那种视频在线观看| cao死你这个sao货| 亚洲国产精品sss在线观看| 亚洲欧美日韩无卡精品| 久久久精品大字幕| 午夜久久久久精精品| 成人三级做爰电影| 成人一区二区视频在线观看| 在线十欧美十亚洲十日本专区| 不卡一级毛片| 美女午夜性视频免费| 在线观看66精品国产| 俄罗斯特黄特色一大片| 午夜日韩欧美国产| 最好的美女福利视频网| 国产伦一二天堂av在线观看| 国产成人av激情在线播放| 一边摸一边抽搐一进一小说| 国产精品久久久久久精品电影| 亚洲精品美女久久久久99蜜臀| 日日干狠狠操夜夜爽| 欧美乱妇无乱码| 蜜桃久久精品国产亚洲av| 亚洲在线观看片| 欧美另类亚洲清纯唯美| 国产激情偷乱视频一区二区| 黄色日韩在线| 99热只有精品国产| 狠狠狠狠99中文字幕| 欧美色视频一区免费| 日本在线视频免费播放| 国产精品99久久99久久久不卡| av国产免费在线观看| 亚洲精品粉嫩美女一区| 十八禁人妻一区二区| 欧美日韩亚洲国产一区二区在线观看| h日本视频在线播放| 久久婷婷人人爽人人干人人爱| a级毛片在线看网站| 99久久成人亚洲精品观看| 亚洲成av人片在线播放无| 蜜桃久久精品国产亚洲av| 夜夜爽天天搞| 男女午夜视频在线观看| 国产亚洲精品一区二区www| 久久精品国产亚洲av香蕉五月| 色综合亚洲欧美另类图片| 黄色女人牲交| 在线永久观看黄色视频| 美女黄网站色视频| 女生性感内裤真人,穿戴方法视频| 午夜福利高清视频| 精品福利观看| 成人亚洲精品av一区二区| 婷婷精品国产亚洲av在线| 99热6这里只有精品| 国产主播在线观看一区二区| 久久精品亚洲精品国产色婷小说| 国产单亲对白刺激| 最近视频中文字幕2019在线8| 黄色 视频免费看| 亚洲人成伊人成综合网2020| 露出奶头的视频| 欧美日韩国产亚洲二区| 国产97色在线日韩免费| 制服丝袜大香蕉在线| 亚洲国产高清在线一区二区三| 最近在线观看免费完整版| 无限看片的www在线观看| 亚洲aⅴ乱码一区二区在线播放| 欧美一区二区国产精品久久精品| 在线永久观看黄色视频| 国产精品久久久久久精品电影| 色综合亚洲欧美另类图片| 18禁美女被吸乳视频| 午夜成年电影在线免费观看| 黄色成人免费大全| 岛国视频午夜一区免费看| 亚洲精品久久国产高清桃花| 久久久精品大字幕| 久久香蕉精品热| 啦啦啦免费观看视频1| av国产免费在线观看| 欧美性猛交黑人性爽| 桃红色精品国产亚洲av| av片东京热男人的天堂| 色老头精品视频在线观看| ponron亚洲| 丰满的人妻完整版| 欧美黄色片欧美黄色片| 日本撒尿小便嘘嘘汇集6| 真实男女啪啪啪动态图| 美女cb高潮喷水在线观看 | 午夜日韩欧美国产| 最新中文字幕久久久久 | 香蕉久久夜色| 日韩大尺度精品在线看网址| 国内精品久久久久久久电影| 免费观看的影片在线观看| 男女视频在线观看网站免费| 国产麻豆成人av免费视频| 国产成人精品久久二区二区免费| 2021天堂中文幕一二区在线观| 亚洲欧美精品综合一区二区三区| 日韩成人在线观看一区二区三区| 久久久久久久精品吃奶| 啦啦啦观看免费观看视频高清| 1000部很黄的大片| 美女黄网站色视频| 非洲黑人性xxxx精品又粗又长| 看黄色毛片网站| 成人国产一区最新在线观看| 欧美zozozo另类| 亚洲欧美日韩高清专用| 99精品在免费线老司机午夜| 最好的美女福利视频网| 久久精品91无色码中文字幕| 国产成人啪精品午夜网站| 这个男人来自地球电影免费观看| 在线a可以看的网站| 国产又黄又爽又无遮挡在线| 国内少妇人妻偷人精品xxx网站 | 国语自产精品视频在线第100页| 亚洲精品在线美女| 无遮挡黄片免费观看| 国产蜜桃级精品一区二区三区| 国产真实乱freesex| 精品久久久久久久久久免费视频| 国产乱人视频| 亚洲精品国产精品久久久不卡| 亚洲成av人片免费观看| 久久人妻av系列| 亚洲成人免费电影在线观看| a级毛片a级免费在线| 成熟少妇高潮喷水视频| 三级男女做爰猛烈吃奶摸视频| 久久精品国产亚洲av香蕉五月| 国产高清有码在线观看视频| 最新美女视频免费是黄的| 日本成人三级电影网站| 国产三级黄色录像| 精品一区二区三区四区五区乱码| 国产精品99久久99久久久不卡| 亚洲av美国av| 老司机午夜福利在线观看视频| 三级男女做爰猛烈吃奶摸视频| 老汉色av国产亚洲站长工具| 99久久国产精品久久久| 黄色日韩在线| 99在线人妻在线中文字幕| 精品一区二区三区四区五区乱码| 亚洲专区国产一区二区| 国产亚洲欧美在线一区二区| 精品久久蜜臀av无| 在线观看舔阴道视频| 小蜜桃在线观看免费完整版高清| 国产不卡一卡二| 又大又爽又粗| 韩国av一区二区三区四区| 欧美av亚洲av综合av国产av| 1024手机看黄色片| 少妇的逼水好多| 日本黄大片高清| 成在线人永久免费视频| 精品一区二区三区四区五区乱码| 精品福利观看| 琪琪午夜伦伦电影理论片6080| 国产单亲对白刺激| 岛国在线观看网站| 床上黄色一级片| 国产av一区在线观看免费| 日韩欧美 国产精品| 国产精品自产拍在线观看55亚洲| 久久久久国产一级毛片高清牌| 精品不卡国产一区二区三区| 欧美性猛交黑人性爽| 成人鲁丝片一二三区免费| 欧美日韩黄片免| 亚洲精品粉嫩美女一区| 91麻豆av在线| 麻豆久久精品国产亚洲av| 亚洲av电影在线进入| 欧美中文日本在线观看视频| 精品福利观看| 国产高清视频在线观看网站| 亚洲人成电影免费在线| 日韩有码中文字幕| 日韩欧美免费精品| 国内久久婷婷六月综合欲色啪| 亚洲欧美精品综合一区二区三区| 色综合站精品国产| 亚洲男人的天堂狠狠| 亚洲成人中文字幕在线播放| 亚洲av电影在线进入| 极品教师在线免费播放| 最近最新中文字幕大全免费视频| 中文资源天堂在线| 啪啪无遮挡十八禁网站| 国产一级毛片七仙女欲春2| 蜜桃久久精品国产亚洲av| 久久香蕉国产精品| 黄色 视频免费看| 黑人巨大精品欧美一区二区mp4| 亚洲欧美精品综合一区二区三区| tocl精华| 欧美黑人欧美精品刺激| 99视频精品全部免费 在线 | 亚洲欧美激情综合另类| 国产精品久久久av美女十八| 国产 一区 欧美 日韩| 国产爱豆传媒在线观看| 中文字幕久久专区| 男插女下体视频免费在线播放| 国产精品av视频在线免费观看| 一级毛片精品| 国产成人福利小说| 国产黄片美女视频| 国产欧美日韩一区二区精品| 色在线成人网| 搞女人的毛片| 国内精品久久久久久久电影| 亚洲黑人精品在线| 99热只有精品国产| 国产男靠女视频免费网站| 久久久久免费精品人妻一区二区| 久久伊人香网站| 欧美色欧美亚洲另类二区| 成人性生交大片免费视频hd| 国产亚洲av嫩草精品影院| 在线观看午夜福利视频| 欧美zozozo另类| 日本精品一区二区三区蜜桃| 国产精品一及| 美女大奶头视频| 日本与韩国留学比较| 男人舔女人的私密视频| 午夜福利高清视频| 999久久久精品免费观看国产| 九九在线视频观看精品| 精品福利观看| 色综合婷婷激情| 久久久久精品国产欧美久久久| 十八禁人妻一区二区| 国产欧美日韩精品亚洲av| 午夜福利18| 久久伊人香网站| 欧美中文日本在线观看视频| 国产又黄又爽又无遮挡在线| 日本撒尿小便嘘嘘汇集6| 欧美xxxx黑人xx丫x性爽| 51午夜福利影视在线观看| 亚洲精品美女久久av网站| 亚洲九九香蕉| 九九热线精品视视频播放| 97超视频在线观看视频| 精品人妻1区二区| 成年女人看的毛片在线观看| 久久草成人影院| 日本撒尿小便嘘嘘汇集6| a在线观看视频网站| 亚洲欧美日韩卡通动漫| 久久久水蜜桃国产精品网| 无遮挡黄片免费观看| 在线观看免费视频日本深夜| 黑人操中国人逼视频| 老司机在亚洲福利影院| 亚洲成人精品中文字幕电影| 亚洲精品美女久久久久99蜜臀| 男人舔女人下体高潮全视频| 国产蜜桃级精品一区二区三区| 国产午夜精品久久久久久| 最近视频中文字幕2019在线8| 亚洲欧美一区二区三区黑人| 欧美日本亚洲视频在线播放| 丰满人妻一区二区三区视频av | 一级毛片高清免费大全| 亚洲av电影不卡..在线观看| 黄色片一级片一级黄色片| 后天国语完整版免费观看| 久久久久久久精品吃奶| 亚洲性夜色夜夜综合| 国产一区二区激情短视频| 少妇丰满av| 婷婷亚洲欧美| 国模一区二区三区四区视频 | 99久久精品热视频| 12—13女人毛片做爰片一| 日本成人三级电影网站| 国产精品乱码一区二三区的特点| 一区二区三区国产精品乱码| 男女那种视频在线观看| 天堂影院成人在线观看| 国产精品美女特级片免费视频播放器 | 在线永久观看黄色视频| 悠悠久久av| 一个人看的www免费观看视频| 曰老女人黄片| 久久精品亚洲精品国产色婷小说| 少妇的逼水好多| 免费观看精品视频网站| 日本一本二区三区精品| 高潮久久久久久久久久久不卡| 国产又黄又爽又无遮挡在线| 亚洲中文日韩欧美视频| 激情在线观看视频在线高清| 小蜜桃在线观看免费完整版高清| 特级一级黄色大片| 日韩国内少妇激情av| 中文字幕av在线有码专区| 一个人看视频在线观看www免费 | 国产成人啪精品午夜网站| 天天一区二区日本电影三级| 精品国产三级普通话版| 麻豆av在线久日| 一级毛片女人18水好多| 亚洲av成人不卡在线观看播放网| 成年女人永久免费观看视频| 精品熟女少妇八av免费久了| 亚洲无线观看免费| 国内揄拍国产精品人妻在线| 给我免费播放毛片高清在线观看| 日日摸夜夜添夜夜添小说| 免费看a级黄色片| 最近最新免费中文字幕在线| 脱女人内裤的视频| 丁香欧美五月| 性色avwww在线观看| 99精品在免费线老司机午夜| 亚洲精品一区av在线观看| 色播亚洲综合网| 亚洲欧洲精品一区二区精品久久久| 美女扒开内裤让男人捅视频| 国产精品亚洲一级av第二区| 久久精品综合一区二区三区| e午夜精品久久久久久久| 三级男女做爰猛烈吃奶摸视频| 中文字幕人妻丝袜一区二区| 黄色日韩在线| 深夜精品福利| 久久这里只有精品19| 曰老女人黄片| 18禁观看日本| 欧美一区二区国产精品久久精品| 亚洲第一欧美日韩一区二区三区| 免费无遮挡裸体视频| 亚洲国产欧洲综合997久久,| 国产精品亚洲av一区麻豆| 日本成人三级电影网站| 精品久久久久久久毛片微露脸| 无人区码免费观看不卡| 一个人看的www免费观看视频| 国产一区二区在线av高清观看| 欧美丝袜亚洲另类 | 国产伦在线观看视频一区| 一区福利在线观看| 女警被强在线播放| 岛国在线观看网站| 欧美在线一区亚洲| 亚洲专区国产一区二区| 成年女人永久免费观看视频| 欧美乱码精品一区二区三区| 国产高清有码在线观看视频| 日本成人三级电影网站| 欧美日韩福利视频一区二区| 女人高潮潮喷娇喘18禁视频| 婷婷丁香在线五月| 美女高潮喷水抽搐中文字幕| 校园春色视频在线观看| 女人高潮潮喷娇喘18禁视频| 最近在线观看免费完整版| 欧美成人免费av一区二区三区| 成人高潮视频无遮挡免费网站| 久久久精品欧美日韩精品| 国产激情欧美一区二区| 午夜免费观看网址| 精品久久久久久成人av| 村上凉子中文字幕在线| 久久这里只有精品19| 三级国产精品欧美在线观看 | 校园春色视频在线观看| 国产一区二区激情短视频| 午夜久久久久精精品| 日韩欧美一区二区三区在线观看| 精品午夜福利视频在线观看一区| 18禁观看日本| 午夜激情欧美在线| 国产黄片美女视频| 99国产精品一区二区蜜桃av| 麻豆一二三区av精品| 国产精品,欧美在线| svipshipincom国产片| 亚洲成人久久性| 国产成人精品无人区| 国产精品野战在线观看| 香蕉av资源在线| 99热6这里只有精品| 成人国产综合亚洲| 久久久久久久午夜电影| 色尼玛亚洲综合影院| 9191精品国产免费久久| 成人高潮视频无遮挡免费网站| 麻豆国产97在线/欧美| 国产单亲对白刺激| 少妇人妻一区二区三区视频| 免费在线观看成人毛片| 日韩精品青青久久久久久| 国产精华一区二区三区| 黑人操中国人逼视频| 国产成人一区二区三区免费视频网站| 99久久综合精品五月天人人| 又粗又爽又猛毛片免费看| 久久性视频一级片| 午夜日韩欧美国产| 国产欧美日韩一区二区三| 亚洲avbb在线观看| 午夜福利18| 99热6这里只有精品| 国产黄片美女视频| 日日摸夜夜添夜夜添小说| www日本黄色视频网| tocl精华| 熟妇人妻久久中文字幕3abv| 一级黄色大片毛片| 岛国在线观看网站| 免费高清视频大片| 美女高潮的动态| 黄色成人免费大全| 一个人免费在线观看的高清视频| 国产激情久久老熟女| 欧美日本亚洲视频在线播放| 欧美成人一区二区免费高清观看 | 亚洲熟女毛片儿| 久久中文字幕人妻熟女| 国产激情久久老熟女| 久久久国产欧美日韩av| 久久久色成人| 久久国产精品影院| 国产成人精品无人区| 免费在线观看视频国产中文字幕亚洲| 99热只有精品国产| 国产成人欧美在线观看| 国语自产精品视频在线第100页| 国产欧美日韩精品亚洲av| 亚洲欧洲精品一区二区精品久久久| 国产精品av视频在线免费观看| 特大巨黑吊av在线直播| 亚洲国产高清在线一区二区三| 露出奶头的视频| 精品日产1卡2卡| 欧美日韩黄片免| 叶爱在线成人免费视频播放| 亚洲中文日韩欧美视频| 国产黄a三级三级三级人| 91麻豆av在线| 亚洲美女黄片视频| 日本黄色片子视频| 色在线成人网| 亚洲av电影不卡..在线观看| 国产一区在线观看成人免费| 亚洲精品乱码久久久v下载方式 | 国产精华一区二区三区| 国产精品久久久av美女十八| 国产成人av激情在线播放| 51午夜福利影视在线观看| 黄色 视频免费看| 人妻久久中文字幕网| 久久99热这里只有精品18| 久久久精品大字幕| cao死你这个sao货| 国产爱豆传媒在线观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品美女久久av网站| 亚洲色图av天堂| 很黄的视频免费| 久久精品国产清高在天天线| 国产午夜精品论理片| 一本一本综合久久| 最新中文字幕久久久久 | 亚洲,欧美精品.| 欧美绝顶高潮抽搐喷水| 欧美av亚洲av综合av国产av| 免费观看精品视频网站| 欧美zozozo另类| 国产精品综合久久久久久久免费| 熟女少妇亚洲综合色aaa.| 午夜福利免费观看在线| 欧美日韩综合久久久久久 | 亚洲色图av天堂| 很黄的视频免费| 亚洲精品色激情综合| 好看av亚洲va欧美ⅴa在| 两性夫妻黄色片| 一a级毛片在线观看| 在线国产一区二区在线| 国产精华一区二区三区| 一a级毛片在线观看| 99国产精品99久久久久| 国产精品日韩av在线免费观看| 白带黄色成豆腐渣| av女优亚洲男人天堂 | 两个人看的免费小视频| 色综合亚洲欧美另类图片| 又黄又粗又硬又大视频| 欧美日韩福利视频一区二区| 国产男靠女视频免费网站| 亚洲av成人精品一区久久| 长腿黑丝高跟| 三级男女做爰猛烈吃奶摸视频| 欧美黄色淫秽网站| 欧美av亚洲av综合av国产av| 丁香六月欧美| 性色av乱码一区二区三区2| 淫妇啪啪啪对白视频| 亚洲成人久久性| 最近最新免费中文字幕在线| 99热6这里只有精品| 99久久综合精品五月天人人| 国产精品影院久久| 精品久久蜜臀av无| 欧美绝顶高潮抽搐喷水| 俄罗斯特黄特色一大片| 国产精品99久久久久久久久|