• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical investigation on coherent mid-infrared supercontinuum generation in chalcogenide PCFs with near-zero flattened all-normal dispersion profiles?

    2019-11-06 00:44:22JieHan韓杰ShengDongChang常圣東YanJiaLyu呂彥佳andYongLiu劉永
    Chinese Physics B 2019年10期

    Jie Han(韓杰),Sheng-Dong Chang(常圣東),Yan-Jia Lyu(呂彥佳),and Yong Liu(劉永)

    1State Key Laboratory of Electronic Thin Film and Integrated Devices,School of Optoelectronic Science and Engineering,University of Electronic Science and Technology of China,Chengdu 610054,China

    2School of Environment,3480 University Street,McGill University,Montréal H3A 0E9,Canada

    Keywords:supercontinuum generation,photonic crystal fiber,nonlinear optics

    1.Introductio n

    Coherent light sources in mid-infrared(MIR)region are of great significance for scientific and engineering applications in many domains such as medical surgery,[1]remote sensing,[2]and military countermeasure,[3]since a large number of molecules display a strong vibration absorption capability in this region. The supercontinuum(SC)generation is a process that generates a broad spectrum,promoting the applications in the relevant fields above. Silica-based glass fibers have proved to be excellent nonlinear medium for SC generation.However,the strong material absorption of silica fibers in the MIR region(>2.5μm)limits their applications at longer wavelengths. Compared with silica fibers,chalcogenide glass fibers benefit from their wide transmission window up to 20μm,[4]thus making them a superior candidate for MIR-SC generation. To date,MIR-SC generation spanning from 2μm to 16μm has been successfully demonstrated by using a chalcogenide fiber as a nonlinear medium.[5]Appropriate pump wavelength also plays a crucial role in wide SC generation.It needs to be in the anomalous dispersion regime and near the zero dispersion wavelength of the said fiber.[5]The spectral broadening is mainly dominated by soliton dynamics,especially soliton fission,and subsequent soliton selffrequency shift.However,soliton dynamics is sensitive to the input noise,[6]which causes the spectral coherence to degrade.In view of the perspective of practical applications,the SCs with high coherence possesses great applications in optical coherence tomography[7]and frequency metrology.[8]

    To generate coherent SCs,fibers with all-normal dispersion profiles are now used. For SCs in these fibers,spectrum broadening is mainly dominated by self-phase modulation(SPM)and optical wave breaking(OWB),which suppress soliton-related process,especially soliton fission. The generated SC possesses perfect coherence in the entire spectrum.In the following experimental work the all-normal dispersion fibers are adopted for better SC coherence.[9–13]Al-Kadry et al.generated a 0.96-μm–2.5-μm coherent SC by using 150-pJ pulses to pump all-normal dispersion chalcogenide microwires.[9]A coherent SC covering 2.2μm–3.3μm was demonstrated by using all-normal dispersion AsSe2–As2S5microstructured fiber pumped at 2.7μm.[10]Nagasaka et al.used a double-cladding chalcogenide fiber,which has As2Se3core and AsSe2inner cladding and As2S5outer cladding,pumped with 1.3-MW pulses at 10μm to generate 2-μm–14-μm coherent SC.[11]Optical parametric amplifier(OPA)was adopted because the considered pump pulse is hard to obtain just by fiber laser. However,OPA suffers huge system and high expanse,which is disadvantageous to the practical applications. Jiao et al.generated a coherent SC covering 2μm–14μm by pumping a double-cladding tellurium fiber with femtosecond laser at 5μm.[12]The choice of the double-cladding fiber leads to the high peak power(estimated at around several megawatts)of the pump pulses.In addition,OPA was also used to provide pump pulses.Zhang et al.generated a coherent SC covering 1.7μm–12.7μm by pumping a chalcogenide tapered fiber at 5.5μm.[13]The adopted dispersion curve is inverted-V-shaped.The long wavelength components experience large group velocity dispersion,which also means that high pump power leads to a large red frequency shift.

    There are also several numerical simulations on SCs in all-normal dispersion medium. Karim et al. numerically demonstrated a 2-μm–5.5-μm SC by pumping a Ge11.5As24Se64.5PCF with 5-kW pulses at 3.1 μm.[14]Then Singh Saini et al.simulated coherent SC covering 1.2μm–7.2μm by pumping a chalcogenide rib waveguide at 2.8μm.[15]Nagasaka et al.numerically generated a coherent SC covering 3.3μm–10.4μm by pumping a chalcogenide double-clad fiber with 300-fs pulses at 6μm.[16]The considered pump pulses are still based on OPA.Diouf et al.numerically generated a coherent SC covering 2.9μm–4.575μm by pumping an As38.8Se61.2PCF with 50-fs pulses at 3.7μm.[17]The adopted dispersion curve is also inverted-V-shaped,which is disadvantageous to increasing red frequency shift due to the large dispersion of long wavelength components.[18]Cherif et al.generated a 2μm–8μm coherent SC by pumping an As2Se3-based PCF with pulses at 5μm.[19]The adopted dispersion curve is inverted-V-shaped,and the pump pulse is hard to obtain by fiber laser.

    Appropriate all-normal dispersion profile is significant for the broadband coherent SC generation. Compared with the inverted-V-shaped dispersion curve,an inverted-L-shaped dispersion curve is very beneficial to increasing red frequency shift of the SC.[18]To obtain such inverted-V-shaped dispersion characteristics,fibers with high design flexibility are more attractive. Having high design flexibility and being able to achieve the desired dispersion characteristics,the photonic crystal fibers(PCFs)enjoy the dispersion curve that is changeable by varying the geometric parameters,and the nonlinearity of PCF can also increase due to the enhanced confinement of the optical field.All the above merits of PCFs are favorable for generating broadband SC in the MIR region.

    In this paper,we design a novel 3-cm-long As2Se3–As2S5PCF with near-zero flattened all-normal dispersion profiles.With the above all-normal dispersion PCF,it is possible to generate SC up to 10μm with perfect coherence when pumped with pulses at 3μm,and the resulting SC is able to cover two atmospheric windows of 3μm–5μm and 8μm–10μm wavelengths.Our simulations provide a potential all-fiber scheme to obtain highly coherent MIR-SC.

    2.Numerical model

    Pulse propagation in the fiber can be modeled by generalized nonlinear Schr?dinger equation(GNLSE).Based on the derivation of GNLSE in Ref.[20],we solved this equation in the frequency domain:

    where α(ω)denotes the frequency-dependent linear loss in the fiber, β(ω)the propagation constant, ω the angular frequency,ω0the central angular frequency,andthe frequency-dependent nonlinear coefficient,which is defined as

    where n2is the nonlinear refractive index,and neff(ω)is the frequency-dependent refractive index.It should be noted that this definition of nonlinear coefficient is different from the conventional definition of nonlinear coefficient that is defined as

    where Aeff(ω)denotes the frequency-dependent effective area,which is given by

    where F(x,y,ω)is the transverse mode distribution in the fiber and R(t)is the nonlinear response function which can be obtained from

    where fRdenotes the Raman contribution to the total nonlinear response and hR(t)represents the delayed Raman response and is expressed as a damped oscillation function,which is given by

    Using

    to change into interaction picture,the stiff dispersive part of the equation can be removed.[21]This version of GNLSE can be solved by standard Runge–Kutta method.

    Shot noise of the input pulses is added based on the one photon per mode(OPPM)model,[22]which is defined as

    where Tmaxis the time window of the simulation,h the Planck constant,ν the frequency,and ?(ν)the random phase described by the white noise which is uniformly distributed in the interval of[0,2π].The OPPM noise model is added in the frequency domain,then the field with random noise is transformed into the time domain to denote the input pulse.

    The coherence can be described by the modulus of the complex degree of first-order coherence,[6]which is defined as

    where the angular brackets denote an ensemble average of a great number of independently generated pairs of SC spectraand t is the time measured on the scale of the temporal resolution of the spectrometer used to resolve these spectra.The degree of coherencelies in the interval[0,1],with a value of 1 denoting perfect coherence.

    3.Design of all-normal dispersion chalcogenide PCF

    The conventional hexagon PCF structure is adopted to obtain all-normal dispersion properties.The cross-section of the proposed chalcogenide PCF is shown in Fig.1,where d is the air hole diameter and Λ is the pitch between two air holes.The PCF has a core made of As2Se3surrounded by five rings of circular air holes where the innermost ring is filled with As2S5glass.The As2Se3glass and the As2S5glass each have a high transmissivity in the region of 1μm–17μm and 1μm–15μm,[11]respectively.All these holes have identical diameters.Such a microstructured fiber can be fabricated by rod-intube technique.[23]

    Fig.1.Cross-section of the proposed As2Se3–As2S5 PCF.

    3.1.Dispersion properties of PCF

    The wavelength-dependent refractive index of the chalcogenide glass is calculated from the Sellmeier equation

    Here,the coefficients Aiand λiof As2Se3and As2S5are cited from Refs.[24]and[23],respectively.The group velocity dispersion(GVD)of the fiber is calculated from

    where neffis the effective refractive index calculated by COMSOL based on the full-vector finite element method.

    Fig.2.Plots of D versus wavelength(a)for three different d values and(b)for three different Λ values,respectively.

    To obtain all-normal dispersion property of the proposed PCF,we optimized the dispersion by changing the structure parameters of the fiber. Dispersion curves of the PCF can be changed by varying the values of air hole diameter d,and the pitch Λ.Figure 2 shows the dispersion curves of the proposed PCF in a wavelength range between 2μm and 10μm.The dispersion curves with fixed Λ value at 3.2μm and varying d value are shown in Fig.2(a). As can be observed in Fig.2(a),when the air hole diameter increases,the dispersion curve moves up.When d value is smaller than 2μm,the whole dispersion curves are below the zero axis.When d value increases to 2μm,the peak of the dispersion curve enters into the anomalous dispersion region,which is related to soliton dynamics that can cause the SC coherence to degrade. The dispersion curve with d value at 1.6μm has the near zero flatted all-normal property in a 4μm–10μm region.To investigate the effect of Λ value on the dispersion characteristics,we calculated the dispersion by changing Λ value.The dispersion curves with fixed d value at 1.6μm and varying Λ value are shown in Fig.2(b).When Λ value changes,dispersion curves are nearly unchanged.For varying Λ value at 3.0μm,3.2μm,and 3.4μm,all three dispersion curves are in the normal dispersion region.According to the dispersion curves mentioned above,we chose the chalcogenide PCF with d value at 1.6μm and Λ value at 3.2μm as the optimized all-normal dispersion fiber.The corresponding dispersion curve is shown in the red dashed line in Fig.2(a).

    3.2.Effective mode area and nonlinear coefficient of PCF

    The effective mode area and the nonlinear coefficient are calculated by Eq.(6)and Eq.(4),respectively,which are shown in Fig.3.The value of n2is 2.3×10?17m2/W.[1]The black line and the red line indicate the effective mode area and the nonlinear coefficient,respectively.As can be observed in Fig.3,the efficient mode area increases with wavelength increasing,while the nonlinear coefficient has an opposite trend.The effective area and the nonlinear coefficient at 3μm are 15μm2and 3.22 W?1·m?1,respectively.

    Fig.3. Calculated effective mode area and nonlinear coefficient versus wavelength of proposed all-normal dispersion PCF(Λ=3.2μm,and d=1.6μm),with inset showing fundamental mode distribution at 3μm of proposed PCF.

    4.Results and discussion

    According to the obtained all-normal dispersion curve,first,we numerically study the chalcogenide PCF pumped with hyperbolic secant pulses at 3μm,which can be obtained in an Er3+-doped ZBLAN fiber laser.[25]The fundamental mode distribution at 3μm of the proposed PCF is shown in the inset in Fig.3,which indicates that the optical field is confined in the PCF core. The GVD at 3μm has a value of ?61.7 ps·nm?1·km?1.For As2Se3-based fiber,fR=0.148,τ1=23 fs,and τ2=164.5 fs are considered in the simulation.[26]In order to investigate the effect of pulse parameters(peak power and pulse width)on the obtained SC,we solve the GNLSE by MATLAB with a series of varying pulse parameters.

    We first pump 3-cm PCF with 100-fs pulses. The obtained spectra at the output of the PCF pumped with 4 kW–16 kW are shown in Fig.4.The obtained spectrum width increases with peak power increasing.As the pump peak power increases,the short wavelength edges of the generated SCs decrease little while the long wavelength edges increase obviously.When the peak power reaches 16 kW,the generated SC covers the wavelength region from 1.4μm to 9.9μm at a?40-dB level.The long wavelength edge is nearly 10μm.

    Fig.4.Simulated output spectra in 3-cm PCF(Λ=3.2μm,d=1.6μm)when pumped at 3μm with 4-kW–16-kW pulses(pulse width:100 fs).

    When the peak power increases to 16.8 kW,the output SC rises from 1.4μm to 10μm.The corresponding spectral and temporal evolution along the 3-cm chalcogenide PCF are shown in Figs.5(a)and 5(b),respectively.At the first stage of the SC generation,self-phase modulation is dominated.This causes the spectrum to broaden symmetrically.After several millimeters’propagation,the spectrum broadening is dominated by optical wave breaking.Because the pulse propagates in the normal dispersion region,longer wavelength components travel faster than shorter wavelength components,which causes different wavelengths to overlap in the time domain.[27]This phenomenon results in the generation of new frequencies on both sides of the spectrum.The onset position of OWB can be calculated from

    where T0is the pulse width,β2is the group velocity dispersion,and P0is the peak power of the pulse.[15,27]The calculated onset distance of OWB is 0.5 mm.It means that the OWB occurs at the very short distance,which can be observed from Fig.5(a).The corresponding spectral and temporal output are depicted in Figs.5(c)and 5(d),respectively.

    Fig.5.(a)Simulated spectral and(b)temporal evolutions along the fiber,(c)simulated spectral output,and(d)simulated temporal output,obtained on condition that 3-cm chalcogenide PCF is pumped at 3μm with 100-fs pulses with 16.8-kW peak power.

    Fig.6.(a)Simulated modulus of complex degree of first-order coherence and(b)spectrogram of the output SC,with 3-cm chalcogenide PCF pumped at 3μm by 100-fs pulse with 16.8-kW peak power.

    To investigate the coherence characteristics of the generated SC,we conduct 20 independent simulations with random noise described by OPPM model,which generates 190 pairs of SC spectra.The calculated modulus of complex degree of first-order coherence of the output SC is shown in Fig.6(a).As can be seen from the figure,the degree of coherence has a value of 1 in the entire spectrum,which indicates perfect coherence.The spectrogram can reveal spectral and temporal characteristics of pulses simultaneously. The corresponding spectrogram is depicted in Fig.6(b). It shows that the obtained SC has no separated components in both time domain and frequency domain,which further confirms the coherent characteristics.

    Fig.7.Simulated spectra and coherence of the generated SCs,with 3-cm chalcogenide PCF pumped at 3μm by pulses with peak power of 16.8 kW and pulse duration of(a)100 fs,(b)200 fs,and(c)300 fs,respectively.

    To investigate the influence of pulse width on the SC,we carry out simulations by changing pulse widths.Figure 7 shows the spectra and coherence of the generated SCs when pumped at 3μm with 100-fs–300-fs pulses.As pulse width increases,the spectrum has more oscillation components,and the spectrum width decreases. Compared with longer pulse duration,shorter pulse duration undergoes stronge SPM effect,which causes a wider SC spectrum at the same distance.When pump pulse duration increases,the generated SC is still highly coherent.By using ultra-short pulses,broadband and highly coherent SC can be obtained.

    The pump wavelengths of the simulations mentioned above are 3μm. At this pump wavelength,the dispersion of the PCF is ?61.7 ps·nm?1·km?1. A smaller value of dispersion is beneficial to the low pump power. The optimized dispersion curve has near-zero flatted characteristics in a region of 4μm–10μm,which provides the wide selection of pump wavelengths.The peak of the dispersion curve in the 2μm–8μm region is at 5μm with a value of only?9.6 ps·nm?1·km?1.According to this small GVD,we pump 3-cm PCF with 100-fs pulses at 5μm. At this pump wavelength,a peak power of 2.7 kW can generate an SC covering 2.7μm–10μm at a ?30-dB level.The corresponding spectral evolution and the output SC are shown in Figs.8(a)and 8(b),respectively.The spectrum broadening is also dominated by SPM and OWB.The spectrogram and the coherence of the obtained SC are depicted in Figs.8(c)and 8(d),respectively,indicating the perfect coherence in the entire spectrum.

    Fig.8. (a)Simulated spectral evolution,(b)simulated spectral output,(c)simulated spectrogram,and(d)modulus of complex degree of first-order coherence of the output SC,with 3-cm chalcogenide PCF pumped at 5μm with 100-fs pulses and 2.7-kW peak power.

    5.Conclusions

    In this paper,we proposed a novel As2Se3–As2S5PCF.When Λ=3.2μm and d=1.6μm,the optimized near-zero flattened all-normal dispersion curve is obtained.Such dispersion characteristics provide a wide selection of pump wavelengths.The highly coherent SC covering 1.4μm–10μm is achieved when pumped at 3μm. The generated SC covers 3-μm–5-μm and 8-μm–10-μm atmospheric windows. Furthermore,we investigate the influence of pulse parameters on the output SC.By using ultra-short pulses,the broadband and highly coherent SC spectrum can be generated. The simulation results provide a potential all-fiber realization of the broadband coherent MIR-SC.

    日韩成人av中文字幕在线观看| 成人美女网站在线观看视频| 久久久久久久久久成人| 国产免费一级a男人的天堂| 五月伊人婷婷丁香| 舔av片在线| 在现免费观看毛片| 国产av一区在线观看免费| 18+在线观看网站| 亚洲电影在线观看av| 国内揄拍国产精品人妻在线| 亚洲精品影视一区二区三区av| 夜夜夜夜夜久久久久| 成人欧美大片| 国产乱人视频| 久久久久久大精品| 一进一出抽搐动态| 午夜视频国产福利| 我的老师免费观看完整版| 色综合亚洲欧美另类图片| 精品免费久久久久久久清纯| 免费看av在线观看网站| 亚洲无线观看免费| 久久人人精品亚洲av| 床上黄色一级片| 1024手机看黄色片| 麻豆精品久久久久久蜜桃| 精品99又大又爽又粗少妇毛片| 高清毛片免费观看视频网站| 久久精品国产自在天天线| 日本色播在线视频| 国产精品一区二区三区四区久久| 日韩成人av中文字幕在线观看| 床上黄色一级片| 狂野欧美激情性xxxx在线观看| 成人特级av手机在线观看| 九色成人免费人妻av| 国产视频首页在线观看| 亚洲av一区综合| 国产成人a∨麻豆精品| 一级毛片我不卡| 在现免费观看毛片| 非洲黑人性xxxx精品又粗又长| 蜜桃亚洲精品一区二区三区| 高清在线视频一区二区三区 | 最近中文字幕高清免费大全6| 亚洲aⅴ乱码一区二区在线播放| 亚洲四区av| 亚洲国产精品国产精品| 色综合色国产| 亚洲av.av天堂| 在线观看午夜福利视频| 日本在线视频免费播放| 日本一本二区三区精品| 国产精品久久视频播放| 亚洲成人中文字幕在线播放| 久久欧美精品欧美久久欧美| 久久精品夜夜夜夜夜久久蜜豆| 色综合亚洲欧美另类图片| 国产国拍精品亚洲av在线观看| 欧美性感艳星| 精品久久久久久久末码| 老司机影院成人| 麻豆av噜噜一区二区三区| 亚洲不卡免费看| 免费人成在线观看视频色| 亚洲性久久影院| 变态另类成人亚洲欧美熟女| 国产爱豆传媒在线观看| 色综合亚洲欧美另类图片| 精品久久久久久久末码| 亚洲不卡免费看| 免费av不卡在线播放| 亚洲美女视频黄频| 国产精华一区二区三区| 成人午夜精彩视频在线观看| 久久99精品国语久久久| 亚洲av一区综合| 干丝袜人妻中文字幕| 亚洲无线观看免费| 1000部很黄的大片| 深夜a级毛片| 日韩制服骚丝袜av| 高清日韩中文字幕在线| 国产精品,欧美在线| 26uuu在线亚洲综合色| 日韩制服骚丝袜av| 国产精品三级大全| av视频在线观看入口| 国产亚洲精品久久久com| 麻豆精品久久久久久蜜桃| 别揉我奶头 嗯啊视频| 天堂网av新在线| 久久久久久久久久成人| 亚洲精品久久久久久婷婷小说 | 一级毛片aaaaaa免费看小| 中文字幕人妻熟人妻熟丝袜美| 国产成人a区在线观看| 日韩成人伦理影院| 欧美日韩综合久久久久久| 22中文网久久字幕| 3wmmmm亚洲av在线观看| 久久久久久久久久黄片| 久久久久久伊人网av| 国产精品人妻久久久影院| 超碰av人人做人人爽久久| 男人的好看免费观看在线视频| 99在线视频只有这里精品首页| 美女高潮的动态| 女人被狂操c到高潮| 欧美一级a爱片免费观看看| 99久久久亚洲精品蜜臀av| 色哟哟·www| 人妻少妇偷人精品九色| 日韩一区二区视频免费看| 亚洲精品亚洲一区二区| 久久久精品欧美日韩精品| 麻豆国产av国片精品| 99热这里只有精品一区| 中文在线观看免费www的网站| 欧美潮喷喷水| 亚洲最大成人中文| 日本黄色视频三级网站网址| 国产三级在线视频| 99热只有精品国产| 日日干狠狠操夜夜爽| 久久精品国产99精品国产亚洲性色| 国产探花极品一区二区| 亚洲一级一片aⅴ在线观看| 久久九九热精品免费| 直男gayav资源| 成人一区二区视频在线观看| 国产av麻豆久久久久久久| 在线播放无遮挡| 我的老师免费观看完整版| www.色视频.com| 久久精品影院6| 综合色丁香网| 亚洲最大成人手机在线| 中文字幕免费在线视频6| 伦精品一区二区三区| 欧美日韩精品成人综合77777| 天天躁日日操中文字幕| 亚洲av中文字字幕乱码综合| 国产老妇女一区| 国产午夜精品久久久久久一区二区三区| 欧美日韩一区二区视频在线观看视频在线 | 午夜福利视频1000在线观看| 欧美xxxx性猛交bbbb| 亚洲成人精品中文字幕电影| 一区福利在线观看| 一边亲一边摸免费视频| videossex国产| 国产精品久久久久久久久免| 国产大屁股一区二区在线视频| 青春草视频在线免费观看| 白带黄色成豆腐渣| 日韩精品青青久久久久久| 99在线人妻在线中文字幕| 高清毛片免费观看视频网站| 亚洲第一电影网av| 国产亚洲精品av在线| 成人亚洲欧美一区二区av| 亚洲国产精品sss在线观看| 久久久久久国产a免费观看| 一级二级三级毛片免费看| av福利片在线观看| 久久热精品热| 久久中文看片网| 日日干狠狠操夜夜爽| 熟女人妻精品中文字幕| 又爽又黄a免费视频| 亚洲,欧美,日韩| 波多野结衣高清无吗| 亚洲无线在线观看| 国产精品伦人一区二区| 1000部很黄的大片| 卡戴珊不雅视频在线播放| 中文字幕久久专区| 99久久久亚洲精品蜜臀av| 日韩三级伦理在线观看| 天天躁日日操中文字幕| 特大巨黑吊av在线直播| 99久久精品一区二区三区| 国产一级毛片七仙女欲春2| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲精品自拍成人| 亚洲一级一片aⅴ在线观看| 女人十人毛片免费观看3o分钟| 一本一本综合久久| 成人二区视频| 午夜免费男女啪啪视频观看| 日韩精品青青久久久久久| 一级毛片电影观看 | 在线免费十八禁| 国产成人一区二区在线| 亚州av有码| 韩国av在线不卡| .国产精品久久| 国产av不卡久久| 婷婷色av中文字幕| ponron亚洲| 在线观看美女被高潮喷水网站| 狂野欧美白嫩少妇大欣赏| 亚洲三级黄色毛片| 九草在线视频观看| 久久国产乱子免费精品| 在线观看美女被高潮喷水网站| 色噜噜av男人的天堂激情| 久久久久久久久久黄片| 精品久久久久久久末码| 午夜福利成人在线免费观看| 欧美激情国产日韩精品一区| 国产av在哪里看| 青春草亚洲视频在线观看| 校园春色视频在线观看| 91久久精品电影网| 在线观看午夜福利视频| 国产成人freesex在线| 黑人高潮一二区| 国产亚洲欧美98| 中文亚洲av片在线观看爽| АⅤ资源中文在线天堂| 可以在线观看的亚洲视频| 男女那种视频在线观看| 欧美最新免费一区二区三区| 一区福利在线观看| 国模一区二区三区四区视频| 久久久a久久爽久久v久久| 国产精品一区二区在线观看99 | 亚洲性久久影院| 亚洲一级一片aⅴ在线观看| 色视频www国产| 国产亚洲精品久久久久久毛片| 久久综合国产亚洲精品| 日韩一区二区视频免费看| 男女下面进入的视频免费午夜| 午夜福利在线观看吧| 久久人妻av系列| 国产老妇女一区| 婷婷六月久久综合丁香| 亚洲精品影视一区二区三区av| 亚洲美女搞黄在线观看| 91精品一卡2卡3卡4卡| 日产精品乱码卡一卡2卡三| 床上黄色一级片| 欧美xxxx性猛交bbbb| 国产大屁股一区二区在线视频| 免费看光身美女| 国产精品无大码| 免费观看人在逋| 免费看日本二区| 国产午夜福利久久久久久| 91在线精品国自产拍蜜月| 免费人成在线观看视频色| 国产一区二区在线观看日韩| 性色avwww在线观看| 日韩视频在线欧美| 在线观看66精品国产| 国产精品日韩av在线免费观看| 欧美另类亚洲清纯唯美| 国产真实伦视频高清在线观看| 亚洲四区av| 人妻制服诱惑在线中文字幕| 青青草视频在线视频观看| 高清毛片免费看| 亚洲国产高清在线一区二区三| 国产精品,欧美在线| 国产精华一区二区三区| 99热精品在线国产| 99久久精品热视频| 一级av片app| 1000部很黄的大片| 日韩欧美精品免费久久| 国内精品一区二区在线观看| a级毛片免费高清观看在线播放| 天堂影院成人在线观看| www日本黄色视频网| 国产精品美女特级片免费视频播放器| 在线观看免费视频日本深夜| 国产成人a∨麻豆精品| 亚洲性久久影院| 久久精品影院6| 青春草国产在线视频 | av在线天堂中文字幕| 最近的中文字幕免费完整| 91狼人影院| 精品国产三级普通话版| 亚洲高清免费不卡视频| 久久久a久久爽久久v久久| 欧美+亚洲+日韩+国产| 女人十人毛片免费观看3o分钟| 亚洲av电影不卡..在线观看| 伦精品一区二区三区| 国产高清激情床上av| 毛片一级片免费看久久久久| 免费黄网站久久成人精品| 99久久九九国产精品国产免费| 久久精品久久久久久噜噜老黄 | 级片在线观看| 久久精品国产自在天天线| 99热这里只有是精品在线观看| 寂寞人妻少妇视频99o| av卡一久久| 国产伦一二天堂av在线观看| 久久久精品欧美日韩精品| 亚洲av成人精品一区久久| 日韩精品有码人妻一区| 干丝袜人妻中文字幕| 天天躁夜夜躁狠狠久久av| 午夜免费激情av| 婷婷亚洲欧美| 久久6这里有精品| 久久亚洲国产成人精品v| 99在线人妻在线中文字幕| 中文字幕人妻熟人妻熟丝袜美| 日韩中字成人| 如何舔出高潮| 日韩欧美精品v在线| 国产美女午夜福利| 亚洲电影在线观看av| 毛片一级片免费看久久久久| 欧美不卡视频在线免费观看| 69av精品久久久久久| 18+在线观看网站| av又黄又爽大尺度在线免费看 | 欧美一级a爱片免费观看看| 久久这里只有精品中国| 国产精品永久免费网站| 国产不卡一卡二| 国产麻豆成人av免费视频| 国产精品久久久久久久电影| 男女视频在线观看网站免费| 天天一区二区日本电影三级| 久久6这里有精品| 91精品一卡2卡3卡4卡| 黄片wwwwww| 亚洲欧美日韩高清专用| 寂寞人妻少妇视频99o| 免费大片18禁| 久久久精品大字幕| 亚洲熟妇中文字幕五十中出| 日本一本二区三区精品| 国产精品人妻久久久影院| 最近最新中文字幕大全电影3| 亚洲美女视频黄频| 色尼玛亚洲综合影院| 免费观看a级毛片全部| 啦啦啦啦在线视频资源| 2022亚洲国产成人精品| 韩国av在线不卡| 大型黄色视频在线免费观看| 午夜激情欧美在线| 神马国产精品三级电影在线观看| 久久精品国产亚洲网站| 男的添女的下面高潮视频| 在现免费观看毛片| 国产极品精品免费视频能看的| 好男人视频免费观看在线| 国产精品一区二区三区四区免费观看| 国产精品精品国产色婷婷| 天堂av国产一区二区熟女人妻| 国产av不卡久久| 久久久久久久亚洲中文字幕| 99久久中文字幕三级久久日本| 国内久久婷婷六月综合欲色啪| 男女做爰动态图高潮gif福利片| 国产精品蜜桃在线观看 | 麻豆成人午夜福利视频| 亚洲中文字幕一区二区三区有码在线看| 国产成人影院久久av| 三级男女做爰猛烈吃奶摸视频| 男女视频在线观看网站免费| 三级男女做爰猛烈吃奶摸视频| 亚洲婷婷狠狠爱综合网| 国产精品1区2区在线观看.| 亚洲国产精品成人综合色| 久久鲁丝午夜福利片| 日本爱情动作片www.在线观看| 天天一区二区日本电影三级| 免费人成视频x8x8入口观看| 变态另类成人亚洲欧美熟女| 禁无遮挡网站| 三级国产精品欧美在线观看| 麻豆国产av国片精品| 国产精品一区二区性色av| 精品欧美国产一区二区三| 成年女人看的毛片在线观看| 日韩亚洲欧美综合| 22中文网久久字幕| 国产视频内射| 免费观看a级毛片全部| 91精品国产九色| 日本色播在线视频| 中文字幕免费在线视频6| 久久亚洲精品不卡| 午夜久久久久精精品| 美女国产视频在线观看| 丝袜喷水一区| 亚洲精品粉嫩美女一区| 老女人水多毛片| 亚洲成人中文字幕在线播放| 18禁裸乳无遮挡免费网站照片| 中文资源天堂在线| 男女下面进入的视频免费午夜| 久久韩国三级中文字幕| 最新中文字幕久久久久| 能在线免费观看的黄片| 久久欧美精品欧美久久欧美| 蜜桃亚洲精品一区二区三区| www日本黄色视频网| 欧美高清性xxxxhd video| 色综合亚洲欧美另类图片| 中文字幕人妻熟人妻熟丝袜美| 爱豆传媒免费全集在线观看| 免费人成在线观看视频色| 综合色av麻豆| 久久鲁丝午夜福利片| av卡一久久| 高清午夜精品一区二区三区 | 不卡一级毛片| 51国产日韩欧美| 自拍偷自拍亚洲精品老妇| 蜜桃亚洲精品一区二区三区| 色综合亚洲欧美另类图片| 亚洲精品乱码久久久v下载方式| 亚洲精品日韩av片在线观看| 午夜激情福利司机影院| 女同久久另类99精品国产91| 欧美一区二区亚洲| 国产在线精品亚洲第一网站| 一进一出抽搐gif免费好疼| av视频在线观看入口| 免费无遮挡裸体视频| 国产伦在线观看视频一区| 国产精品福利在线免费观看| 夜夜爽天天搞| 人人妻人人看人人澡| 九九久久精品国产亚洲av麻豆| 桃色一区二区三区在线观看| 国内精品美女久久久久久| 日韩高清综合在线| 你懂的网址亚洲精品在线观看 | 干丝袜人妻中文字幕| www日本黄色视频网| 日本三级黄在线观看| 亚洲av.av天堂| 国产探花在线观看一区二区| 舔av片在线| 在线国产一区二区在线| 亚洲内射少妇av| 最近最新中文字幕大全电影3| 91午夜精品亚洲一区二区三区| 欧美bdsm另类| 亚洲成人久久爱视频| 波多野结衣巨乳人妻| 哪里可以看免费的av片| 久久久久久久亚洲中文字幕| 国产成年人精品一区二区| 国产大屁股一区二区在线视频| 久久久成人免费电影| 国产精品久久电影中文字幕| 人人妻人人澡欧美一区二区| 人妻系列 视频| 国产精品久久久久久亚洲av鲁大| 久久久久网色| 久久久久国产网址| 少妇裸体淫交视频免费看高清| 久久久久久久久中文| 九色成人免费人妻av| 国产久久久一区二区三区| 久久精品久久久久久噜噜老黄 | 嘟嘟电影网在线观看| 日日啪夜夜撸| 国产黄色视频一区二区在线观看 | 久久久午夜欧美精品| 国产人妻一区二区三区在| 12—13女人毛片做爰片一| 亚洲国产精品成人久久小说 | 亚洲av免费高清在线观看| 亚洲av二区三区四区| 午夜亚洲福利在线播放| 亚洲欧美成人精品一区二区| 哪里可以看免费的av片| 亚洲国产精品国产精品| 国产一区二区在线观看日韩| 干丝袜人妻中文字幕| 国产乱人视频| 麻豆国产av国片精品| 在线天堂最新版资源| 午夜福利在线观看吧| 色综合色国产| 禁无遮挡网站| 日韩av不卡免费在线播放| 国产精品伦人一区二区| 亚洲av.av天堂| 天堂网av新在线| 国产精品日韩av在线免费观看| kizo精华| 亚洲国产精品成人综合色| 全区人妻精品视频| 日韩 亚洲 欧美在线| 91午夜精品亚洲一区二区三区| 99久国产av精品| 我的女老师完整版在线观看| 在线国产一区二区在线| 夜夜爽天天搞| 边亲边吃奶的免费视频| 一级av片app| 色吧在线观看| 国产在线男女| 色播亚洲综合网| 精品一区二区三区人妻视频| 性欧美人与动物交配| 日日撸夜夜添| 人人妻人人看人人澡| 丝袜美腿在线中文| 色哟哟哟哟哟哟| 啦啦啦啦在线视频资源| 久久久久久久久久黄片| 中国美白少妇内射xxxbb| 亚洲精品影视一区二区三区av| 伦精品一区二区三区| 综合色av麻豆| 简卡轻食公司| 国产日韩欧美在线精品| 国产伦精品一区二区三区视频9| 免费看av在线观看网站| 免费看a级黄色片| 99热这里只有是精品在线观看| 日韩一本色道免费dvd| 在线免费十八禁| 久久久久久九九精品二区国产| 简卡轻食公司| 国产爱豆传媒在线观看| 亚洲国产色片| 日韩欧美 国产精品| 国产淫片久久久久久久久| 国产精品一区二区性色av| 国产精品一区www在线观看| 成人三级黄色视频| 99久久人妻综合| 色哟哟·www| 99久久九九国产精品国产免费| 成人无遮挡网站| 国产熟女欧美一区二区| 能在线免费看毛片的网站| 一个人看的www免费观看视频| 国产成人a∨麻豆精品| 亚洲人成网站在线观看播放| 长腿黑丝高跟| 国产精品电影一区二区三区| 免费电影在线观看免费观看| 久久久久久久亚洲中文字幕| 深夜精品福利| 精品久久久久久久久久免费视频| 国产成年人精品一区二区| 国产成人a区在线观看| 国产一区亚洲一区在线观看| 欧美一级a爱片免费观看看| 亚洲av成人av| 亚洲丝袜综合中文字幕| 国产一区二区三区在线臀色熟女| 中文资源天堂在线| 亚洲av熟女| 变态另类成人亚洲欧美熟女| 毛片女人毛片| 人妻夜夜爽99麻豆av| 最近的中文字幕免费完整| 亚洲激情五月婷婷啪啪| 少妇熟女欧美另类| 日产精品乱码卡一卡2卡三| 久久人人爽人人片av| 91aial.com中文字幕在线观看| 免费看av在线观看网站| 少妇被粗大猛烈的视频| 老司机福利观看| 最新中文字幕久久久久| 久久久久久久久久久丰满| 少妇被粗大猛烈的视频| 九九爱精品视频在线观看| 国产精品一及| 午夜精品一区二区三区免费看| 变态另类丝袜制服| 在线播放无遮挡| 欧美激情在线99| 欧美最新免费一区二区三区| 亚洲精品久久国产高清桃花| 国产亚洲精品久久久久久毛片| 春色校园在线视频观看| 在线天堂最新版资源| 欧美色视频一区免费| 一进一出抽搐gif免费好疼| 久久精品国产清高在天天线| 一边摸一边抽搐一进一小说| 成人综合一区亚洲| 日韩欧美三级三区| 老师上课跳d突然被开到最大视频| 久久这里只有精品中国| 十八禁国产超污无遮挡网站| 亚洲欧美成人综合另类久久久 | 成人国产麻豆网| 日韩亚洲欧美综合| 国产爱豆传媒在线观看| 亚洲国产精品成人久久小说 | 午夜福利视频1000在线观看| 婷婷精品国产亚洲av| 男人的好看免费观看在线视频| 边亲边吃奶的免费视频| 熟女人妻精品中文字幕| 中文欧美无线码| 男人狂女人下面高潮的视频| www日本黄色视频网| 十八禁国产超污无遮挡网站| 国国产精品蜜臀av免费|