• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Elastic properties of anatase titanium dioxide nanotubes:A molecular dynamics study?

    2019-11-06 00:43:44KangYang楊康LiangYang楊亮ChangZhiAi艾長智ZhaoWang王趙andShiWeiLin林仕偉
    Chinese Physics B 2019年10期
    關(guān)鍵詞:楊康

    Kang Yang(楊康),Liang Yang(楊亮),?,Chang-Zhi Ai(艾長智),Zhao Wang(王趙),and Shi-Wei Lin(林仕偉),?

    1State Key Laboratory of Marine Resource Utilization in South China Sea,Hainan University,Haikou 570228,China

    2School of Materials Science and Engineering,Hainan University,Haikou 570228,China

    3School of Science,Hainan University,Haikou 570228,China

    Keywords:molecular dynamics,elastic properties,TiO2 nanotube,chiral angle,radius

    1.Introduction

    With the development of science and technology in the past few years,nanostructures have received much attention from many researchers because of their important role in the fields of energy,environment,and production.Among them,titanium dioxide nanotubes(TNTs)have attracted extensive attention.Due to its large specific surface area,high chemical stability,excellent catalytic property,great acid,and alkaline resistance,[1]the TNTs have been widely used in fuel cells,[2,3]photocatalytic systems,[4,5]energy storage devices,[6,7]gassensitive sensors,[8]pH sensors,[9]and other fields. The main preparation methods of titanium dioxide nanotubes are the template-assisted,[10,11]hydrothermal,[12–14]sol–gel,[15]and electrochemical anodization methods.[16,17]However,the TNTs structures prepared by different methods are different from each other and thus present different performances.In order to optimize the composite performance by using TNTs as the addition,the investigation into their elastic and other mechanical properties are of great importance.For example,titanium dioxide nanotubes play an important role in mechanically enhancing bone bonding and epoxy resin.[18,19]However,the elastic and mechanical properties of a single titanium dioxide nanotube are hard to obtain experimentally. Thus,there is still much room for studying the elastic and mechanical properties of titanium dioxide nanotubes.

    Like carbon nanotubes,titanium dioxide nanotubes are made of transversely isotropic materials,so they are highly symmetrical in elastic properties and sensitive to the helicity and the radius of nanotubes.[20–22]In order to obtain the elastic properties of TNTs effectively,the elastic constants can be calculated by density functional theory or molecular dynamics. The first principles Vienna ab initio simulation package(VASP)has already predicted the elastic constants of bulk anatase and rutile TiO2at 0 K,[23,24]and the elastic constants of bulk rutile at various temperatures have been measured experimentally.[25–27]But the elastic constants of TNTs have not been measured nor calculated yet.

    In this paper,the single-cycle sheet of TiO2anatase(101)is curled into a single wall nanotube structure along different chiral directions. The elastic constants of the nanotubes are calculated by the Matsui and Akaogi(MA)potential function through using molecular dynamics.In order to verify the calculated results,we first use this potential function to calculate the elastic constants of bulk anatase and rutile,which demonstrate good accuracy.Then,the elastic constants of the titanium dioxide nanotubes with different chiral angles are further calculated,including Young’s modulus,shear modulus,and Poisson ratio.Such a prediction of the TNT elastic properties can provide good theoretical guidance for both experimental and practical applications.

    2.Simulation methods

    2.1.Building models

    The nanotube symmetry and structure are described on the basis of the so-called layer folding.[28]The single-wall anatase TNT named(n,m)with open ends can be obtained by simple rotation of the(101)anatase surface along different crystalline orientations(Figs.1(a)and 1(b))and characterized by a chiral vector R,the expression of which is

    Fig.1.(a)Anatase(101)lattice and(b)rolling-up direction and process of nanotubes,with a and b denoting primitive translation vectors,and θ referring to chiral angle.(c)–(g)Different chiral structures of anatase(101)nanotubes.Solid red circle denotes oxygen atom and solid blue circle represents titanium atom.Radius of each nanotube is about 15 nm.

    In Eq.(1),a and b are the primitive translation vectors of the two-periodic(2D)lattice in the layer.The chirality(n,m)is obtained by folding the layer in a way that the chiral vector becomes the circumference of the cross section of the nanotubes,[29]where n and m must be integers.The angle θ betweenandis called chiral angle,and the range of θ is generally in a range of 0?–90?,and θ is determined by the following equation:

    Here we select five different chiral anatase TNTs.The ratios of n to m of the nanotubes are 0(90?),0.5(36.49?),1(20.29?),2(10.47?),and ∞(0?)(Figs.1(c)–1(g)),respectively.And the radius of nanotubes is nearly 15 nm.

    2.2.Potential functions

    Here we use the well-known MD(Molecular Dynamics)software package large-scale atomic/molecular massively parallel simulator(LAMMPS)to perform the calculation.[30]In this calculation,a classical potential function in the form of a pair of potential expressions with clear physical meaning is selected,which is an MA potential function.[31,32]The MA potential function is expressed as

    where U(rij)is the interaction potential between atoms,and rijis the distance between atom i and atom j. The charge of Ti and O atom are+2.196e and ?1.098e,respectively and more potential function parameters are listed in Table 1. A Langevin thermostat is used for the temperature control with NVE ensemble.[33]Long-range electrostatic interactions are calculated by a particle mesh Ewald summation method.[34]The Newton’s equations of motion are integrated by Verletleapfrog algorithm. The cutoff radius is 10and periodic boundary condition is utilized in all three dimensions. The time step used in the simulation is 0.001 ps.

    Table 1.Key parameters of MA potential function.

    2.3.Calculation of elastic modulus

    Bulk anatase,rutile,and TNTs are made of transversely isotropic materials,so they have a high degree of symmetry in their elastic properties. Based on Hooke’s law for elastic materials and using Voigt notation,the engineering moduli Cijcan be calculated from the following formula:

    Both stress σiand strain εjare second rank tensors.In Voigt notation,[35]engineering moduli Cijcan be represented by a 6×6 symmetric matrix as[36]

    For transversely isotropic materials:C11=C22,C23=C31,C44=C55,and C66=(C11?C12)/2,the engineering compliances Sijare also defined in the isotropic direction along the axis,similarly,in Voigt notation:

    with S11=S22,S23=S31,S44=S55,and S66=2(S11?S12).The relationship between engineering moduli Cijand engineering compliances Sijis as follows:

    3.Results and discussion

    Rutile is relatively stable in nature and the elastic constants of rutile are obtained experimentally.We use the MA potential function to calculate the elastic constants of bulk rutile from room temperature to 1000 K,and a fairly good agreement is found between our computed elastic constants and those from the experiments.[25,26](See Table A1 in Appendix A for more details). It is worth pointing out that the elastic constants gradually reduce as the temperature increases.The calculated value of C11is larger than the experimental value,and the rest of the elastic constants are in good agreement with the experimental values,which shows that the MA potential function can effectively predict the elastic properties of rutile TiO2.

    However,the experimental values of anatase elastic constants have not been effectively measured.There exists only the bulk modulus for reference.[38]The elastic constants of anatase at 0 K can be accurately calculated by VASP,and the values are C11=395.2,C12=153.9,C13=156.0,C33=195.9,C44=47.3,C66=59.5(LDA/UPP);C11=336.5,C12=138.6,C13=136.0,C33=192.1,C44=49.4,C66=58.3(GGA/UPP);C11=320,C12=151,C13=143,C33=190,C44=54,C66=60.[23,24]The elastic constants calculated by LAMMPS with MA potential function are C11=419.3,C12=110.5,C13=105.6,C33=202.1,C44=52.5,and C66=50.4.And the calculation results of LAMMPS are in good agreement with those of VASP.Many properties of titanium dioxide have been investigated successfully by using the MA potential function.[39–41]Therefore,the MA potential function can also predict the elastic constants of anatase and nanotubes.

    Figures 2(a)–2(e)show that neither of the elastic constants is significantly affected by temperature for each chiral anatase(101)nanotube. Therefore,temperature will not be an impact factor in the change of Young’s modulus nor Poisson ratio nor shear modulus.Hence,the following calculation results are all obtained at 300 K.

    As can be seen from Table 2,the elastic constants of anatase(101)nanotubes are calculated to be smaller than those of anatase and rutile,and the difference in chiral angle will make the elastic constants of nanotubes different under the condition of the same radius.For the same chiral angle,the elastic constants C11and C33are larger than other elastic constants because of the transversely isotropic structures for nanotubes,which have a stronger load capacity on the Z-axis direction than on the other directions. For the different chiral angles that generally range from 0?to 90?,when the chiral angle of TNT is 0?,its elastic constants are basically the minimum,which is the same as Young’s modulus and shear modulus. When the chiral angle of titanium dioxide nanotubes is 90?,the elastic constants are the biggest in all elastic constants,which case is the same as those for Young’s modulus,shear modulus,and Poisson ratio.The Young’s modulus,Poisson ratio,and shear modulus of the nanotubes can be obtained from Eqs.(7)and(8),and Young’s modulus is determined by C11,C12,C13,and C33.But C11and C33are much larger than other elastic constants,so Young’s modulus of the nanotubes is mainly affected by C11and C33. Poisson ratio is affected not only by the elastic constant but also by Young’s modulus.Shear modulus is determined by Young’s modulus and Poisson ratio.By comparing the nanotubes(9,3),(9,6)as shown in the Supplementary information(Tables A2,A3 in Appendix A)with those in Table 2,it is found that when the radius of the nanotubes is nearly 15 nm,Young’s modulus does not change linearly with the increase of the chiral angle.However,when the chiral angle is 0?,Young’s modulus,Poisson ratio,and shear modulus of the nanotubes are lowest.So the nanotubes with a certain chiral angle will improve the mechanical properties of nanotubes.

    Fig.2.Elastic constants C11,C12,C13,C33,C44,and C66 at temperatures ranging from 100 to 500 K with chiral angles of(a)90?,(b)36.49?,(c)10.47?,(d)20.29?,(e)0?,respectively.

    Table 2.Elastic constants,Young’s moduli,Poisson ratios,and shear moduli(in unit GPa)of anatase(101)nanotubes with different chiral angles at 300 K,and radius of each nanotube of about 15 nm.

    The elastic constants are also sensitive to the radius of the nanotubes.The relationship between the elastic constants and the radius of nanotubes under the same chiral angle is calculated,where the chiral angles are 7.03?(Table A2),10.47?(Table 3),13.85?(Table A3),36.49?(Table A4)respectively.

    Table 3 displays that as the radius of each chiral nanotube increases,the elastic constants first increase and then gradually decrease.And C11and C33are most obvious because of the transversely isotropic structure.The four kinds of nanotubes with different chirality described above have an optimal radius range from about 10 nm to 15 nm.This means that the anatase(101)nanotubes should have maximum elastic constants in a radius range of about 10 nm–15 nm no matter what kind of chirality they have.

    Table 3.Elastic constants,Young’s moduli,Poisson ratios,and shear moduli(in unit GPa)of anatase(101)nanotubes with different radii at chiral angle 10.47?and temperature 300 K.

    Fig.3.Plots of radius-dependent(a)Young’s modulus,(b)Poisson ratio,and(c)shear modulus(in unit GPa)of anatase(101)nanotubes with chiral angle 7.03?and different radii.(d)Young’s modulus,(e)Poisson ratio,and(f)shear modulus(in unit GPa)of anatase(101)nanotubes with chiral angle 10.47?and different radii.

    Fig.4.Plots of radius-dependent(a)Young’s modulus,(b)Poisson ratio,(c)shear modulus(in unit GPa)of anatase(101)nanotubes with chiral angle 13.85?and different radii;(d)Young’s modulus,(e)Poisson ratio,and(f)shear modulus(in unit GPa)of anatase(101)nanotubes with chiral angle 36.49?and different radii.

    Because Young’s modulus is mainly determined by C11and C33,Young’s modulus also presents an increase and then decrease trend as radius increases.From Figs.3 and 4,it can follow that shear modulus and Young’s modulus have maximum values in a range of 10 nm–15 nm.The variation trends of Young’s modulus in an isotropic planeand Young’s modulus perpendicular to the isotropic plane E⊥are basically the same,so areandμ⊥.However,Poisson ratio fluctuates in a certain range.The calculated elastic modulus values are very similar to Young’s modulus values obtained from the direct compressive measurements of individual TiO2nanotubes[42](23 GPa–44 GPa)and nanoindentation[43](36 GPa–43 GPa)in a diameter range of about 35 nm–70 nm.From the analysis above,it can be concluded that in a nanotube radius range of 10 nm–15 nm,Young’s modulus and shear modulus will have maximum values.Saeed et al.[19]successfully improved the mechanical properties of epoxy resin by using nanotubes with a diameter range of 10 nm–20 nm.Because the chiral distribution of nanotubes used experimentally is so wide that it is difficult to determine a single chiral angle of the nanotubes,and thus there will be a lot of nanotubes with different chiral angles in the experiment.However,figures 3 and 4 show that among all the nanotubes,those in a radius range below 15 nm dominate their optimal mechanical properties.And for chiral nanotubes at 36.49?in a radius range of 8 nm–14 nm,Young’s modulus does not differ from each other very much.Therefore,making the diameter of nanotubes as small as possible can improve the mechanical properties of composites.

    Fig.5.Plots of phonon density of states(DOS)versus frequency with chiral angle of 10.47?and different radii from(4,2)to(20,10).

    As shown in Fig.5,phonon densities of states of TNTs with different radii are calculated. Because atoms continuously vibrate at the equilibrium position,there is an interaction between atoms in the crystal,and the vibrations of each atom are not isolated from but interconnected with each other,thus forming elastic waves of various modes.The elastic properties of the crystal can be further analysed from the frequency of crystal vibration.It is worth noting that the nanotubes(4,2),(6,3),(8,4)have additional vibration modes at high frequencies ranging from 25 THz to 28 THz,which means that there is a strong elastic force between atoms.With the increase of radius,the high frequency vibration disappears,which shows that the large nanotubes do not have high frequency vibration and have low elastic forces compared with the small nanotubes.Therefore,elastic properties of nanotubes with small radius are better than those with large radius.This confirms those observations in Figs.3 and 4. The variation of calculated Young’s modulus and shear modulus are small when the radius of nanotubes is small(5 nm–15 nm)due to the high vibration frequency.However,as the radius increases,the elastic constant sharply decreases.

    4.Conclusion and perspectives

    In this work,the elastic constants,Young’s modulus,Poisson ratio,and shear modulus of anatase nanotubes were calculated by using MA potential function and transversely isotropic structure model.The elastic constants of TNTs are found to be not significantly affected by temperature.By calculating the elastic constants of nanotubes with the same radius but different chirality,it can be found that the elastic constants are not proportional to the chiral angle.In addition,both C11andC33are larger than the other elastic constants due to the transversely isotropic structure.By calculating the elastic constants of nanotubes with the same chirality but different radii,the elastic constants,Young’s modulus and shear modulus first increase and then decrease as radius increases.The maximum values appear in a radius range of 10 nm–15 nm,and Poisson ratio fluctuates in a certain range. Nanotubes with a radius range of 5 nm–15 nm have high frequency vibration and large elastic constants compared with big nanotubes.Therefore,the radius of the nanotubes should be as small as possible to enhance their mechanical properties in practice.

    Acknowledgment

    The author would like to thank Dr.Caizhuang Wang at Ames Laboratory for useful guidance and discussion during the molecular dynamics study.

    Appendix A:Supplementary information

    The following are the supplementary data to this article:Elastic constants Cij(in unit GPa)of rutile TiO2from 300 K to 1000 K;Elastic constants,Young’s modulus,Poisson ratio,and shear modulus(in unit GPa)of anatase(101)nanotubes with different radii at different chiral angles(7.03?,13.85?,and 36.49?)at 300 K.

    Table A1.Calculated and experimental results of elastic constants Cij(in unit GPa)for rutile TiO2 from 300 K to 1000 K.

    Table A2.Elastic constants,Young’s moduli,Poisson ratios,and shear moduli(in unit GPa)of anatase(101)nanotubes with different radii at chiral angle 7.03?at 300 K.

    Table A3.Elastic constants,Young’s moduli,Poisson ratios,and shear moduli(in unit GPa)of anatase(101)nanotubes with different radii at chiral angle 13.85?at 300 K.

    Table A4.Elastic constants,Young’s moduli,Poisson ratio,and shear moduli(in unit GPa)of anatase(101)nanotubes with different radii at chiral angle 36.49?at 300 K.

    猜你喜歡
    楊康
    A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
    Residual field suppression for magnetocardiography measurement inside a thin magnetically shielded room using bi-planar coil
    《小Q》真實(shí)版:看不見的戀人,跨過山和大海來呵護(hù)你
    面向自動問答的機(jī)器閱讀理解綜述
    Personal Deixis in English News Headlines
    梅超風(fēng)其實(shí)重情重義
    百家講壇(2018年5期)2018-08-23 11:08:44
    梅超風(fēng)其實(shí)重情重義
    《射雕》是一部失傳的教育真經(jīng)
    閱讀時代(2017年3期)2017-10-24 12:44:57
    相遇
    從《射雕英雄傳》看孩子的家庭教育
    中華家教(2016年11期)2016-12-03 15:16:43
    欧美3d第一页| 五月天丁香电影| 免费播放大片免费观看视频在线观看| 国产成人精品福利久久| 女的被弄到高潮叫床怎么办| 久久6这里有精品| 免费av毛片视频| 国产免费福利视频在线观看| 免费观看精品视频网站| 91精品国产九色| 两个人视频免费观看高清| 亚洲精品成人久久久久久| 高清视频免费观看一区二区 | 国内精品一区二区在线观看| 内地一区二区视频在线| 亚洲精品国产av成人精品| 麻豆国产97在线/欧美| 亚洲精品,欧美精品| 九草在线视频观看| 亚洲天堂国产精品一区在线| 国产亚洲精品久久久com| 97在线视频观看| 欧美日韩在线观看h| 白带黄色成豆腐渣| 日本一本二区三区精品| 久久久久精品性色| 18禁在线播放成人免费| av免费观看日本| 美女脱内裤让男人舔精品视频| 精品久久久噜噜| 99热全是精品| 一二三四中文在线观看免费高清| 久久99热这里只有精品18| 欧美三级亚洲精品| 久久久久久久久中文| 特大巨黑吊av在线直播| 久久久久九九精品影院| 久久久久久国产a免费观看| 亚洲欧美日韩无卡精品| 国产老妇女一区| 寂寞人妻少妇视频99o| 亚洲在线观看片| 青春草国产在线视频| 91精品伊人久久大香线蕉| 国产精品女同一区二区软件| 久久精品国产自在天天线| 国产av码专区亚洲av| 亚洲人成网站在线观看播放| 中文字幕亚洲精品专区| 一本一本综合久久| 国产综合精华液| 美女国产视频在线观看| 国产乱人视频| 看十八女毛片水多多多| 中文字幕久久专区| 亚洲精品中文字幕在线视频 | 美女大奶头视频| 波野结衣二区三区在线| 美女被艹到高潮喷水动态| 晚上一个人看的免费电影| 在线 av 中文字幕| 欧美一区二区亚洲| 亚洲美女视频黄频| 国产乱人视频| 国产男女超爽视频在线观看| 日韩欧美一区视频在线观看 | 久热久热在线精品观看| 春色校园在线视频观看| 青春草亚洲视频在线观看| 亚洲av成人精品一二三区| 亚洲国产欧美人成| 大香蕉97超碰在线| 一个人观看的视频www高清免费观看| 一本一本综合久久| 成人亚洲精品av一区二区| 国产亚洲av片在线观看秒播厂 | 国产熟女欧美一区二区| 在线播放无遮挡| 国产成人午夜福利电影在线观看| 国产在视频线在精品| 波多野结衣巨乳人妻| 欧美最新免费一区二区三区| av在线观看视频网站免费| 99久久中文字幕三级久久日本| 99九九线精品视频在线观看视频| 免费观看的影片在线观看| 国产精品久久久久久久久免| 免费大片18禁| 亚洲欧美日韩卡通动漫| 免费黄色在线免费观看| 尤物成人国产欧美一区二区三区| 蜜桃亚洲精品一区二区三区| 国产亚洲91精品色在线| 美女国产视频在线观看| 亚洲国产欧美人成| 欧美一区二区亚洲| 国产亚洲av嫩草精品影院| 亚洲一区高清亚洲精品| videos熟女内射| 午夜视频国产福利| 三级男女做爰猛烈吃奶摸视频| 国产av在哪里看| 有码 亚洲区| 一个人观看的视频www高清免费观看| 国产久久久一区二区三区| 色网站视频免费| 亚洲av免费在线观看| 久久久久网色| 亚洲国产日韩欧美精品在线观看| 亚洲国产精品专区欧美| 狂野欧美白嫩少妇大欣赏| 人妻一区二区av| 美女大奶头视频| 在线观看免费高清a一片| 精品人妻一区二区三区麻豆| 国产免费一级a男人的天堂| 成人特级av手机在线观看| 三级国产精品片| 看免费成人av毛片| 五月玫瑰六月丁香| 蜜桃亚洲精品一区二区三区| 国产一级毛片七仙女欲春2| 精品久久国产蜜桃| 午夜福利成人在线免费观看| 1000部很黄的大片| 国精品久久久久久国模美| 亚洲国产精品国产精品| 午夜福利在线观看免费完整高清在| 一边亲一边摸免费视频| 女的被弄到高潮叫床怎么办| 日本免费在线观看一区| 免费看美女性在线毛片视频| 亚洲av电影不卡..在线观看| 1000部很黄的大片| 日韩av在线大香蕉| 午夜精品一区二区三区免费看| 神马国产精品三级电影在线观看| 大片免费播放器 马上看| 午夜精品一区二区三区免费看| 男女边摸边吃奶| 校园人妻丝袜中文字幕| 亚洲图色成人| 男人舔奶头视频| 日日干狠狠操夜夜爽| videos熟女内射| av网站免费在线观看视频 | 中国国产av一级| 三级国产精品片| 成年版毛片免费区| 久久久久久国产a免费观看| 男人狂女人下面高潮的视频| 午夜福利在线观看免费完整高清在| 欧美另类一区| 亚洲av不卡在线观看| 国产精品久久久久久久电影| 综合色av麻豆| av黄色大香蕉| 亚洲国产精品sss在线观看| 97热精品久久久久久| 联通29元200g的流量卡| 国产精品av视频在线免费观看| 日韩亚洲欧美综合| 不卡视频在线观看欧美| 2018国产大陆天天弄谢| 亚洲av免费高清在线观看| 免费黄频网站在线观看国产| 欧美激情国产日韩精品一区| 久久久久久久久久久免费av| 成人亚洲欧美一区二区av| 国产精品一区二区在线观看99 | 久久这里只有精品中国| 校园人妻丝袜中文字幕| 色视频www国产| 97超碰精品成人国产| 欧美精品一区二区大全| 一级毛片 在线播放| 少妇猛男粗大的猛烈进出视频 | 亚洲不卡免费看| 黄色配什么色好看| 亚洲国产精品sss在线观看| 18禁在线播放成人免费| 韩国高清视频一区二区三区| 国内精品一区二区在线观看| 色综合站精品国产| 中文字幕人妻熟人妻熟丝袜美| 日韩av不卡免费在线播放| 最近中文字幕高清免费大全6| 极品少妇高潮喷水抽搐| 日韩人妻高清精品专区| 国模一区二区三区四区视频| 国产成人一区二区在线| 久久久久久久久大av| 精品人妻熟女av久视频| 夫妻性生交免费视频一级片| 国产综合精华液| 丝袜喷水一区| eeuss影院久久| 亚洲国产最新在线播放| 亚洲久久久久久中文字幕| 久久鲁丝午夜福利片| 老司机影院毛片| 国产亚洲5aaaaa淫片| 国产综合精华液| 国产精品麻豆人妻色哟哟久久 | 精品亚洲乱码少妇综合久久| 国产永久视频网站| 午夜免费激情av| 久久亚洲国产成人精品v| 国产精品一及| 成年免费大片在线观看| 边亲边吃奶的免费视频| 亚洲综合精品二区| 99re6热这里在线精品视频| 丰满人妻一区二区三区视频av| 麻豆精品久久久久久蜜桃| 精品国产露脸久久av麻豆 | 青春草视频在线免费观看| 国产一区二区三区av在线| 国产亚洲av嫩草精品影院| 欧美激情国产日韩精品一区| a级毛片免费高清观看在线播放| 亚洲美女搞黄在线观看| 久久99蜜桃精品久久| 高清欧美精品videossex| av在线亚洲专区| 亚洲av免费在线观看| 蜜桃亚洲精品一区二区三区| 汤姆久久久久久久影院中文字幕 | 黄色配什么色好看| 亚洲欧洲日产国产| 精品亚洲乱码少妇综合久久| 婷婷色综合大香蕉| 少妇熟女欧美另类| 欧美日韩一区二区视频在线观看视频在线 | 少妇丰满av| 国产黄色视频一区二区在线观看| 精品熟女少妇av免费看| 超碰av人人做人人爽久久| 欧美97在线视频| 3wmmmm亚洲av在线观看| 成年免费大片在线观看| 亚洲精品自拍成人| 成人性生交大片免费视频hd| 国产精品久久久久久久电影| 精品久久久久久久末码| 人妻制服诱惑在线中文字幕| 免费大片18禁| a级一级毛片免费在线观看| 久久久成人免费电影| a级毛色黄片| 亚洲欧美精品自产自拍| videossex国产| 国产精品99久久久久久久久| 亚洲最大成人av| 国产成人精品一,二区| 亚洲成人精品中文字幕电影| 国产精品美女特级片免费视频播放器| 亚洲国产高清在线一区二区三| 搡老妇女老女人老熟妇| 国产伦理片在线播放av一区| 国产成年人精品一区二区| 精品久久久久久成人av| 日本午夜av视频| 亚洲欧美一区二区三区国产| 亚洲欧美精品自产自拍| 久久99热这里只频精品6学生| 亚洲av电影不卡..在线观看| 精品不卡国产一区二区三区| 日韩av免费高清视频| 久久精品久久久久久久性| 国产精品一区二区性色av| 少妇裸体淫交视频免费看高清| 亚洲久久久久久中文字幕| 不卡视频在线观看欧美| 三级经典国产精品| eeuss影院久久| 精品人妻熟女av久视频| 人妻夜夜爽99麻豆av| 精品久久久久久久末码| 伦理电影大哥的女人| 我要看日韩黄色一级片| 欧美变态另类bdsm刘玥| 国产精品三级大全| 成人一区二区视频在线观看| 爱豆传媒免费全集在线观看| 在线观看人妻少妇| 亚洲综合色惰| 成人鲁丝片一二三区免费| 色网站视频免费| 亚洲国产精品成人综合色| 天堂影院成人在线观看| 国产淫语在线视频| 一级毛片黄色毛片免费观看视频| 国产亚洲91精品色在线| 免费在线观看成人毛片| 亚洲色图av天堂| 美女黄网站色视频| 51国产日韩欧美| 高清视频免费观看一区二区 | 51国产日韩欧美| 九草在线视频观看| 亚洲国产欧美在线一区| 麻豆精品久久久久久蜜桃| 色综合色国产| 高清日韩中文字幕在线| 久99久视频精品免费| 高清视频免费观看一区二区 | 丝袜喷水一区| 色吧在线观看| 丝袜喷水一区| 日韩三级伦理在线观看| 亚洲人成网站高清观看| 国产一区亚洲一区在线观看| 男女那种视频在线观看| 日韩欧美三级三区| 在线观看人妻少妇| 在线免费观看的www视频| 欧美高清性xxxxhd video| 日本色播在线视频| 成人二区视频| 日韩欧美精品v在线| 免费黄色在线免费观看| 国产精品国产三级专区第一集| 乱系列少妇在线播放| 精品一区二区三区人妻视频| 精品一区二区三区视频在线| 1000部很黄的大片| 婷婷色综合www| 亚洲成色77777| 亚洲aⅴ乱码一区二区在线播放| 亚洲,欧美,日韩| 日韩强制内射视频| 午夜免费观看性视频| 又大又黄又爽视频免费| 亚洲精品456在线播放app| 免费高清在线观看视频在线观看| 亚洲精品日本国产第一区| 精品熟女少妇av免费看| 国模一区二区三区四区视频| 熟女电影av网| 2021少妇久久久久久久久久久| 伊人久久精品亚洲午夜| 女人十人毛片免费观看3o分钟| 不卡视频在线观看欧美| 日日摸夜夜添夜夜爱| 免费看光身美女| 久久久久久久久久黄片| 国产在视频线在精品| 看非洲黑人一级黄片| 成人鲁丝片一二三区免费| 亚洲精品,欧美精品| 麻豆乱淫一区二区| 亚洲欧美精品专区久久| 极品教师在线视频| 日韩欧美精品v在线| 欧美丝袜亚洲另类| 人人妻人人澡欧美一区二区| 最近2019中文字幕mv第一页| 蜜臀久久99精品久久宅男| 日韩 亚洲 欧美在线| 一区二区三区高清视频在线| 51国产日韩欧美| 亚洲激情五月婷婷啪啪| 三级国产精品片| 人人妻人人澡欧美一区二区| 久久久久性生活片| 黄色日韩在线| 亚洲婷婷狠狠爱综合网| 久久久久久久久久成人| 成人午夜高清在线视频| 免费av不卡在线播放| 好男人视频免费观看在线| 亚洲成色77777| 亚洲高清免费不卡视频| 国产精品久久久久久久电影| 久久久久网色| 日韩精品青青久久久久久| 亚洲成人久久爱视频| 成人毛片a级毛片在线播放| 精品人妻熟女av久视频| 国产av在哪里看| 最近2019中文字幕mv第一页| 人人妻人人澡欧美一区二区| 18禁动态无遮挡网站| 日韩精品有码人妻一区| av黄色大香蕉| 国产亚洲91精品色在线| 人人妻人人看人人澡| 嫩草影院精品99| 国产伦理片在线播放av一区| 丰满乱子伦码专区| av黄色大香蕉| 免费观看a级毛片全部| 国产亚洲av嫩草精品影院| 国产探花极品一区二区| 七月丁香在线播放| 韩国高清视频一区二区三区| 精品不卡国产一区二区三区| 免费看美女性在线毛片视频| 99热这里只有是精品50| 男女下面进入的视频免费午夜| 国产在视频线精品| 精品少妇黑人巨大在线播放| av免费在线看不卡| 国产乱来视频区| 亚洲欧美精品自产自拍| 欧美zozozo另类| www.av在线官网国产| 毛片一级片免费看久久久久| 全区人妻精品视频| 久久久色成人| 亚洲精品自拍成人| 久热久热在线精品观看| www.色视频.com| 丝袜喷水一区| 久久精品综合一区二区三区| 日日摸夜夜添夜夜添av毛片| 亚洲aⅴ乱码一区二区在线播放| 亚洲经典国产精华液单| 一本久久精品| 天天躁夜夜躁狠狠久久av| 免费黄色在线免费观看| 街头女战士在线观看网站| 18禁动态无遮挡网站| 久久99热这里只有精品18| av在线老鸭窝| 国国产精品蜜臀av免费| 国产成人一区二区在线| 亚洲精品久久午夜乱码| 国产又色又爽无遮挡免| 午夜激情久久久久久久| 精品亚洲乱码少妇综合久久| freevideosex欧美| 99久国产av精品国产电影| 久久久久久久久久久免费av| 亚洲欧洲日产国产| 丝瓜视频免费看黄片| 国产真实伦视频高清在线观看| 中文字幕制服av| 亚洲av.av天堂| 精品久久久噜噜| 综合色av麻豆| 亚洲av中文字字幕乱码综合| 丰满人妻一区二区三区视频av| 久久99热6这里只有精品| 亚洲国产高清在线一区二区三| 天天躁日日操中文字幕| 日本-黄色视频高清免费观看| 中文乱码字字幕精品一区二区三区 | 久久99热这里只频精品6学生| h日本视频在线播放| 毛片女人毛片| 免费高清在线观看视频在线观看| 99热这里只有精品一区| 亚洲av福利一区| 国产又色又爽无遮挡免| 91久久精品国产一区二区成人| 熟女电影av网| 国产美女午夜福利| 亚洲熟女精品中文字幕| av黄色大香蕉| 成人特级av手机在线观看| 十八禁网站网址无遮挡 | 蜜桃亚洲精品一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 中文在线观看免费www的网站| 国产av不卡久久| 国产午夜精品论理片| 毛片一级片免费看久久久久| 午夜福利高清视频| 欧美成人精品欧美一级黄| 国产精品久久久久久精品电影| 亚洲三级黄色毛片| 深爱激情五月婷婷| 在线a可以看的网站| 精品一区二区三区视频在线| 国产一区二区三区av在线| 特大巨黑吊av在线直播| 97超视频在线观看视频| 亚洲国产日韩欧美精品在线观看| 大片免费播放器 马上看| 我的老师免费观看完整版| 建设人人有责人人尽责人人享有的 | 国产 一区 欧美 日韩| 国产精品三级大全| 欧美激情久久久久久爽电影| 一本一本综合久久| 日韩欧美精品v在线| videos熟女内射| 成人特级av手机在线观看| www.av在线官网国产| 亚洲最大成人手机在线| 国产午夜精品久久久久久一区二区三区| 久久精品国产亚洲av天美| 国产男人的电影天堂91| 国产精品99久久久久久久久| 午夜免费激情av| 亚洲av中文av极速乱| 亚洲美女搞黄在线观看| 国产亚洲午夜精品一区二区久久 | 日韩精品有码人妻一区| 欧美潮喷喷水| 成人午夜高清在线视频| 国产免费一级a男人的天堂| 超碰97精品在线观看| 亚洲国产精品专区欧美| 国产又色又爽无遮挡免| 精品久久久久久久末码| 男女边摸边吃奶| 熟妇人妻不卡中文字幕| 国产av不卡久久| 搞女人的毛片| 毛片女人毛片| 亚洲国产精品sss在线观看| 国产色爽女视频免费观看| 听说在线观看完整版免费高清| 国产男女超爽视频在线观看| 亚洲精品成人av观看孕妇| 日本wwww免费看| a级一级毛片免费在线观看| 免费观看无遮挡的男女| 纵有疾风起免费观看全集完整版 | 神马国产精品三级电影在线观看| 亚洲图色成人| 91久久精品国产一区二区三区| 亚洲av二区三区四区| 国产美女午夜福利| 99久久精品热视频| 97超碰精品成人国产| 成人无遮挡网站| 男女啪啪激烈高潮av片| 丝瓜视频免费看黄片| 成人特级av手机在线观看| 国产黄片美女视频| 午夜激情福利司机影院| 久久久久久伊人网av| 国产亚洲精品av在线| 插阴视频在线观看视频| 亚洲自拍偷在线| 久久久久久久亚洲中文字幕| 嫩草影院新地址| 人妻夜夜爽99麻豆av| 欧美日韩亚洲高清精品| 精品久久久久久久久av| 亚洲成色77777| 亚洲精品成人av观看孕妇| 美女国产视频在线观看| 91狼人影院| 久久久久九九精品影院| 欧美日韩在线观看h| 亚洲在线自拍视频| 天美传媒精品一区二区| 寂寞人妻少妇视频99o| 99久国产av精品| 国产国拍精品亚洲av在线观看| 久久鲁丝午夜福利片| 国产人妻一区二区三区在| 日韩不卡一区二区三区视频在线| 小蜜桃在线观看免费完整版高清| 丰满少妇做爰视频| 亚洲乱码一区二区免费版| 亚洲人成网站高清观看| av在线播放精品| 纵有疾风起免费观看全集完整版 | 日韩欧美精品v在线| 天堂网av新在线| av在线播放精品| 久久热精品热| 又爽又黄a免费视频| 免费大片18禁| 两个人的视频大全免费| 高清毛片免费看| 嫩草影院精品99| 亚洲第一区二区三区不卡| 特大巨黑吊av在线直播| 色综合站精品国产| 熟女电影av网| 嘟嘟电影网在线观看| 亚洲欧洲日产国产| 国产老妇女一区| 国产单亲对白刺激| 精品久久国产蜜桃| 精品不卡国产一区二区三区| 亚洲成人一二三区av| 日韩av免费高清视频| 夫妻性生交免费视频一级片| 啦啦啦啦在线视频资源| 一边亲一边摸免费视频| 三级男女做爰猛烈吃奶摸视频| 色视频www国产| 一级片'在线观看视频| 看十八女毛片水多多多| 建设人人有责人人尽责人人享有的 | 久久久欧美国产精品| 婷婷色综合www| 国产一区二区在线观看日韩| 欧美高清成人免费视频www| 大香蕉97超碰在线| 日韩精品有码人妻一区| 日日摸夜夜添夜夜添av毛片| 中文乱码字字幕精品一区二区三区 | 人妻系列 视频| 777米奇影视久久| 黄色日韩在线| 超碰97精品在线观看| 色哟哟·www| 国产有黄有色有爽视频| 嘟嘟电影网在线观看| a级毛片免费高清观看在线播放| 亚洲国产高清在线一区二区三| 亚洲av不卡在线观看| 久久久精品欧美日韩精品| 麻豆久久精品国产亚洲av| 国产乱人偷精品视频| 午夜亚洲福利在线播放|