• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modeling and Predicting of News Popularity in Social Media Sources

    2019-11-07 03:12:10KemalAkyolandBahaen
    Computers Materials&Continua 2019年10期

    Kemal Akyol and Baha ?en

    Abstract:The popularity of news,which conveys newsworthy events which occur during day to people,is substantially important for the spectator or audience.People interact with news website and share news links or their opinions.This study uses supervised learning based machine learning techniques in order to predict news popularity in social media sources.These techniques consist of basically two phrases:a)the training data is sent as input to the classifier algorithm,b)the performance of prelearned algorithm is tested on the testing data.And so,a knowledge discovery from the data is performed.In this context,firstly,twelve datasets from a set of data are obtained within the frame of four categories:Economic,Microsoft,Obama and Palestine.Second,news popularity prediction in social network services is carried out by utilizing Gradient Boosted Trees,Multi-Layer Perceptron and Random Forest learning algorithms.The prediction performances of all algorithms are examined by considering Mean Absolute Error,Root Mean Squared Error and the R-squared evaluation metrics.The results show that most of the models designed by using these algorithms are proved to be applicable for this subject.Consequently,a comprehensive study for the news prediction is presented,using different techniques,drawing conclusions about the performances of algorithms in this study.

    Keywords:News popularity,sentiment scores,social network services,Gradient Boosted Machines,Multi-Layer Perceptron,Random Forest.

    1 Introduction

    News conveys newsworthy events occurring in the course of day to people.News popularity is substantially important so as to predict the spectator or audience for a particular news or journal in modern mining problems[Alswiti and Rodan(2017)].It is measured through people's interaction with news website.They share links of news or their opinions[Lerman and Ghosh(2010)].Further,social sharing websites and news websites are used in order to read the various news.Online news popularity examines diverse factors such as sharing count,commenting count and liking count etc.on social media.Online examination of news content,which is a large and still growing market for traditional printed media,has undergone major changes[Canneyt,Leroux,Dhoedt et al.(2018)].

    Spread of news to large number of readers within a short period is very important for its popularity.Therefore,there exists a competition among different sources to produce content for a major subset of the population[Bandari,Asur and Huberman(2012)].Since user behaviors in social media are a reflection of event in the real world,researchers have discovered that they can use it to predict social media and for predictions about the future.Social media data provides an advantage of information acquisition which may be difficult to collect from relatively large acquisitions,large quantities and other sources of data.That is,news popularity can be measured by means of it[Lawrence,Chase,Kyle et al.(2017)].Evaluation of this subject is relatively novel for researchers.

    Some of the studies addressed for this subject are as follows:Alswiti and Rodan examined the effectiveness of feature selection on popularity prediction,by using different features,classification models and attribute ranking models.According to their studies,Random Forest classifier accomplished the best accuracy for all features.J48 and AdaBoost classifiers showed variant sensitivities depending on feature selection[Alswiti and Rodan(2017)].Canneyt et al.presented a model to predict online news popularity.By analyzing the capture view patterns of online news,they introduced suitable models via well-chosen based functions.By means of actual news dataset,they showed that the combination of the content,meta-data,and the temporal behavior features lead to significantly improved predictions.Gradient Tree Boosting algorithm proves to be more successful for news popularity predicting in their studies[Canneyt,Leroux,Dhoedt et al.(2018)].Bandari et al.[Bandari,Asur,Huberman et al.(2012)]built a multi-dimensional feature space derived from attributes of articles and evaluated the effect of these features for online article popularity.By using both regression and classification algorithms,they obtained an overall 84% accuracy on Twitter despite randomness in human behavior.Fletcher and Park explored the influence of individual trust on sharing preferences and online news engagement behaviors in news media across eleven countries[Fletcher and Park(2017)].Anil and Indiramma discussed the importance of recommendation systems,which is useful to find interesting items,different methodologies and social factors[Anil and Indiramma(2015)].Kywe et al.aimed to analyze the massive information and the huge number of people interacted through Twitter system by utilizing taxonomy[Kywe,Lim and Zhu 2012)].Keneshloo et al.dealt with the subject popularity,and built models using metadata,content,temporal,and social features.The study was applied to a real data at the Washington Post[Keneshloo,Wang,Han et al.(2016)].Uddin et al.focused on online news popularity prediction based on sharing the news before publication by using the Gradient Boosting Machine algorithm[Uddin,Patwary,Ahsan et al.(2016)].Lee et al.[Lee,Moon and Salamatian(2012)]proposed a framework for modelling and predicting the online contents popularity based on survival analysis.The framework infers the likelihood for which the content will be popular.A model was introduced by using a lifetime of content and the comment count popular metrics with a set of explanatory factors.Kümpel et al.reviewed the scientific,peer-reviewed 461 articles quantitatively and qualitatively.The articles dealt with the relationship between news sharing and social medias from the year 2004 to 2014[Kümpel,Karnowski and Keyling(2015)].Tatar et al.introduced a valuable study based on user comments.They analyzed the ranking effectiveness of the prediction models online news ranking automatically[Tatar,Antoniadis,Amorim et al.(2014)].Fernandes et al.[Fernandes,Vinagre and Cortez(2015)]introduced a proactive intelligent decision support system in order to detect earlier popularity of news information.Random Forest classifier gave the 73% best accuracy on the 39,000 articles which were taken from the Mashable website.Wu and Shen identified the properties of news propagation by tracing the data on Twitter.They implemented a news popularity prediction model that can predict the final number of retweets of a news tweet very quickly by utilizing these characteristics[Wu and Shen(2015)].Liu and Zhang[Liu and Zhang(2017)]explored that the grammatical construction of titles may affect news popularity positively.They calculated a score of traditional category and author features using logarithmic conversion,and presented a novel methodology in order to predict online news popularity before publication.As it can be seen in these studies,diversified features as input data are used for regression or classification approaches.This study handles out sentiment scores(title and headline),and the number of views in 2 days by interval 20 minutes of news,and presents the news popularity prediction models in social media sources by utilizing the Gradient Boosted Machines(GBM),Multi-Layer Perceptron(MLP)and Random Forest(RF)machine learning algorithms.These algorithms are used in many research areas like medicine,social media and other daily life areas.

    The main focus of this study is to carry out the modeling and predicting of news popularity in social media sources.In this context,this study consists of two modules.The first one is to apply the data pre-processing techniques on all datasets.The second one is to demonstrate the performance of boosting,neural networks and ensemble learning based machine learning algorithms.In this context,machine learning algorithms are implemented on the datasets and their performances are discussed in our study.

    The rest of the paper is organized as follows.Section 2 presents the materials and methods.Section 3 gives experimental study and results.Finally,the paper ends with conclusions in Section 4.

    2 Material and methods

    2.1 Data

    A set of the data consists of news items and their respective social feedback on multiple platforms:Facebook,Google+and Linkedln.This set is collected from public end-points of the social media sources that are already anonymized and aggregated by the data owners.News data file concerns the description of news items and consists of 93239 instances and each news item is described by 11 attributes,which are explained in Tab.1.The data descriptors are based on information obtained by querying the official media sources Google News and Yahoo News[Moniz and Tongo(2018)].

    A set of data files so called Feedbacks is concerned with the evolution of news items'popularity in the social media sources,Facebook,Google+and LinkedIn.News was collected during a two-year period,from January 7,2013 to January 7 2015,for each of the four categories,Economy,Microsoft,Obama and Palestine.News popularity is measured as the number of views 2 days by interval 20 minutes upon publication simultaneously.This set is composed of 12 data files,for all combinations of these categories and social media sources.

    Table 1:Descriptions of attributes in news data file

    The dataset,which includes enormous data,is a pre-processed and re-structured by discarding the instances which include N/A(null)value(s)from datasets.After preprocessing steps,the number of news in these categories is presented in Tab.2.

    Table 2:The number of instances in social media sources

    2.2 Methods

    In this study,modeling and prediction of news popularity in social media sources is performed by using GBM,MLP and RF which are among the popular evolutionary algorithms and experimental results were compared.

    Briefly,GBM conducts new models in repeatedly during learning to better predict the target variable.The goal is to create new basic learning models that will have maximum correlation with the negative gradient of the loss function associated with the whole ensemble[Friedman(2001)].

    Then she took her little oil-lamp, and went into her little room, drew off her fur cloak, and washed off the soot from her face and hands, so that her beauty shone forth9, and it was as if one sunbeam after another were coming out of a black cloud

    The back-propagated MLP is feed-forward networks updating the weights based on differences between the predicted and actual values for the target variable.The main idea is to minimize the mean square error between the actual and predicted values iteratively[Alpaydin(2010)].

    The RF introduced by Breiman is an ensemble learning algorithm created by random decision trees.The main difference of this algorithm from the decision tree is that the RF investigates the best attribute during the division of node while Decision tree investigates the best feature among the random subsets.Therefore,this algorithm gives better results considering better modeling[Breiman(2001)].Internal parameters of algorithms and their values were assigned as given in Tab.3.

    Table 3:Internal parameters for algorithms

    3 Experiments and results

    The proposed study consists of two main modules:data processing and machine learning.The first module carries out the prepared steps mentioned Pseudo Code 1 for machine learning module.In addition to the original data retrieved from the social media sources,the pre-processed dataset consists of the sentiment scores information of both the title and headline of the news items.Therefore,the pre-processed datasets are described by 147 attributes(2 sentiment values,title and headline,144 measurements and outcome variable,the new items' popularity).Flowchart of the proposed study is introduced in Fig.1.

    Figure 1:The flow chart of the study

    The information of attributes for these datasets is presented in Tab.4.All data collection and processing procedures mentioned in these steps are implemented in Python 2.7 on Anaconda platform.

    Table 4:The information of attributes for these datasets

    The second module,news popularity prediction,receives the processed data and splits it into training and test sets in order to evaluate the performance of prediction models,GBM,MLP and RF.This module steps mentioned Pseudo Code 2 are executed on ‘Knime'platform by integrated Python programming imported from the ‘protobuf' library.Python codes could run in a node on this platform.The ‘numpy' and ‘pandas' libraries are benefited during the build-up of both modules for practicing of the enormous data.

    In our study,the performances of the models are evaluated using measures such as Mean Absolute Error(MAE),Root Mean Squared Error(RMSE)and the R-squared coefficient(R2)to consider how well they are for predictions that match the actual results.These metrics are given by the following equations respectively.

    MAE and RMSE metrics are based on statistical summaries of ei(i=1,2,...,n).ei=Pi-Oiis described as individual model prediction error usually.n is the number of data instances,Piand Oiare the predicted and observed values respectively[Willmott and Matsuura(2005)].

    where y is the observed response variable,its mean andthe corresponding predicted values.R2coefficient measures the degree of variation in the target variable.This coefficient is a value between 0 and 1,where 1 equates to a perfect fit of the model[Alexander,Tropsha and Winkler(2015)].

    This study focuses on the analysis for the attributes of news data in social media sources and evaluates the performances of RF,GBM and MLP algorithms for news popularity prediction.%70 of data is used as a training set randomly,and remain is considered as the test set.Therefore,firstly the models are trained using the training sets and then tested on the test sets.R2,MAE and RMSE measures are used so as to evaluate the performances of the models in all experiments.Tabs.5-8 compares the performance of the models obtained according to Pseudo Code 2 algorithm on the datasets.This module also indicates that sentiment scores of news,and final value of the news items' popularity highly are influential in order to predict news popularity.Sentiment score also known as opinion mining is a field of text mining which examines people' opinions,judgments and ideas about entities[Liu and Zhang(2012)].Theqdap Rpackage[Rinker(2013)]is used in order to obtain this score.

    Tab.5 shows the performances of the models on social media sources for Economy dataset.As shown in this table;

    a)All algorithms have satisfactory performance on Facebook source for Economy dataset.Further,MAE measures are same for all models.The maximum R2and minimum RMSE measures are obtained with MLP based model on this source.

    b)All algorithms have satisfactory performance on Google+source for Economy dataset.Further,MAE measures are same for all models.The maximum R2and minimum RMSE measures are obtained with RF based model on this source.

    c)All algorithms have satisfactory performance on Linkedln source for Economy dataset.Further,MAE measure is same for all models.The maximum R2and minimum RMSE measures are obtained with RF based model on this source.

    Table 5:The performances of the models for Economy dataset

    Table 6:The performances of the models for Microsoft dataset

    Tab.6 shows the performances of the models on social media sources for Microsoft dataset.As shown in this table;

    a)All algorithms have satisfactory performance on Facebook source for Microsoft dataset.Further,MAE measures are same for all models.The maximum R2and minimum RMSE measures are obtained with RF based model on this source.

    b)All algorithms have satisfactory performance on Google+source for Microsoft dataset.Further,MAE measures are same for all models.The maximum R2and minimum RMSE measures are obtained with MLP based model on this source.

    c)All algorithms have satisfactory performance on Linkedln source for Microsoft dataset.Further,MAE measure is same for all models.The maximum R2and minimum RMSE measures are obtained with MLP based model on this source.

    Tab.7 shows the performances of the models on social media sources for Obama dataset.As shown in this table;all algorithms have satisfactory performance on Facebook,Google+and Linkedln sources for Obama dataset.Further,MAE measures are same for all models.The maximum R2and minimum RMSE measures are obtained with RF based model on for all sources.

    Table 7:The performances of the models for Obama dataset

    Table 8:The performances of the models for Palestine dataset

    Tab.8 shows the performances of the models on social media sources for Palestine dataset.As shown in this table;

    a)All algorithms have satisfactory performance on Facebook source for Palestine dataset.Further,MAE measures are same for all models.The maximum R2and minimum RMSE measures are obtained with MLP based model on this source.

    b)All algorithms have satisfactory performance on Google+source for Palestine dataset.Further,MAE measures are same for all models.The maximum R2and minimum RMSE measures are obtained with RF based model on this source.

    c)All algorithms have satisfactory performance on Linkedln source for Palestine dataset.Further,MAE measure is same for all models.The maximum R2and minimum RMSE measures are obtained with MLP based model on this source.

    Since the datasets used in this study were newly released in February 2018,there is no published study that uses these datasets.But the studies were performed on other datasets based on machine learning because this subject is popular.For this reason,sample studies on the use of machine learning for different datasets are presented in Tab.9.

    Table 9:Sample of studies performed on different datasets

    4 Conclusion

    News conveys newsworthy events which occur during day to people.News popularity is measured through people's interaction with news website or social media platforms.They cast in their opinions or news links.The scientists use the social media data since it is the reflection of user behaviors in the real world.This study uses a set of the data consisting of news items and their popularity in the social media sources:Facebook,Google+and LinkedIn.It is composed of 12 data files,for all combinations of the Economy,Microsoft,Obama and Palestine categories,and the social media sources.The study consists of two phrases which are the preparation of the data and the design of prediction models.The pre-processed datasets are described by 147 attributes(2 sentiment values,title and headline,144 measurements of popularity in 20-minute intervals for a total of 2 days and outcome variable,the new items' popularity).The prediction models designed by utilizing GBM,MLP and RF learning algorithms are introduced for twelve datasets and empirical tests are performed.The success of most models for each dataset is approximately same.Further,this study will provide a beneficial reference for news popularity prediction.

    Acknowledgement:The authors would like to thank the Fernandes et al.[Fernandes,Vinagre and Cortez(2015)]for providing the datasets.

    日韩,欧美,国产一区二区三区| 大陆偷拍与自拍| 身体一侧抽搐| 国产成人91sexporn| 成人特级av手机在线观看| 日日摸夜夜添夜夜爱| 久久精品国产亚洲网站| 成人一区二区视频在线观看| 最近中文字幕2019免费版| 亚洲欧美日韩无卡精品| 搡老乐熟女国产| 亚洲国产精品成人久久小说| 国产一区有黄有色的免费视频| 成年版毛片免费区| 日韩中字成人| 久久韩国三级中文字幕| 别揉我奶头 嗯啊视频| 天天一区二区日本电影三级| 免费观看a级毛片全部| 国产成人福利小说| 熟女人妻精品中文字幕| 午夜免费男女啪啪视频观看| 亚洲精品久久久久久婷婷小说| 国产国拍精品亚洲av在线观看| 国模一区二区三区四区视频| 国产综合懂色| 亚洲欧美精品自产自拍| 久久人人爽人人爽人人片va| 精品人妻熟女av久视频| 免费看不卡的av| 中文天堂在线官网| 精品一区在线观看国产| 99热这里只有是精品在线观看| a级一级毛片免费在线观看| 国产成人精品久久久久久| 国产成人91sexporn| 一区二区三区免费毛片| 成人美女网站在线观看视频| 制服丝袜香蕉在线| 日韩av免费高清视频| 亚洲va在线va天堂va国产| av线在线观看网站| 肉色欧美久久久久久久蜜桃 | 久久久久精品性色| 欧美精品一区二区大全| 亚洲自拍偷在线| 日韩强制内射视频| 狂野欧美白嫩少妇大欣赏| 日韩电影二区| 亚洲欧美精品自产自拍| 狂野欧美激情性xxxx在线观看| 乱系列少妇在线播放| 天堂网av新在线| 精品熟女少妇av免费看| 黑人高潮一二区| 亚洲va在线va天堂va国产| 国产乱来视频区| 国产 精品1| av女优亚洲男人天堂| 国产亚洲一区二区精品| 国产欧美日韩一区二区三区在线 | 日日摸夜夜添夜夜添av毛片| 人妻 亚洲 视频| 久久鲁丝午夜福利片| 最近中文字幕2019免费版| 亚洲精品aⅴ在线观看| 日韩av在线免费看完整版不卡| 欧美日韩在线观看h| 国产精品女同一区二区软件| 亚洲人成网站在线播| 亚洲最大成人中文| 国产成人91sexporn| 一本久久精品| 国产色爽女视频免费观看| 日本-黄色视频高清免费观看| 一本色道久久久久久精品综合| 亚洲va在线va天堂va国产| 在线观看一区二区三区激情| 日本黄大片高清| 国产男人的电影天堂91| 久久精品国产亚洲网站| h日本视频在线播放| 亚洲怡红院男人天堂| 亚洲高清免费不卡视频| 中文字幕久久专区| 欧美精品一区二区大全| 一级二级三级毛片免费看| 男的添女的下面高潮视频| 少妇丰满av| 嫩草影院入口| 国产色爽女视频免费观看| 免费大片黄手机在线观看| 又大又黄又爽视频免费| 色播亚洲综合网| 熟妇人妻不卡中文字幕| 永久网站在线| 久久人人爽人人爽人人片va| 韩国av在线不卡| 国产成人一区二区在线| 成人国产麻豆网| 亚洲欧美日韩卡通动漫| 男女那种视频在线观看| 男女边摸边吃奶| 噜噜噜噜噜久久久久久91| 在线免费观看不下载黄p国产| 国产在线男女| 婷婷色综合大香蕉| 亚洲精品国产av成人精品| 观看免费一级毛片| 国产乱人视频| 精品少妇久久久久久888优播| 91精品国产九色| 大香蕉久久网| 久久精品国产自在天天线| 精品少妇久久久久久888优播| 内地一区二区视频在线| 1000部很黄的大片| 偷拍熟女少妇极品色| 欧美丝袜亚洲另类| 久久久久国产网址| 日韩大片免费观看网站| 亚洲最大成人手机在线| 中文资源天堂在线| 少妇人妻久久综合中文| 99热全是精品| 久久久久国产网址| 一边亲一边摸免费视频| 久热久热在线精品观看| 精品熟女少妇av免费看| 日韩成人av中文字幕在线观看| 欧美极品一区二区三区四区| 我的老师免费观看完整版| 激情五月婷婷亚洲| 免费黄网站久久成人精品| 久久久久久久久久人人人人人人| 久久久久久国产a免费观看| 我的女老师完整版在线观看| 亚洲精品国产色婷婷电影| 99热这里只有是精品在线观看| 精品少妇黑人巨大在线播放| 爱豆传媒免费全集在线观看| 建设人人有责人人尽责人人享有的 | 久久人人爽人人爽人人片va| 香蕉精品网在线| 人人妻人人澡人人爽人人夜夜| 我的女老师完整版在线观看| 一级黄片播放器| 国产又色又爽无遮挡免| 最新中文字幕久久久久| 国产亚洲av嫩草精品影院| 成人欧美大片| 欧美日韩视频精品一区| 校园人妻丝袜中文字幕| 男女那种视频在线观看| 欧美精品人与动牲交sv欧美| 最近中文字幕高清免费大全6| 新久久久久国产一级毛片| 三级国产精品欧美在线观看| 精品少妇久久久久久888优播| 尤物成人国产欧美一区二区三区| 国产永久视频网站| 一二三四中文在线观看免费高清| 在线观看免费高清a一片| 国产91av在线免费观看| 国产爱豆传媒在线观看| 18禁在线无遮挡免费观看视频| 男女那种视频在线观看| av免费观看日本| 禁无遮挡网站| 秋霞伦理黄片| 美女主播在线视频| 久久久久网色| 九草在线视频观看| 激情五月婷婷亚洲| 中文在线观看免费www的网站| 欧美精品一区二区大全| 好男人视频免费观看在线| 真实男女啪啪啪动态图| 自拍偷自拍亚洲精品老妇| 免费观看性生交大片5| 欧美成人精品欧美一级黄| 在线天堂最新版资源| 久久久久久国产a免费观看| 欧美 日韩 精品 国产| h日本视频在线播放| 亚洲av免费在线观看| 国产黄色视频一区二区在线观看| 成人高潮视频无遮挡免费网站| 少妇被粗大猛烈的视频| 欧美日韩视频高清一区二区三区二| 亚洲最大成人手机在线| av在线app专区| 十八禁网站网址无遮挡 | 亚洲天堂国产精品一区在线| 成人高潮视频无遮挡免费网站| 久久久久久九九精品二区国产| 久热久热在线精品观看| 夫妻午夜视频| 毛片女人毛片| 日本三级黄在线观看| 不卡视频在线观看欧美| 爱豆传媒免费全集在线观看| 啦啦啦啦在线视频资源| 全区人妻精品视频| 一级毛片久久久久久久久女| 亚洲三级黄色毛片| 亚洲伊人久久精品综合| 嘟嘟电影网在线观看| 最近中文字幕2019免费版| 搡老乐熟女国产| 99热全是精品| 永久免费av网站大全| 最近中文字幕高清免费大全6| 老师上课跳d突然被开到最大视频| 日本免费在线观看一区| 国产免费视频播放在线视频| 日韩欧美一区视频在线观看 | 国产女主播在线喷水免费视频网站| 在线观看美女被高潮喷水网站| 中文在线观看免费www的网站| 蜜臀久久99精品久久宅男| 欧美日韩视频高清一区二区三区二| tube8黄色片| 国产精品福利在线免费观看| av在线播放精品| 大又大粗又爽又黄少妇毛片口| 哪个播放器可以免费观看大片| 大香蕉97超碰在线| 国产黄片美女视频| 91在线精品国自产拍蜜月| 青春草视频在线免费观看| 日韩精品有码人妻一区| 久久人人爽人人片av| 在线a可以看的网站| 国产高清国产精品国产三级 | 久久久久久久久久人人人人人人| 嫩草影院精品99| av黄色大香蕉| 国产一区二区在线观看日韩| 69av精品久久久久久| av在线天堂中文字幕| 中文字幕制服av| 在线观看av片永久免费下载| 亚洲欧美日韩卡通动漫| 欧美+日韩+精品| 亚洲av免费在线观看| 香蕉精品网在线| 国产乱人视频| 五月天丁香电影| 亚洲经典国产精华液单| 午夜免费鲁丝| 久久久欧美国产精品| 99热网站在线观看| 超碰97精品在线观看| 永久免费av网站大全| 天天躁日日操中文字幕| 国产欧美亚洲国产| 欧美性感艳星| 亚洲av中文字字幕乱码综合| 一级片'在线观看视频| 久久久久久久国产电影| 欧美日韩视频精品一区| 最近的中文字幕免费完整| 大陆偷拍与自拍| 日本av手机在线免费观看| av专区在线播放| 日日撸夜夜添| 国产在线一区二区三区精| 蜜臀久久99精品久久宅男| 国产精品熟女久久久久浪| 看免费成人av毛片| 欧美一区二区亚洲| 欧美老熟妇乱子伦牲交| 亚洲国产欧美人成| 国产色婷婷99| xxx大片免费视频| 内地一区二区视频在线| 日韩伦理黄色片| 麻豆精品久久久久久蜜桃| 亚洲电影在线观看av| 69人妻影院| 久久久精品免费免费高清| 99热网站在线观看| 亚洲精品一区蜜桃| 在线观看一区二区三区| 国产精品伦人一区二区| 免费看a级黄色片| 下体分泌物呈黄色| 日本免费在线观看一区| 国产在视频线精品| 亚洲色图av天堂| 亚洲av一区综合| 赤兔流量卡办理| 自拍欧美九色日韩亚洲蝌蚪91 | 女人被狂操c到高潮| 91久久精品电影网| 亚洲最大成人手机在线| 国产午夜福利久久久久久| 六月丁香七月| 一个人看的www免费观看视频| 亚洲av一区综合| 另类亚洲欧美激情| 国产毛片a区久久久久| 2018国产大陆天天弄谢| 联通29元200g的流量卡| 中文精品一卡2卡3卡4更新| 亚洲不卡免费看| 国产精品无大码| 最近2019中文字幕mv第一页| 两个人的视频大全免费| 免费不卡的大黄色大毛片视频在线观看| 天堂俺去俺来也www色官网| 亚洲精品aⅴ在线观看| 亚洲欧美清纯卡通| 99精国产麻豆久久婷婷| 亚洲婷婷狠狠爱综合网| h日本视频在线播放| 最近中文字幕高清免费大全6| 欧美老熟妇乱子伦牲交| 成人漫画全彩无遮挡| 成人一区二区视频在线观看| 国产男人的电影天堂91| 亚洲在线观看片| 免费电影在线观看免费观看| 精品人妻一区二区三区麻豆| 少妇人妻 视频| 成人二区视频| 亚洲精品成人久久久久久| 中文乱码字字幕精品一区二区三区| 美女脱内裤让男人舔精品视频| 国产成人a∨麻豆精品| 天天一区二区日本电影三级| 国精品久久久久久国模美| av在线亚洲专区| 一级毛片电影观看| 欧美变态另类bdsm刘玥| 久久久精品欧美日韩精品| 国产在线男女| 久久久精品欧美日韩精品| 小蜜桃在线观看免费完整版高清| 国产精品三级大全| 可以在线观看毛片的网站| 亚洲国产精品专区欧美| 黄色视频在线播放观看不卡| 国产精品一区二区三区四区免费观看| 99热国产这里只有精品6| 免费观看的影片在线观看| 国产黄片美女视频| 国产免费视频播放在线视频| .国产精品久久| 欧美成人a在线观看| 国产白丝娇喘喷水9色精品| 嫩草影院新地址| 日日摸夜夜添夜夜添av毛片| 校园人妻丝袜中文字幕| 少妇高潮的动态图| 欧美激情在线99| 不卡视频在线观看欧美| 色播亚洲综合网| 色综合色国产| 大片免费播放器 马上看| 三级经典国产精品| 亚洲高清免费不卡视频| 夫妻性生交免费视频一级片| 国产在视频线精品| 大话2 男鬼变身卡| 男人爽女人下面视频在线观看| 午夜福利在线观看免费完整高清在| 午夜老司机福利剧场| 99视频精品全部免费 在线| 黄色一级大片看看| 久久久精品94久久精品| 亚洲国产精品999| 欧美另类一区| 欧美高清成人免费视频www| 国产精品爽爽va在线观看网站| 80岁老熟妇乱子伦牲交| 激情五月婷婷亚洲| 免费看不卡的av| 久久久精品欧美日韩精品| 欧美日本视频| av在线天堂中文字幕| 麻豆成人av视频| 美女xxoo啪啪120秒动态图| 91精品一卡2卡3卡4卡| 久久ye,这里只有精品| 在线播放无遮挡| 国产精品女同一区二区软件| 九草在线视频观看| 一区二区三区免费毛片| 你懂的网址亚洲精品在线观看| 大香蕉97超碰在线| 国产乱人视频| 建设人人有责人人尽责人人享有的 | 一个人看视频在线观看www免费| 最近中文字幕高清免费大全6| www.av在线官网国产| 91精品伊人久久大香线蕉| av福利片在线观看| 男人和女人高潮做爰伦理| 纵有疾风起免费观看全集完整版| 乱系列少妇在线播放| 亚洲av国产av综合av卡| 成人鲁丝片一二三区免费| 精品人妻视频免费看| 国产一级毛片在线| 国产一区二区在线观看日韩| 亚洲av在线观看美女高潮| 国产成人91sexporn| 日本一本二区三区精品| 久久久久久久午夜电影| 搞女人的毛片| 久久午夜福利片| 色网站视频免费| 一本久久精品| 午夜福利高清视频| 三级国产精品片| av免费观看日本| 丝瓜视频免费看黄片| 久久精品国产自在天天线| 99久久人妻综合| 亚州av有码| 亚洲三级黄色毛片| av在线天堂中文字幕| 十八禁网站网址无遮挡 | 观看美女的网站| av黄色大香蕉| 日韩在线高清观看一区二区三区| 视频中文字幕在线观看| 网址你懂的国产日韩在线| 国产精品久久久久久av不卡| 永久网站在线| 麻豆乱淫一区二区| 免费播放大片免费观看视频在线观看| 又黄又爽又刺激的免费视频.| 国产成人福利小说| 国产精品99久久久久久久久| 丝袜美腿在线中文| 全区人妻精品视频| 最近2019中文字幕mv第一页| 哪个播放器可以免费观看大片| 欧美高清性xxxxhd video| 最近最新中文字幕免费大全7| 在线观看一区二区三区激情| 噜噜噜噜噜久久久久久91| 亚洲最大成人中文| 婷婷色综合www| 精品人妻偷拍中文字幕| a级毛色黄片| 最新中文字幕久久久久| 成人美女网站在线观看视频| 久久久精品欧美日韩精品| 人妻制服诱惑在线中文字幕| 高清欧美精品videossex| 纵有疾风起免费观看全集完整版| 啦啦啦啦在线视频资源| 国产成人91sexporn| 日韩电影二区| 天美传媒精品一区二区| 插逼视频在线观看| 免费黄色在线免费观看| 在线观看一区二区三区| 黄色欧美视频在线观看| 久久综合国产亚洲精品| 欧美日韩综合久久久久久| 男人爽女人下面视频在线观看| 亚洲真实伦在线观看| 如何舔出高潮| 亚洲自偷自拍三级| 91狼人影院| 日韩成人av中文字幕在线观看| 久久女婷五月综合色啪小说 | 久久久久久久久久成人| 大片免费播放器 马上看| 国内精品美女久久久久久| 午夜激情福利司机影院| 免费播放大片免费观看视频在线观看| 日韩视频在线欧美| 日韩成人av中文字幕在线观看| 久久女婷五月综合色啪小说 | 99视频精品全部免费 在线| 下体分泌物呈黄色| 美女主播在线视频| 亚洲在线观看片| 亚洲欧美日韩东京热| 校园人妻丝袜中文字幕| 国产熟女欧美一区二区| 久久精品国产亚洲网站| www.色视频.com| 青春草视频在线免费观看| 国产综合精华液| .国产精品久久| 简卡轻食公司| 国产 一区精品| av在线亚洲专区| 一区二区三区四区激情视频| 你懂的网址亚洲精品在线观看| 免费黄色在线免费观看| 亚洲欧美成人综合另类久久久| 日本一本二区三区精品| 久久人人爽av亚洲精品天堂 | 亚洲av成人精品一二三区| 国产成人精品一,二区| 99九九线精品视频在线观看视频| 国产高清不卡午夜福利| 亚洲精品成人av观看孕妇| eeuss影院久久| 欧美97在线视频| 黄色怎么调成土黄色| 99精国产麻豆久久婷婷| 久久久久性生活片| 99热网站在线观看| 91精品一卡2卡3卡4卡| 国产免费一区二区三区四区乱码| 亚洲精品亚洲一区二区| 别揉我奶头 嗯啊视频| 国国产精品蜜臀av免费| 九草在线视频观看| 亚洲欧美中文字幕日韩二区| 亚洲成人中文字幕在线播放| 黄色欧美视频在线观看| 啦啦啦中文免费视频观看日本| 一级毛片黄色毛片免费观看视频| 99热6这里只有精品| 国产伦精品一区二区三区视频9| 中文字幕久久专区| 国精品久久久久久国模美| 午夜福利网站1000一区二区三区| 美女视频免费永久观看网站| 97超视频在线观看视频| 亚洲无线观看免费| 国产亚洲av嫩草精品影院| 91aial.com中文字幕在线观看| 久久精品国产a三级三级三级| 亚州av有码| 精品久久久久久久人妻蜜臀av| 搡老乐熟女国产| 搞女人的毛片| av在线播放精品| 国产一区二区三区综合在线观看 | 午夜激情久久久久久久| 欧美97在线视频| 亚洲精品国产成人久久av| 日韩,欧美,国产一区二区三区| 最后的刺客免费高清国语| 亚洲第一区二区三区不卡| 久久久久国产精品人妻一区二区| 国产黄色免费在线视频| 成人二区视频| 搡女人真爽免费视频火全软件| 亚洲精品一区蜜桃| 亚洲精品乱久久久久久| 国产伦精品一区二区三区四那| 嫩草影院精品99| 一个人看的www免费观看视频| 老司机影院成人| 亚洲自拍偷在线| 99久久人妻综合| 午夜福利视频1000在线观看| 国产av码专区亚洲av| 午夜爱爱视频在线播放| 欧美亚洲 丝袜 人妻 在线| 性色av一级| 在线观看一区二区三区| 直男gayav资源| 高清日韩中文字幕在线| 国产高清三级在线| 国产男女内射视频| 午夜免费观看性视频| 中国国产av一级| 国产白丝娇喘喷水9色精品| 99久久精品国产国产毛片| 久久久亚洲精品成人影院| 日韩一区二区三区影片| 黄片wwwwww| 久久精品国产a三级三级三级| 一级毛片 在线播放| 99久久精品一区二区三区| 亚洲国产欧美人成| 欧美+日韩+精品| 亚洲国产精品成人综合色| 国产黄片美女视频| 美女cb高潮喷水在线观看| 你懂的网址亚洲精品在线观看| 亚洲综合精品二区| 久久热精品热| 三级国产精品片| av免费观看日本| 尤物成人国产欧美一区二区三区| 欧美精品国产亚洲| 免费看不卡的av| 女人十人毛片免费观看3o分钟| 九九在线视频观看精品| 国产黄色视频一区二区在线观看| 久久国产乱子免费精品| 精品人妻一区二区三区麻豆| 国产黄a三级三级三级人| 人妻一区二区av| 美女内射精品一级片tv| 国产午夜福利久久久久久| 97精品久久久久久久久久精品| 成人黄色视频免费在线看| 久久久久久久久久久丰满| 最近最新中文字幕免费大全7| 男女无遮挡免费网站观看| 中国国产av一级| 夫妻性生交免费视频一级片| 下体分泌物呈黄色| av免费观看日本| 亚洲精品国产色婷婷电影| 精品久久久噜噜| 国产精品爽爽va在线观看网站| 99久久精品一区二区三区| 日本av手机在线免费观看| 波野结衣二区三区在线|