• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Characterize and optimize the four-wave mixing in dual-interferometer coupled silicon microrings?

    2019-11-06 00:44:40ChaoWu吳超YingwenLiu劉英文XiaowenGu顧曉文ShichuanXue薛詩川XinxinYu郁鑫鑫YuechanKong孔月嬋XiaogangQiang強曉剛JunjieWu吳俊杰ZhihongZhu朱志宏andPingXu徐平
    Chinese Physics B 2019年10期
    關(guān)鍵詞:徐平俊杰英文

    Chao Wu(吳超), Yingwen Liu(劉英文),Xiaowen Gu(顧曉文),Shichuan Xue(薛詩川) Xinxin Yu(郁鑫鑫),Yuechan Kong(孔月嬋),Xiaogang Qiang(強曉剛),Junjie Wu(吳俊杰),Zhihong Zhu(朱志宏),and Ping Xu(徐平),3,?

    1Institute for Quantum Information and State Key Laboratory of High Performance Computing,College of Computer,College of Advanced Interdisciplinary Studies,National University of Defense Technology,Changsha 410073,China

    2Science and Technology on Monolithic Integrated Circuits and Modules Laboratory,Nanjing Electronic Devices Institute,Nanjing 210016,China

    3National Laboratory of Solid State Microstructures and School of Physics,Nanjing University,Nanjing 210093,China

    Keywords:silicon resonators,four-wave mixing,Mach–Zehnder interferometer

    1.Introduction

    Four-wave mixing (FWM), a typical nonlinear optical frequency conversion process,has applications in alloptical processing,[1,2]such as wavelength conversion,[3]phase conjugation,[4]optical parametric amplification,[5]optical sampling,[6]and entangled photon pair generation.[7]The silicon-on-insulator(SOI)offers an appealing platform for four-wave mixing since it is compatible with electronic manufacturing[8]and it also contains a high refractive index contrast[9]and the significant third-order susceptibility.[10]In particular,silicon microrings that limit both transverse and longitudinal optical modes in micron scale and provide resonant enhancement of the nonlinear parametric process,can drastically increase FWM efficiency under a relatively low pump power of several microwatt.[2,3,9,11–15]

    To produce the strongest resonant enhancement of FWM efficiency,the microrings’coupling conditions for the four interacting wave play a key role.For the continuous wave(CW)pumped FWM,the microring should be operated at the critical point that is the round-trip loss of the microring equals its power coupling coefficient.[16,17]However,the optimal coupling condition of the pulse pumped FWM should be a different case,because there is a tradeoff between the coupled pump power and the enhancement factor since the higher coupled pump power requires a large resonant linewidth while the overall enhancement factor gets maximized with a narrow resonant linewidth at the critically coupling condition.Thus,an overcoupled condition for the pulse pump is expected while for the converted idler beam the coupling condition may differ since the tradeoff lies in the enhancement factor and extraction efficiency from the ring.However,there are lack of theoretical studies that can formulate the pulse pumped FWM.Experimentally,a single bus waveguide coupled microring resonator or dual-bus microring are usually adopted to perform the FWM process study[18,19]and the efficiency is usually optimized by proper design of the coupling gap between the bus waveguide and the ring.However,these designs can not control the coupling condition of the pump and signal/idler beams independently.

    Herein,we derive and formulate the optimal coupling condition for the pulse pumped FWM through the coupledmode equation in frequency domain,which shows the different overcoupling condition of the pump and idler beams should be satisfied for approaching the maximum efficiency.In experiments we design and adopt dual Mach–Zehnder interferometer coupled silicon microrings which allow for the pump and signal/idler beams being operated at specific coupling condition independently.The experimental results agree well with the theoretical predictions.

    2.Theory

    Assuming undepleted pump and signal when generating the idler,the conversion efficiency of resonance enhanced FWM under CW pump follows the model from Ref.[3]

    where the efficiency is defined by the ratio of the on-chip idler power over the signal power,γ is the effective nonlinearity,Ppis the pump power,vgis the microrings’group velocity,Fvis the amplitude enhancement factor with ωvand ?vbeing the beam’frequency and its resonant frequency,the extrinsic and intrinsic decay rates are defined by rext=vgk/2L and rint=vgα/2 with k and α being the power coupling coefficient and round-trip loss,respectively,L is the circumference of the microring,and Leffis the effective length defined by

    where ?β is the phase mismatch defined by ?β=2βp?βs?βi?2γPp.

    Assuming the four waves are at resonance and their intrinsic quality factors defined bykeep invariant,the resonant enhancement for the FWM depends on the ratio between the intrinsic quality factor and extrinsic quality factor of the pump,signal,and idler respectively.As shown in Fig.1(a),the FWM efficiency will maximize at the critical coupling point for both the pump and signal/idler beams,namely,where the subscript p or s/i denotes the independent parameter of the pump or signal/idler and the extrinsic quality factor is given by

    Fig.1.The simulated FWM efficiency versus Qint,p/Qext,p and Qint,s/i/Qext,s/i for both the(a)CW pump and(b)pulse pump.

    The conversion efficiency for the pulse pumped FWM can be solved from the coupled-mode equation in the frequency domain

    where ap,as,and airepresent the pump,signal,and idler amplitudes in the cavity.Assuming the pump pulse has a Gaussian linewidth and the signal is a CW which is set to be on resonance,equation(3)could be solved as

    where

    is the pump line type,and σ is related to the frequency bandwidth as

    Just like the derivation of CW pumped FWM,we assume that the intrinsic quality factors of four interacting beams keep identical and the idler total quality factors are the same as the signal’s.Then,we calculate the conversion efficiency for the pulse pumped FWM with the pulse bandwidth at 0.17 nm,which is our pulse pump laser’s linewidth,as shown in Fig.1(b). Obviously,to obtain the maximum FWM efficiency,the pulse pump should be operated at the very overcoupling regime with Qint,p/Qext,p≈5.25;meanwhile,the converted idler beam should also be operated at the overcoupling regime but with a different condition of Qint,i/Qext,i≈1.75.So the optimal overcoupling points for the pump and idler beams are different. A specific novel design which can control the pump and idler’s coupling condition independently is highly desired.

    Fig.2.(a)Schematic of the dual-interferometer coupled microring.(b)The transmission spectra of the dual-interferometer coupled microring for the in-through side and add-drop side.

    Herein,we design a dual-interferometer coupled silicon microring as shown schematically in Fig.2. In 1995,a single interferometer coupled microring was proposed by Barbarossa et al.to suppress certain resonant mode.[20]Later on,several works have adopted such design for both classical and quantum applications.[21–25]Although the dual-interferometer coupled microrings have four ports like the dual-bus microrings,the difference is that each coupled waveguide forms an interferometer with the microring. Thus,the final operation condition of the ring is determined by the effective coupling coefficient given by the interferometer. If the two arms of the interferometer have a length difference ?L and equals half of the circumference of the microring,the period of interference spectra for the interferometer is twice of the free spectral range(FSR)of the cavity,which allows for every second resonance of the ring to be suppressed by tuning the interferometer’s phase.The transmission spectra of both in-through and add-drop sides are shown in Fig.2,which demonstrates that the resonance allowed by the in-through side will be suppressed by the add-drop side and the resonance allowed by the add-drop side will be suppressed by the in-through side.Then by coupling pump and the signal/idler from different sides,the coupling condition of the pump and signal/idler can be engineered separately. Assuming the two coupling points of the interferometer have the same gap,the effective coupling efficiency of the in-through side(side 1)or add-drop side(side 2)is only decided by this single power point coupling coefficient k1or k2associated with the gap g1or g2. In Fig.2,there are two different transmission spectra for the pump and idler beams under different power point coupling coefficient,respectively.

    3.Experiment

    A series of 12 dual-interferometer coupled silicon microrings were cascaded and fabricated on a single SOI chip,as shown in Fig.3.Each resonator has a radius of 28μm with the cross-section width and height at 500 nm and 220 nm,respectively. The coupling interferometer has the same radius with the ring and characterized by the single coupling gap which is 180 nm,210 nm,240 nm for the in-through side and 120 nm,150 nm,180 nm,210 nm,240 nm for the add-drop side. Totally 12 combinations listed in Table 1 were fabricated. Thermo-optic modulators were integrated on the microring and long arms of the interferometers to tune the resonance and interferometer phase separately,which ensured that only one of the resonator series was at resonance when measuring FWM efficiency.The silicon grating array was fabricated on the chip for coupling in and out the beams through the off-chip fiber array(FA),with a total coupling loss of 7.13 dB.The linear propagation loss was measured to be 4.23 dB/cm.

    Table 1 summarizes the key parameters of the cascaded resonators including the gap combination and quality factors. The quality factors for wavelengths of 1551.0 nm and 1544.6 nm are obtained from the in-through transmission spectra. Meanwhile,the quality factors of resonant wavelengths at 1552.4 nm and 1547.8 nm are obtained from the add-drop transmission spectra.The quality factors are calculated from the scanned transmission spectra using the formula

    where λ is the resonant wavelength,?λ and Γ denote the full width at half-maximum(FWHM)and the extinction ratio of the resonance,respectively.

    The experimental setup is sketched in Fig.3. The CW laser(Agilent 8164B with a tuning range of 1454–1641 nm and a linewidth of 50 MHz)or the pulse laser(PriTel Inc.FFLTW-60 MHz with a wavelength bandwidth of 0.17 nm)serves as the pump beam and another CW laser(Yenista Tunics T100s with a tuning range of 1500–1630 nm and a linewidth of 0.4 MHz)is used as the signal beam.The pump and the signal beam polarizations are controlled by two separate polarization controllers before they could reach the chip.The idler alongside the residual signal from the drop port are separated and filtered by a dense wavelength division multiplexer(DWDM).The resonance of the pump and signal is monitored by two power meters(PM).The average power of the converted idler is recorded by another PM.

    Fig.3.Experimental setup and the photograph of our dual-interferometer coupled silicon microrings.PC,polarization controller;DWDM,dense wavelength division multiplexer;FA,fiber array;PM,power meter.

    Table 1.Key parameters of the 12 dual-interferometer coupled silicon microrings and the raw FWM efficiency alongside the loss-subtracted efficiency,Q,Qext(×104).The column with the subscript ls represents the loss-subtracted conversion efficiency;CE,the conversion efficiency.The column with pulse1 or pulse 2 represents the pump coupled through the in or drop port,respectively.

    For the CW pump FWM experiment,the pump photons with wavelength at 1551.0 nm are input through the in port and the signal photons with wavelength at 1554.2 nm are input though the add port.The raw measured conversion efficiency for the CW pump FWM using the pump power of 268μW and the signal power of 118μW is listed in the sixth column of Table 1.It is unfair to directly compare the FWM efficiency of different resonators,since the on-chip propagation loss is not negligible and the optical path lengths of the pump,signal,and idler beams for the 12 cascaded resonators also differ from each other.By deducting the impact from the on-chip propagation loss,we give the loss-subtracted conversion efficiency,as listed in the seventh column of Table 1.The maximum efficiency of ?44.8 dB is achieved in the resonator with the gap combination of 240 nm of both interferometers. It is worth noted that here the pump power is set to be low so that no obvious two-photon absorption and free-carrier absorption are involved in this four-wave mixing.

    By substituting the quality factor in Table 1 to Eq.(1),we calculate the theoretical conversion efficiency,which agrees well with experimental results as shown in Fig.4(a). In order to analyze the optimal coupling condition for both the pump and signal,we focus on the key parameters of the ratio between the intrinsic and extrinsic quality factors,that is Qint,p/Qext,pand Qint,i/Qext,i. Deducting the contributions from the signal and idler’s enhancement factor and the pump’s intrinsic factor,the conversion efficiency scale withis in the following formwhere A is a constant for each resonator. Figure 4 shows the theoretical curve and experimental results,which demonstrates that when the pump beam approaches the critical coupling point,the FWM efficiency becomes higher. For comparing the conversion efficiency of the 12 dual-interferometer coupled silicon microrings with different idler coupling conditions,we deduct the contributions from the signal and pump’s enhancement factor and the idler’s intrinsic factor.The efficiency versusis given bywhere B is a constant for each resonator. Both theoretical and experimental results are shown in Fig.4,verifying that the idler should also be operated at the critical point for the maximum CW pump FWM efficiency.

    Fig.4. The CW pump FWM experiment. (a)The normalized conversion efficiency of both the experiment and calculation for the 12 resonators. (b)and(c)The normalized conversion efficiency versusand respectively.

    Then we substitute the CW pump laser by a pulse laser for the pulse pumped FWM experiment,as shown in Fig.3,while the seeding signal keeps unchanged.The average power of the pulse pumped is 60μW and the signal power is the same as that in the former experiment. Both the in-through side and add-drop side can be used to couple the pulse pump,thus as shown in Table 1 and Fig.5,each resonator has two FWM efficiencies obtained by coupling the pump through the in and add ports,respectively. The measured results consist with the calculated well,verifying that our deduced theory of pulse pumped FWM is effective and solid.For most resonators of the ensemble,the FWM efficiency using the add port as the pump coupling port is much higher than that using the in port as the coupling port. This is because those resonators have narrow coupling gaps for the add-drop side compared with the in-through side,namely,the resonant mode of the add-drop side is at the more overcoupling regime which is preferable for pulse pumped FWM.

    To demonstrate the overcoupling condition for both the pump and signal/idler more directly,we list the key resonator parameters and the corresponding FWM efficiency in Table 2.All of the data in the table are obtained by coupling the pulse pump through the drop port.The above three resonators have the coupling gaps of the in-through side fixed at 180 nm and the add-drop side fixed at 180 nm,150 nm,and 120 nm respectively to ensure that the signal and idler’s quality factors have the minimal difference when analyzing the FWM efficiency dependence on pump’s coupling conditions.As the ratio of Qint,p/Qext,pincrease from 1.31 to 5.55,the conversion efficiency also increases,which demonstrates that more overcoupled condition of the pump should be satisfied for higher FWM efficiency.The below three resonators with the coupling gap of the add-drop side fixed at 150 nm and the in-through side varying from 240 nm to 180 nm ensure that the coupling conditions for the pump are approximately the same.The conversion efficiency also increases when the idler beam varies from the undercoupling to overcoupling points,as listed in Table 2.We believe it is the first time to both theoretically and experimentally verify that the pump and idler should be operated at different overcoupling conditions for achieving the maximum pulse pumped FWM efficiency.

    Fig.5.The pulse pumped FWM experimental data.

    Table 2. Six groups of pulse pumped FWM efficiency by pumping through the drop port with the pump,signal,and idler wavelengths at 1547.8 nm,1544.6 nm,and 1551.0 nm,respectively.CE is the normalized conversion efficiency.

    4.Discussion and conclusion

    We design and fabricate a series of dual-interferometer coupled silicon microrings for independently controlling the pump and signal/idler’s quality factors. Both the CW and pulse pumped FWM experiments are carried out to verify the optimal coupling conditions for maximizing the FWM efficiency using our design. The critical coupling condition of the pump and signal/idler has been demonstrated for the CW pump FWM in this work.For the first time,we theoretically and experimentally demonstrate that the pulse pumped FWM efficiency can be optimized by independently tuning the pump and signal/idler at their appropriate overcoupling points.Additionally,the dual-interferometer coupled silicon microrings require a low pump power of microwatt scale for efficient FWM and can be integrated with a large density.Thus,it will enable practical use in the research field of on-chip all-optical signal processing.

    猜你喜歡
    徐平俊杰英文
    Improving the spectral purity of single photons by a single-interferometer-coupled microring
    Bandwidth-tunable silicon nitride microring resonators
    俊杰印象
    海峽姐妹(2019年11期)2019-12-23 08:42:18
    屹立
    悅行(2019年7期)2019-09-10 07:22:44
    表演大師
    我的同桌
    英文摘要
    鄱陽湖學刊(2016年6期)2017-01-16 13:05:41
    英文摘要
    英文摘要
    財經(jīng)(2016年19期)2016-08-11 08:17:03
    徐平 肩負重任的北上
    中國汽車界(2016年1期)2016-07-18 11:13:34
    久久久久久久久久黄片| 在现免费观看毛片| 亚洲国产精品专区欧美| 2022亚洲国产成人精品| 国内少妇人妻偷人精品xxx网站| 3wmmmm亚洲av在线观看| 亚洲国产欧美在线一区| 观看美女的网站| 乱系列少妇在线播放| 丝袜喷水一区| 日本熟妇午夜| 久久99精品国语久久久| 长腿黑丝高跟| av国产久精品久网站免费入址| 日韩一区二区三区影片| 可以在线观看毛片的网站| 99视频精品全部免费 在线| 国产一区二区在线观看日韩| 偷拍熟女少妇极品色| 国产黄色视频一区二区在线观看 | 免费观看在线日韩| 午夜a级毛片| 视频中文字幕在线观看| 少妇人妻精品综合一区二区| 国产日韩欧美在线精品| 波野结衣二区三区在线| 3wmmmm亚洲av在线观看| 日韩成人av中文字幕在线观看| 三级国产精品片| 日韩视频在线欧美| 欧美日韩一区二区视频在线观看视频在线 | 国产成人91sexporn| 天美传媒精品一区二区| 久久久久性生活片| 欧美97在线视频| 亚洲电影在线观看av| 日韩一本色道免费dvd| 国产欧美另类精品又又久久亚洲欧美| 卡戴珊不雅视频在线播放| 精品无人区乱码1区二区| 日韩一区二区视频免费看| 久久精品91蜜桃| 大话2 男鬼变身卡| 亚洲精品aⅴ在线观看| 美女国产视频在线观看| 国产成人a∨麻豆精品| 如何舔出高潮| 亚洲欧美日韩东京热| 国产三级中文精品| 色综合站精品国产| 日韩 亚洲 欧美在线| 午夜精品一区二区三区免费看| 国产熟女欧美一区二区| 久久婷婷人人爽人人干人人爱| 午夜亚洲福利在线播放| 麻豆av噜噜一区二区三区| 亚洲国产日韩欧美精品在线观看| 日韩精品青青久久久久久| 久久久久久国产a免费观看| 亚洲国产色片| 大又大粗又爽又黄少妇毛片口| 国产免费福利视频在线观看| 五月玫瑰六月丁香| 免费观看的影片在线观看| 国产在视频线在精品| 夫妻性生交免费视频一级片| 成人国产麻豆网| 欧美激情在线99| 特大巨黑吊av在线直播| 国产免费男女视频| 国产精品无大码| 精品免费久久久久久久清纯| 男人狂女人下面高潮的视频| 国产成人一区二区在线| 国产三级在线视频| 青春草亚洲视频在线观看| 最近的中文字幕免费完整| av专区在线播放| 日韩精品青青久久久久久| 国产亚洲最大av| 国产中年淑女户外野战色| 老师上课跳d突然被开到最大视频| 在线播放国产精品三级| 久久韩国三级中文字幕| 国产精品久久久久久av不卡| 2021少妇久久久久久久久久久| 99热这里只有是精品在线观看| 国产探花在线观看一区二区| 成人亚洲欧美一区二区av| 日韩中字成人| 国产精品三级大全| 一级毛片我不卡| 中文字幕免费在线视频6| 免费看光身美女| 男人舔奶头视频| 亚洲一级一片aⅴ在线观看| 国产免费视频播放在线视频 | 欧美xxxx黑人xx丫x性爽| 国产老妇伦熟女老妇高清| av女优亚洲男人天堂| 2021少妇久久久久久久久久久| 国产真实乱freesex| 免费看av在线观看网站| 欧美成人午夜免费资源| 亚洲在线自拍视频| 少妇的逼水好多| 99久久九九国产精品国产免费| 日韩欧美 国产精品| 只有这里有精品99| av免费在线看不卡| 乱人视频在线观看| videos熟女内射| .国产精品久久| 99热网站在线观看| 99久国产av精品国产电影| 久久这里有精品视频免费| 国产免费一级a男人的天堂| 床上黄色一级片| 少妇人妻精品综合一区二区| 伦精品一区二区三区| 中文欧美无线码| 丝袜美腿在线中文| 亚洲国产精品国产精品| 亚洲欧美精品自产自拍| 国产精品三级大全| 久久久国产成人精品二区| 精品酒店卫生间| 国产私拍福利视频在线观看| 99在线视频只有这里精品首页| a级一级毛片免费在线观看| 波多野结衣高清无吗| 日本免费a在线| 精品久久久久久成人av| 亚洲国产高清在线一区二区三| 欧美精品国产亚洲| 水蜜桃什么品种好| 免费av观看视频| 久久精品国产自在天天线| 亚洲国产精品成人综合色| 极品教师在线视频| 亚洲精品一区蜜桃| 综合色av麻豆| 好男人视频免费观看在线| 99热这里只有是精品在线观看| 日韩欧美在线乱码| 午夜日本视频在线| 亚洲国产欧美人成| 少妇人妻精品综合一区二区| 午夜视频国产福利| 一区二区三区高清视频在线| a级毛片免费高清观看在线播放| 亚洲国产色片| 成人美女网站在线观看视频| av天堂中文字幕网| 精品人妻视频免费看| av在线天堂中文字幕| 熟女人妻精品中文字幕| 精品久久久噜噜| av.在线天堂| 国产一区亚洲一区在线观看| 免费搜索国产男女视频| 成人鲁丝片一二三区免费| 中文资源天堂在线| 国产极品天堂在线| 亚洲自偷自拍三级| 日韩高清综合在线| 精品久久久久久成人av| 99热精品在线国产| 精品酒店卫生间| 亚洲精品乱码久久久久久按摩| 亚洲av成人精品一二三区| 国产精品爽爽va在线观看网站| 亚洲国产最新在线播放| 国产精品伦人一区二区| 免费一级毛片在线播放高清视频| 最近中文字幕2019免费版| 成人三级黄色视频| 亚洲精品国产成人久久av| 一本一本综合久久| 免费不卡的大黄色大毛片视频在线观看 | 三级毛片av免费| 搞女人的毛片| 亚洲综合色惰| 熟女人妻精品中文字幕| 亚洲国产精品合色在线| 久久久久久久久久黄片| 日韩一区二区三区影片| 亚洲成色77777| 天堂√8在线中文| 建设人人有责人人尽责人人享有的 | 2022亚洲国产成人精品| 嫩草影院入口| 久久精品熟女亚洲av麻豆精品 | 国产成人免费观看mmmm| 乱系列少妇在线播放| 少妇熟女aⅴ在线视频| 丰满人妻一区二区三区视频av| 一级黄片播放器| 欧美不卡视频在线免费观看| 国产高清视频在线观看网站| 一级av片app| 欧美日韩综合久久久久久| 亚洲av成人av| 人妻系列 视频| 国产精品1区2区在线观看.| 国产精品三级大全| 九九爱精品视频在线观看| 亚洲av日韩在线播放| 一个人免费在线观看电影| 国产 一区 欧美 日韩| 男人舔奶头视频| 久久韩国三级中文字幕| 看片在线看免费视频| 国产一区二区在线观看日韩| 久久久精品94久久精品| 国产精品蜜桃在线观看| 成年女人看的毛片在线观看| 一级毛片久久久久久久久女| 丝袜喷水一区| 国产真实伦视频高清在线观看| 最后的刺客免费高清国语| 人人妻人人看人人澡| 精品国产三级普通话版| 久久久国产成人免费| 国产成人一区二区在线| 国产欧美另类精品又又久久亚洲欧美| 男人狂女人下面高潮的视频| 我的老师免费观看完整版| 免费观看人在逋| 亚洲在线观看片| 神马国产精品三级电影在线观看| 欧美xxxx黑人xx丫x性爽| 亚洲欧美成人精品一区二区| 亚洲av.av天堂| 麻豆av噜噜一区二区三区| 国产午夜福利久久久久久| 少妇裸体淫交视频免费看高清| 国产成人a区在线观看| 亚洲成人精品中文字幕电影| 亚洲欧美日韩高清专用| 国产精品乱码一区二三区的特点| 五月玫瑰六月丁香| 国产91av在线免费观看| 日韩人妻高清精品专区| 好男人视频免费观看在线| 中文资源天堂在线| 亚洲国产欧洲综合997久久,| 久久久久久久国产电影| 久久精品人妻少妇| 亚洲五月天丁香| 免费av观看视频| 久久久久久久久久黄片| 亚洲av电影不卡..在线观看| 天天躁夜夜躁狠狠久久av| 欧美xxxx黑人xx丫x性爽| 91狼人影院| 国产亚洲91精品色在线| 亚洲图色成人| 2021天堂中文幕一二区在线观| 亚洲精品国产av成人精品| 国产伦理片在线播放av一区| 亚洲精品乱久久久久久| 国产精品久久久久久久久免| 永久免费av网站大全| 18禁在线无遮挡免费观看视频| 人人妻人人看人人澡| 97超视频在线观看视频| 午夜精品国产一区二区电影 | 中文字幕久久专区| 久久婷婷人人爽人人干人人爱| a级毛色黄片| 欧美三级亚洲精品| 岛国在线免费视频观看| 日韩欧美在线乱码| 亚洲熟妇中文字幕五十中出| 中文字幕免费在线视频6| 国产极品天堂在线| 99在线视频只有这里精品首页| 波野结衣二区三区在线| 视频中文字幕在线观看| 亚洲三级黄色毛片| 精品国产三级普通话版| 超碰97精品在线观看| ponron亚洲| 国模一区二区三区四区视频| 亚洲欧美日韩东京热| 国产亚洲最大av| 国产成人精品一,二区| 亚洲成人精品中文字幕电影| 国产成人aa在线观看| 亚洲国产高清在线一区二区三| 女人十人毛片免费观看3o分钟| 99久久精品一区二区三区| www.色视频.com| 久久精品国产99精品国产亚洲性色| 永久免费av网站大全| 丰满少妇做爰视频| 白带黄色成豆腐渣| 国产精品女同一区二区软件| 欧美潮喷喷水| 国产精品一及| 内地一区二区视频在线| 哪个播放器可以免费观看大片| 热99re8久久精品国产| 国产精品久久久久久久电影| 国产高清有码在线观看视频| 欧美高清成人免费视频www| 国产成年人精品一区二区| 中文字幕免费在线视频6| 免费搜索国产男女视频| 国产成人a区在线观看| 日韩精品有码人妻一区| 久久草成人影院| 日产精品乱码卡一卡2卡三| videossex国产| 精品酒店卫生间| 国产黄色小视频在线观看| 中文字幕av在线有码专区| 99久久中文字幕三级久久日本| 亚洲av电影不卡..在线观看| 亚洲国产精品sss在线观看| 国产黄色视频一区二区在线观看 | 韩国av在线不卡| 欧美三级亚洲精品| 能在线免费看毛片的网站| 国产精品.久久久| 精品免费久久久久久久清纯| 亚洲国产日韩欧美精品在线观看| 欧美一区二区国产精品久久精品| 欧美一级a爱片免费观看看| 七月丁香在线播放| 久久久久久久国产电影| 亚洲成人中文字幕在线播放| a级毛色黄片| 亚洲精品乱码久久久久久按摩| 一区二区三区四区激情视频| 国产久久久一区二区三区| 国产片特级美女逼逼视频| 别揉我奶头 嗯啊视频| www.av在线官网国产| 精品久久久久久电影网 | 内地一区二区视频在线| 插逼视频在线观看| 国产成人福利小说| 国产精品国产三级国产专区5o | 久久6这里有精品| 级片在线观看| 亚洲av成人精品一二三区| 午夜老司机福利剧场| 国产在线男女| 男人舔女人下体高潮全视频| 在线免费十八禁| 亚洲欧美日韩东京热| 国产一区亚洲一区在线观看| 欧美成人免费av一区二区三区| 成人毛片a级毛片在线播放| av视频在线观看入口| 大又大粗又爽又黄少妇毛片口| eeuss影院久久| 亚洲精品456在线播放app| 91aial.com中文字幕在线观看| 国产视频内射| 亚洲成人精品中文字幕电影| 美女高潮的动态| av播播在线观看一区| 天天躁日日操中文字幕| 久久鲁丝午夜福利片| 国产黄片视频在线免费观看| 久久鲁丝午夜福利片| 久久精品久久精品一区二区三区| 内射极品少妇av片p| 观看美女的网站| 国产免费男女视频| 69人妻影院| 久久鲁丝午夜福利片| 国产高清有码在线观看视频| 九草在线视频观看| 男女视频在线观看网站免费| 国产白丝娇喘喷水9色精品| 青青草视频在线视频观看| 日日摸夜夜添夜夜添av毛片| 我要搜黄色片| 久久鲁丝午夜福利片| 最近中文字幕高清免费大全6| 内射极品少妇av片p| 少妇裸体淫交视频免费看高清| 久久久久久久久久成人| 91在线精品国自产拍蜜月| 九草在线视频观看| 91久久精品国产一区二区成人| 白带黄色成豆腐渣| 一边摸一边抽搐一进一小说| 亚洲电影在线观看av| 亚洲av免费高清在线观看| 三级国产精品欧美在线观看| 精品欧美国产一区二区三| 国产成人精品久久久久久| 1024手机看黄色片| 亚洲精品aⅴ在线观看| 国产精品美女特级片免费视频播放器| 高清午夜精品一区二区三区| 好男人在线观看高清免费视频| 亚洲欧美精品自产自拍| 毛片女人毛片| 亚洲最大成人中文| 中国国产av一级| 久久久久免费精品人妻一区二区| 日本爱情动作片www.在线观看| 亚洲国产精品合色在线| 91精品伊人久久大香线蕉| 黄色日韩在线| 亚洲最大成人手机在线| 国产午夜福利久久久久久| 国产淫片久久久久久久久| 精品人妻偷拍中文字幕| 少妇熟女欧美另类| 中文欧美无线码| 18禁动态无遮挡网站| 久久久久精品久久久久真实原创| 一卡2卡三卡四卡精品乱码亚洲| 日韩制服骚丝袜av| 国产 一区 欧美 日韩| 亚洲av成人av| 97超碰精品成人国产| 天美传媒精品一区二区| 黄色日韩在线| 国产精品熟女久久久久浪| 国产成人精品久久久久久| 国产淫片久久久久久久久| 亚洲精品自拍成人| 蜜桃亚洲精品一区二区三区| 日韩精品有码人妻一区| 亚洲美女搞黄在线观看| 亚洲精品亚洲一区二区| 日韩成人av中文字幕在线观看| 久久99热这里只频精品6学生 | 丝袜喷水一区| 亚洲精品乱码久久久久久按摩| 2021少妇久久久久久久久久久| 亚洲av二区三区四区| 日本爱情动作片www.在线观看| 国产色婷婷99| 菩萨蛮人人尽说江南好唐韦庄 | 国产在视频线在精品| 夜夜看夜夜爽夜夜摸| 久久久久久大精品| 亚洲国产成人一精品久久久| 自拍偷自拍亚洲精品老妇| 69av精品久久久久久| 国产伦精品一区二区三区四那| 国产成年人精品一区二区| 99久久人妻综合| 精品久久久久久久久亚洲| 国产中年淑女户外野战色| 亚洲电影在线观看av| 六月丁香七月| 成人高潮视频无遮挡免费网站| 一个人免费在线观看电影| 成人综合一区亚洲| 国产精品精品国产色婷婷| 天天一区二区日本电影三级| 亚洲综合精品二区| 国产三级中文精品| 精品99又大又爽又粗少妇毛片| 久久久久久久久大av| 秋霞伦理黄片| 欧美性猛交╳xxx乱大交人| 色综合色国产| 国内精品宾馆在线| 国产三级在线视频| 99久国产av精品| 看非洲黑人一级黄片| 老女人水多毛片| 欧美性猛交黑人性爽| 伊人久久精品亚洲午夜| 久久国内精品自在自线图片| 日本五十路高清| 亚洲不卡免费看| 亚洲av福利一区| 日韩欧美在线乱码| 亚洲精品影视一区二区三区av| 欧美三级亚洲精品| 国产亚洲一区二区精品| 久久久久久伊人网av| 看片在线看免费视频| 国产高清有码在线观看视频| 日本黄色视频三级网站网址| 一级毛片我不卡| 老司机影院毛片| 国内精品宾馆在线| 亚洲自拍偷在线| 久久精品国产亚洲av天美| 亚洲av福利一区| av在线亚洲专区| 国产黄色小视频在线观看| 国产伦一二天堂av在线观看| 青青草视频在线视频观看| av福利片在线观看| 能在线免费观看的黄片| 国内精品美女久久久久久| 久久久久九九精品影院| 亚洲精品aⅴ在线观看| 男人狂女人下面高潮的视频| 久久久久久久久久黄片| 国产午夜精品论理片| 男女视频在线观看网站免费| 欧美一区二区精品小视频在线| 嘟嘟电影网在线观看| 亚洲av男天堂| 国产精品不卡视频一区二区| 一边摸一边抽搐一进一小说| 亚洲精品自拍成人| 日本三级黄在线观看| 国产一区二区在线av高清观看| 天天一区二区日本电影三级| 久久久久九九精品影院| 亚洲精品,欧美精品| 中文字幕亚洲精品专区| 一边亲一边摸免费视频| 不卡视频在线观看欧美| 99久久精品国产国产毛片| 亚洲真实伦在线观看| 午夜精品国产一区二区电影 | 日本黄大片高清| 又爽又黄无遮挡网站| 免费不卡的大黄色大毛片视频在线观看 | 直男gayav资源| 久久久久久久午夜电影| 高清视频免费观看一区二区 | 少妇高潮的动态图| 免费大片18禁| 伦精品一区二区三区| 免费大片18禁| 不卡视频在线观看欧美| 日日干狠狠操夜夜爽| 女人久久www免费人成看片 | 成人亚洲欧美一区二区av| 18禁裸乳无遮挡免费网站照片| av在线观看视频网站免费| 国产单亲对白刺激| 亚洲精品日韩av片在线观看| 国产精品伦人一区二区| 日韩制服骚丝袜av| 国产成人精品一,二区| 国国产精品蜜臀av免费| 久久久欧美国产精品| 超碰av人人做人人爽久久| 久久精品国产亚洲av涩爱| 免费大片18禁| 国产探花极品一区二区| av卡一久久| 国产黄片美女视频| 亚洲婷婷狠狠爱综合网| 成年版毛片免费区| 色播亚洲综合网| 国产精品一区二区在线观看99 | 美女国产视频在线观看| 观看免费一级毛片| 亚洲av成人av| 国产在线男女| 一级毛片久久久久久久久女| 黄色一级大片看看| 嫩草影院入口| 午夜福利在线观看免费完整高清在| 亚洲国产精品成人久久小说| 国产三级中文精品| 成人鲁丝片一二三区免费| 五月伊人婷婷丁香| 高清毛片免费看| 国产欧美另类精品又又久久亚洲欧美| 联通29元200g的流量卡| 亚洲最大成人av| 欧美激情国产日韩精品一区| 69人妻影院| 一级黄色大片毛片| 男插女下体视频免费在线播放| 国产av码专区亚洲av| 久久久久网色| 免费看a级黄色片| 久久草成人影院| 国产精品久久久久久精品电影| 国产色爽女视频免费观看| 国产av不卡久久| 日韩国内少妇激情av| 精品人妻熟女av久视频| 99热网站在线观看| 亚洲在久久综合| 亚洲欧美清纯卡通| 深夜a级毛片| 秋霞伦理黄片| 最后的刺客免费高清国语| 精品人妻视频免费看| 秋霞伦理黄片| 一本久久精品| 精品人妻视频免费看| 秋霞伦理黄片| 午夜老司机福利剧场| 亚洲精品日韩av片在线观看| 天堂av国产一区二区熟女人妻| 亚洲高清免费不卡视频| 黄片无遮挡物在线观看| 成人欧美大片| 18禁裸乳无遮挡免费网站照片| 97人妻精品一区二区三区麻豆| 国产激情偷乱视频一区二区| 成人午夜高清在线视频| 午夜福利在线在线| 日韩视频在线欧美| 一区二区三区免费毛片| 日本色播在线视频| 99久久精品一区二区三区| 亚洲va在线va天堂va国产| 亚洲国产精品sss在线观看| 午夜视频国产福利| 国产亚洲精品久久久com|