• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Observation of hopping transitions for delocalized electrons by temperature-dependent conductance in silicon junctionless nanowire transistors?

    2019-11-06 00:46:08YangYanGuo郭仰巖WeiHuaHan韓偉華XiaoSongZhao趙曉松YaMeiDou竇亞梅XiaoDiZhang張曉迪XinYuWu吳歆宇andFuHuaYang楊富華
    Chinese Physics B 2019年10期
    關(guān)鍵詞:富華

    Yang-Yan Guo(郭仰巖),Wei-Hua Han(韓偉華),?,Xiao-Song Zhao(趙曉松),Ya-Mei Dou(竇亞梅),Xiao-Di Zhang(張曉迪),Xin-Yu Wu(吳歆宇),and Fu-Hua Yang(楊富華),3

    1Engineering Research Center for Semiconductor Integrated Technology&Beijing Engineering Center of Semiconductor Micro-Nano Integrated Technology,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China

    2Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China

    3State Key Laboratory for Superlattices and Microstructures,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China

    Keywords:junctionless nanowire transistors,temperature-dependent conductance,variable range hopping,localization length

    1.Introduction

    The prospect of atom-scale transistor has been initially indicated by single atom transistor,in which a single phosphorus atom as a quantum dot is high-precisely positioned between source and drain leads by the probe lithography.[1–5]Many notable approaches toward atomic electronic devices have also been explored.[6–9]As the channel width of the silicon transistor is scaled down to several nanometers,few ionized dopant atoms randomly distributed in the channel can work as quantum dots(QDs)and play a significant role in the electron transport behaviors.[10–14]In recent years,singleelectron tunneling through the dopant-induced QD array has attracted much attention in the study of the silicon junctionless nanowire transistors(JNTs),which may provide a onedimensional bulk channel with an adjustable width by the gate electric field.[7,15,16]The conducting path in the center of the silicon nanowire,which is effectively confined by the surface depletion potentials,can be gradually broadened to the whole conduction channel region with the increase of the gate voltage.[17]Few dopant atoms would be discrete in the extremely narrow channel at the initial gate voltages. Therefore,it is very necessary to further understand the thermally activated electron hopping through discrete dopant-induced QDs in the extremely narrow channel.At low temperatures,the silicon JNTs show that the conductance features evolve from clear oscillatory peaks to several steps with the channel broadening,which reflect the electrons successively passing through the impurity levels of the dopant-induced QDs and the conduction subbands of the quantum wire.[18,19]With temperature increasing,the conductance features can be smeared due to thermal broadening by the scattering of thermally activated electrons,which are delocalized from the ionized dopant atoms.[20]In this paper,we demonstrate transitions of hopping behaviors for delocalized electrons through the discrete dopant-induced quantum dots in n-doped silicon junctionless nanowire transistors by the temperature-dependent conductance characteristics.We find two obvious transition platforms within the critical temperature regimes for the experimental conductance data,which are extracted from the unified transfer characteristics for different temperatures at the gate voltage positions of the initial transconductance gmpeak in Vg1and valley in Vg2.The crossover temperatures of electron hopping behaviors are analytically determined by the temperaturedependent conductance at the gate voltages Vg1and Vg2.

    2.Device fabrication and characterization

    The schematic structure of the silicon JNT device for investigation is provided in Fig.1(a). The fabrication of the silicon JNT device started from a boron-doped(1015cm?3)(100)-oriented silicon-on-insulator(SOI)wafer with 55-nmthick top silicon layer and 145-nm-thick buried oxide layer.After growing a 18-nm-thick thermal oxidation layer,the top silicon layer was uniformly doped by phosphorus ion implantation with a dose of 2×1012cm?2at an energy of 33 keV.A silicon nanowire was defined alongdirection by electron beam lithography(EBL)and inductively coupled plasma(ICP)etching,followed by a sacrificial oxidation to eliminate the etching-induced damages. Then 22-nm-thick gate oxide layer was grown by thermal oxidation at the temperature of 900?C in dry oxygen. The 200-nm-thick polysilicon layer was deposited by low-pressure chemical vapor deposition(LPCVD).After heavily doped by boron ion implantation,the sample was rapidly annealed in nitrogen ambient at 1000?C for 10 s. The polysilicon gate with the length of 280 nm was then defined by electron beam overlay exposure and dry etching,conformally wrapping the Si/SiO2core–shell nanowire. Finally,it was followed by the deposition of 200 nm-thick SiO2passivation layer,standard metal contact formation,and sintering.The SEM image of the singlechannel JNT in Fig.1(b)shows the width of 58 nm for the Si/SiO2core–shell nanowire. As a result,we may estimate that the silicon core has the physical width of about 14 nm and the height of about 26 nm. The dopant concentration in the silicon channel after several times annealing is estimated to be 4.16×1017cm?3according to the implantation dose of phosphorus ions.The fabricated device was measured in a vacuum chamber which can be cooled down to the low temperature of 6 K with the help of Lakershore-340 temperature controller.

    Fig.1. (a)The schematic structure of silicon JNT.(b)The top-view SEM image of silicon JNT after gate formation.

    3.Results and discussion

    We study the thermally activated electrons transport behaviors through the discrete dopant-induced QDs in the impurity band of the silicon JNT within the temperature range from 6 K to 250 K by the temperature-dependent conductance characteristics of the silicon JNT.The thermally activated electron transport is dominated by phonon-assisted hopping through several dopant-induced QDs.[21]Mott believed that a hopping electron with activation energy Eawould always try to find a lower energy state around the Fermi level by the variable range hopping(VRH)in the absence of longrange Coulomb interaction.[22]At high temperatures,the temperature dependence of conductance G for the nearest neighbor hopping(NNH)exhibits as G ∝exp(?Ea/kBT),where kBis the Boltzmann constant.[23]If the activation energy at low temperatures is reduced as large as the Coulomb interaction energy,the VRH conductance which has been predicted by Efros and Shklovskii(ES)should obey the 1/2 exponent law given bywhere TESis the temperatureindependent ES coefficient.[24]Therefore,with temperature increasing,three kinds of electron hopping transports would be observed in the following consequence: ES-type VRH,Mott-type VRH,and NNH.[21]In our experiment,we find two obvious transition platforms within the critical temperature regimes of A and B for the experimental conductance data,which are extracted from the unified transfer characteristics at the gate voltage positions of the initial transconductance gmpeak in Vg1and valley in Vg2.One crossover temperature TAin the higher temperature regime A corresponds to the transition of thermally-activated-electron transport behaviors from NNH to Mott-type VRH.[25]The other crossover temperature TCin the lower temperature regime B corresponds to the VRH transition for the delocalized electrons from Mott law to the ES law under the influence of Coulomb interaction.[26]The quantitative analysis on the experimental temperaturedependent conductance data has been taken by linear fitting of lnG ∝?Ea/kBT for NNH,lnG ∝?(TM/T)1/4for Mott-type VRH,and lnG ∝?(TES/T)1/2for ES-type VRH.

    Figure 2(a)presents the temperature-dependent conductance G(i.e.,G=IDS/VDS)curves obtained from the transfer characteristics at low source–drain bias VDS=1 mV.The clear quantized current steps below the temperature of 75 K indicate the population of the individual sub-bands caused by the quantum confinement effect.[27]Above the temperature of 75 K,the thermal energy is greater than the subbands spacing,resulting in the smearing of the current steps.Figure 2(b)illustrates the corresponding transconductance gm–VGcharacteristics at different temperatures. We define the onset gate voltage Vgtas the initial point of the first gmpeak,where the drain current in the conduction channel is at the onset state.The onset gate voltage Vgtincreases from 6 K to 20 K and decreases from 100 K to 250 K,resulting from the interaction of the induced image charges in the dielectric interface with the impurity and the subband states in the channel.[13]To explore the conductance characteristics under the same filled energy level,we take the onset gate voltage Vgtto unify the transfer characteristics in Fig.2(a)for the alignment of energy levels at different temperatures.In order to clarify the electron hopping transport in the impurity band,figure 2(c)shows the IDS–Vgcurves(upper part)and the corresponding transconductance gm–Vgcurves(lower part)at the temperature of 6 K under the bias VDSvarying from 1 mV to 10 mV.The clear oscillatory current with several splitting peaks(upper part)identifies the coupling of dopant-induced QDs in the impurity band.With the gate voltage increasing,the Fermi energy level of electrons in the quantum confined channel is allowed to enter the conduction subbands,resulting in the current steps.[28,29]

    In order to study the temperature-dependent conductance G characteristics in Fig.2(a),we firstly extract the experimental conductance data for different temperatures according to the initial gmpeak at the gate voltage Vg1,in which the effective mobility of hopping electrons is the highest in the impurity band.For comparison,we also provide the temperaturedependent conductance data according to the initial gmvalley at the gate voltage Vg2,in which the electron hopping behavior is suppressed by the Coulomb interaction.Figure 2(d)provides the Arrhenius conductance plots(G vs.1/T)at the gate voltages of Vg1and Vg2within the temperature range from 6 K to 250 K.Interestingly,it is found that the conductance at the temperature of 6 K is much larger than that of 10 K,which may be related with the Coulomb interaction.As the temperature increases,the incomplete ionized donors in the channel are gradually transformed into ionized donors,which result in stronger impurity scattering to reduced the electron mobility.[30]The inset G–T diagrams in Fig.2(d)show two apparent platforms of the conductance for the gate voltages Vg1and Vg2within the temperature regions of around 200 K and around 100 K,as the color marked A and B.The platform of the temperature-dependent conductance for the gate voltage Vg1within the temperature range from 50 K to 100 K is more evident than that of the gate voltage Vg2within the temperature range from 75 K to 125 K,resulting from the stronger quantum confinement at the initial stage of the conduction channel in the silicon JNT.

    Fig.2.(a)The temperature-dependent conductance G(i.e.,G=IDS/VDS)curves of the device at VDS=1 mV within the temperature range from 6 K to 250 K.(b)The temperature-dependent transconductance gm–VG characteristics at VDS=1 mV,where the transconductance is given by gm=dIDS/dVG.(c)IDS–Vg curves(upper part)and the corresponding transconductance gm–Vg curves(lower part)at the temperature of 6 K under the bias VDS varying from 1 mV to 10 mV.(d)The Arrhenius conductance plots(G vs.1/T)on logarithmic scale at the gate voltages of Vg1 and Vg2 within the temperature range from 6 K to 250 K,The inset shows the corresponding temperature-dependent conductance data(G vs.T),which are extracted from panel(a)after unified by the onset gate voltage Vgt at different temperatures.

    Fig.3.Arrhenius plot of conductance in lnG vs.1/T scales for NNH within the temperature range from 175 K to 250 K.The inset shows Mott-type VRH temperature dependence of the conductance in lnG vs.(1/T)1/4 scales.

    In order to precisely determine the transition temperatures TAin temperature region A,we replot the Arrhenius curves of temperature-dependent conductance at high temperature regime as the curves of lnG vs.1/T in Fig.3 for the gate voltages Vg1and Vg2respectively.The inset shows the Motttype VRH temperature dependence of the conductance in lnG vs.(1/T)1/4scales.Here,we are interested in the hopping behaviors of the thermally activated electrons from the ionized dopant atoms.The linearly fitting by lnG ∝?Ea/kBT is shown in Fig.3 for the thermally activated electrons by NNH above the crossover temperature TA,in which the electrons have enough thermal activation energy Eato overcome the potential barriers between the nearest neighbor states.The hopping distance r in NNH is supposed to be equivalent to the mean distance d between neighbored dopant atoms,which can be determined by the doping concentration Ndas

    According to the doping concentration Nd=4.16×1017cm?3,the hopping distance between the nearest neighbored dopant atoms is estimated to be 13.4 nm.According to the linearly fitting of the experimental conductance data in Fig.3 within the temperature range from 175 K to 250 K,the activation energies Eafor the hopping electrons are extracted to be 45.2 meV and 33.7 meV respectively for the curves at the gate voltages Vg1and Vg2.[31]According to Mott’s theory,the activation energy Eafor electron hopping is related to the constant density of states(DOS)g0at the Fermi level and the hopping distance

    r as[32]

    The probability P for hopping is proportional to the conductance G of the device,which depends on the overlap integral of the wavefunctions within the localization radius a and the activation energy Ea,[26]i.e.,

    Taking the expression of Ea(Eq.(2))into Eq.(3),one may get the relation between the probability and the hopping distance,P ∝G ∝exp(?2r/a ?3/(4πg(shù)0r3kBT)).After taking the derivative of the hopping probability dP/dr=0,the optimal electron hopping distanceMis obtained to be[33]

    where aMis the localization length in the Mott hopping regime.At the crossover temperature TA,the electron hopping distance of VRH is assumed to be equal to that of NNH,

    which is determined by the localization length aMand the density of states g0. In order to determine the localization length aM,we may use the Mott-type VRH conductance expression by substituting Eqs.(2)and(4)into Eq.(3),i.e.,G ∝P ∝exp(?(TM/T)1/4).The temperature factor TMis related to the localization length aMbyAccording to the fitting results from 175 K to 250 K of lnG vs. T ?1/4 scales in the inset of Fig.3,the temperature factor TMextracted from the slopes is 38.784K for the gate voltage Vg1and 28.94K and for the gate voltage Vg2.Therefore,the localization length aMcan be obtained from the expression of TMbe about 3.47 nm and 4.66 nm respectively for the gate voltages Vg1and Vg2.The density of states g0at the Fermi energy can be estimated to be 2.2×1018eV?1·cm?3and 2.96×1018eV?1·cm?3from Eqs.(2)and(5)by taking the activation energies of 45.2 meV and 33.7 meV respectively for the gate voltages Vg1and Vg2,both of which have the same magnitude as reported in silicon nanowires.[19]As expected from Eq.(6),we obtain the crossover temperatures of TA1=203 K and TA2=202 K respectively for the gate voltages Vg1and Vg2,which are consistent with the experimental observation in the conductance platform A of Fig.2(d).The result shows that the crossover temperature TAfrom NNH to VRH is independent of the gate electric field,which may result from the stronger interactions of the thermally activated electrons.

    whose curve is shown in the inset of Fig.4.At the crossover temperature TCfor the VRH transition from Mott-type law to ES-type law,the activation energy Eashould be equivalent to the Coulomb interaction energy ?,i.e.,

    The DOS at the condition of Ea=?would remain constant as g0in Mott VRH,which is given by

    in which the localized length aESin ES hopping regime indicates the average modulation length of long-range Coulomb interaction between the dopant-induced QDs in the conduction channel.In order to determine the localization length aES,we substitute Eqs.(8)and(10)into Eq.(3)to get the ES-type VRH conductance expression

    The temperature factor TESis related to the localization length aES by

    The temperature factor TESextracted from the slopes is 34.8 K for the gate voltage Vg1and 31.4 K for the gate voltage Vg2.Therefore,the localization length aESfor ES-type VRH can be obtained from Eq.(12)to be about 323 nm and 358 nm respectively for the gate voltages Vg1and Vg2.The result indicates that the localization length aESis enhanced with the increase of the gate voltage due to screening of the trapping potentials of the dopant atoms. Considering the expressions from Eq.(7)to Eq.(10),we finally obtain the expression of

    which is determined by the constant DOS g0and the localized length aES.As a result,the crossover temperature of the VRH conductance transition from Mott-type law to ES-type law can be estimated to be TC1=85 K at the gate voltage Vg1and TC2=126 K at the gate voltage Vg2. Both the two crossover temperatures TC1and TC2are consistent with the experimental observation of conductance platform B of Fig.2(d).The crossover temperature TC2of 126 K is much higher than TC1of 85 K,which may result from the stronger Coulomb interaction at the gate voltage Vg2of the gmvalley.

    Fig.4.Arrhenius plot of conductance in lnG vs.(1/T)1/2 scales for ES-type VRH,with the inset for the density of states near the Fermi energy level.

    4.Conclusion

    We present an experimental evidence of hopping transition for the delocalized electrons in silicon JNT by the temperature-dependent conductance characteristics.The theoretical models of Mott-type VRH and ES-type VRH agree well with the experimental data of temperature-dependent conductance,which are extracted from transfer characteristics for different temperatures at the gate voltage positions of the initial transconductance gmpeak in Vg1and the valley in Vg2. The crossover temperature TAfrom NNH to Mott VRH is analytically determined to be 203 K and 202 K constantly for the gate voltages Vg1and Vg2by the conductance transition of the thermally activated electrons.Another crossover temperature TCof VRH behavior from Mott-type law to ES-type law is theoretically determined to be 85 K and 126 K respectively for the gate voltages Vg1and Vg2by considering the Coulomb interactions.As expected,stronger Coulomb interaction at the gate voltage Vg2of the gmvalley leads to the obvious increase of the crossover temperature TCfor the VRH transition behavior.Our finding provides essential evidence for the hopping electron behaviors under the influence of thermal activation and long-range Coulomb interaction.

    Acknowledgment

    The authors acknowledge Dr. Hao Wang,Dr. Liuhong Ma,and Mr.Xiaoming Li for their supports in device fabrication.

    猜你喜歡
    富華
    花動(dòng)菊城,風(fēng)起中山
    Observation of source/drain bias-controlled quantum transport spectrum in junctionless silicon nanowire transistor
    Who Is Better?
    深度解析國內(nèi)盤剎空懸應(yīng)用現(xiàn)狀
    ——專訪富華國內(nèi)銷售部部長古嘉杰
    專用汽車(2020年11期)2020-11-23 09:24:58
    年產(chǎn)車橋200萬根,富華全新世界頂級(jí)產(chǎn)線年底或亮相
    ——訪富華銷售總監(jiān)張航博士
    專用汽車(2020年10期)2020-10-26 01:11:48
    Temperature-dependent subband mobility characteristics in n-doped silicon junctionless nanowire transistor?
    百尺竿頭 更進(jìn)一步富華驅(qū)動(dòng)橋獲得福特重卡Q1認(rèn)證
    專用汽車(2016年11期)2017-01-11 02:31:40
    微言微語:用標(biāo)準(zhǔn)和實(shí)驗(yàn)數(shù)據(jù)說話的富華
    專用汽車(2016年5期)2016-03-01 04:14:46
    志存高遠(yuǎn),從未止步——訪富華集團(tuán)副總經(jīng)理譚嘉驊
    專用汽車(2015年4期)2015-07-08 03:21:04
    豈止于大
    ——走進(jìn)廣東富華重工制造有限公司
    日韩国内少妇激情av| 制服丝袜大香蕉在线| 国产一级毛片七仙女欲春2 | 99国产精品一区二区三区| 国产日本99.免费观看| 久久精品国产清高在天天线| ponron亚洲| 亚洲最大成人中文| 人妻久久中文字幕网| 午夜免费激情av| 免费电影在线观看免费观看| 麻豆久久精品国产亚洲av| 一级毛片高清免费大全| 亚洲第一欧美日韩一区二区三区| 夜夜爽天天搞| 90打野战视频偷拍视频| 亚洲欧美精品综合久久99| 色播亚洲综合网| 男女之事视频高清在线观看| 亚洲片人在线观看| 亚洲三区欧美一区| 欧美绝顶高潮抽搐喷水| 女人爽到高潮嗷嗷叫在线视频| 啦啦啦韩国在线观看视频| 国产日本99.免费观看| 91av网站免费观看| 一区福利在线观看| 91字幕亚洲| 国产午夜福利久久久久久| 亚洲一区中文字幕在线| 黑人操中国人逼视频| 精品第一国产精品| 国产国语露脸激情在线看| 俺也久久电影网| 国产精品av久久久久免费| 亚洲,欧美精品.| 亚洲国产精品sss在线观看| 日韩欧美 国产精品| 一本大道久久a久久精品| 国产精品久久电影中文字幕| 丝袜人妻中文字幕| 国产精品精品国产色婷婷| 国产精品久久久人人做人人爽| 日本黄色视频三级网站网址| 欧美三级亚洲精品| 国产激情偷乱视频一区二区| 50天的宝宝边吃奶边哭怎么回事| 精品久久蜜臀av无| 午夜激情福利司机影院| 久久九九热精品免费| 欧美成人一区二区免费高清观看 | 丝袜人妻中文字幕| 亚洲九九香蕉| 黄片小视频在线播放| 成人欧美大片| 亚洲av电影不卡..在线观看| av福利片在线| 亚洲中文av在线| 中文字幕人成人乱码亚洲影| 999久久久国产精品视频| 国产伦在线观看视频一区| 一本精品99久久精品77| 精品欧美一区二区三区在线| 国内精品久久久久久久电影| 最近在线观看免费完整版| 国产精品 国内视频| avwww免费| 国产99白浆流出| 曰老女人黄片| 一级毛片精品| 午夜免费鲁丝| 午夜久久久在线观看| 热99re8久久精品国产| 午夜福利在线观看吧| 成在线人永久免费视频| 亚洲第一青青草原| avwww免费| 亚洲第一av免费看| 精品乱码久久久久久99久播| 搡老岳熟女国产| 国产高清视频在线播放一区| 一级黄色大片毛片| 中文字幕精品免费在线观看视频| 久久精品国产99精品国产亚洲性色| 午夜亚洲福利在线播放| 男女午夜视频在线观看| 啦啦啦免费观看视频1| 精品国产一区二区三区四区第35| 亚洲 国产 在线| 精品国产亚洲在线| 欧美精品亚洲一区二区| 亚洲va日本ⅴa欧美va伊人久久| 淫妇啪啪啪对白视频| 久久这里只有精品19| 听说在线观看完整版免费高清| 午夜影院日韩av| 一进一出抽搐gif免费好疼| 久久久久久人人人人人| 999久久久精品免费观看国产| 亚洲成人免费电影在线观看| 可以在线观看毛片的网站| 精品久久久久久成人av| 欧美另类亚洲清纯唯美| 在线av久久热| 久久久国产成人精品二区| 国产麻豆成人av免费视频| 国产精品久久视频播放| 精品久久久久久久末码| 人成视频在线观看免费观看| 欧美性猛交黑人性爽| 亚洲激情在线av| 在线观看一区二区三区| 色在线成人网| 波多野结衣高清无吗| 亚洲成人久久性| 亚洲色图av天堂| 黑人操中国人逼视频| 国产精品野战在线观看| 久久久久久久久免费视频了| 熟女少妇亚洲综合色aaa.| 中文字幕人妻熟女乱码| 久久性视频一级片| 久久天躁狠狠躁夜夜2o2o| 免费女性裸体啪啪无遮挡网站| 久久久久久大精品| 日本精品一区二区三区蜜桃| 美女午夜性视频免费| 久久亚洲精品不卡| 国产精品综合久久久久久久免费| 天天躁夜夜躁狠狠躁躁| 丝袜在线中文字幕| 色哟哟哟哟哟哟| 免费无遮挡裸体视频| 国产1区2区3区精品| 啦啦啦观看免费观看视频高清| 亚洲 欧美一区二区三区| 啦啦啦观看免费观看视频高清| 精品久久久久久久久久免费视频| 50天的宝宝边吃奶边哭怎么回事| 国产精品电影一区二区三区| 高潮久久久久久久久久久不卡| 精品国产乱子伦一区二区三区| 成熟少妇高潮喷水视频| 欧美丝袜亚洲另类 | 国产一区二区激情短视频| 在线永久观看黄色视频| 日韩精品免费视频一区二区三区| 久久狼人影院| 日韩成人在线观看一区二区三区| 亚洲欧美日韩无卡精品| 人人妻,人人澡人人爽秒播| 亚洲中文字幕日韩| 一级黄色大片毛片| 久久精品人妻少妇| 国产精品98久久久久久宅男小说| 啦啦啦观看免费观看视频高清| 精品久久久久久久久久久久久 | 首页视频小说图片口味搜索| av片东京热男人的天堂| 最新在线观看一区二区三区| 久久久久精品国产欧美久久久| 最新美女视频免费是黄的| 啦啦啦观看免费观看视频高清| 人人妻人人看人人澡| 久久久久免费精品人妻一区二区 | www日本在线高清视频| 欧美性长视频在线观看| 国产精品亚洲美女久久久| 国产免费男女视频| 757午夜福利合集在线观看| 不卡av一区二区三区| 国产伦在线观看视频一区| 搞女人的毛片| 欧美不卡视频在线免费观看 | 中文字幕高清在线视频| 亚洲 欧美一区二区三区| 黄色成人免费大全| 老汉色∧v一级毛片| 此物有八面人人有两片| 国产亚洲精品第一综合不卡| 巨乳人妻的诱惑在线观看| 两个人免费观看高清视频| 久久中文看片网| 中文字幕人妻丝袜一区二区| 国产精品二区激情视频| 国产午夜精品久久久久久| 亚洲狠狠婷婷综合久久图片| 日韩大码丰满熟妇| 99久久精品国产亚洲精品| 色av中文字幕| 久久国产精品人妻蜜桃| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲中文字幕一区二区三区有码在线看 | 午夜两性在线视频| 欧美又色又爽又黄视频| 一区福利在线观看| a级毛片a级免费在线| av超薄肉色丝袜交足视频| 精品欧美国产一区二区三| 亚洲精品国产一区二区精华液| 免费在线观看日本一区| 久久精品亚洲精品国产色婷小说| 一边摸一边做爽爽视频免费| 国产精品影院久久| 黄片小视频在线播放| 18禁美女被吸乳视频| 久99久视频精品免费| 亚洲av电影不卡..在线观看| 法律面前人人平等表现在哪些方面| 国内精品久久久久精免费| 一区二区三区激情视频| 99re在线观看精品视频| 久久久久久久午夜电影| 久久精品91无色码中文字幕| 99久久国产精品久久久| 欧美久久黑人一区二区| 美国免费a级毛片| 精品国产亚洲在线| 美女大奶头视频| 欧美性猛交黑人性爽| 国产成人av教育| 日日摸夜夜添夜夜添小说| 久久久久久人人人人人| 国产精品免费一区二区三区在线| 老鸭窝网址在线观看| 国产精品 欧美亚洲| 亚洲av五月六月丁香网| 99re在线观看精品视频| 亚洲aⅴ乱码一区二区在线播放 | 久久亚洲真实| 婷婷丁香在线五月| 精品高清国产在线一区| 日韩国内少妇激情av| 国产精品综合久久久久久久免费| 亚洲熟妇熟女久久| 国产精品 国内视频| 欧美日韩亚洲国产一区二区在线观看| 又黄又粗又硬又大视频| 国产精品综合久久久久久久免费| 中文字幕人成人乱码亚洲影| 国产av不卡久久| 18美女黄网站色大片免费观看| 成年人黄色毛片网站| 精品欧美国产一区二区三| 97超级碰碰碰精品色视频在线观看| 久久久久久亚洲精品国产蜜桃av| 精品久久久久久久久久久久久 | 国产精品免费视频内射| 男女午夜视频在线观看| 叶爱在线成人免费视频播放| 国产97色在线日韩免费| www日本在线高清视频| 成人三级黄色视频| 黑丝袜美女国产一区| 国产亚洲欧美98| 亚洲国产日韩欧美精品在线观看 | 午夜影院日韩av| 午夜福利免费观看在线| 久久精品国产亚洲av高清一级| 麻豆成人午夜福利视频| 国产久久久一区二区三区| 欧美日韩瑟瑟在线播放| 美女免费视频网站| 国产精品日韩av在线免费观看| 国产国语露脸激情在线看| 欧美一级a爱片免费观看看 | 欧美日韩黄片免| 亚洲熟妇中文字幕五十中出| 日韩有码中文字幕| 国产片内射在线| 波多野结衣巨乳人妻| 欧美成人午夜精品| 国产成人系列免费观看| 欧美午夜高清在线| 最近最新中文字幕大全免费视频| 丰满人妻熟妇乱又伦精品不卡| 99久久久亚洲精品蜜臀av| 99精品欧美一区二区三区四区| 国产精品日韩av在线免费观看| 久久午夜亚洲精品久久| 黄色a级毛片大全视频| 老司机靠b影院| 老汉色av国产亚洲站长工具| 久久午夜亚洲精品久久| 国产激情欧美一区二区| 国产精品1区2区在线观看.| 久久婷婷人人爽人人干人人爱| 十八禁人妻一区二区| 欧美大码av| 精品一区二区三区视频在线观看免费| 波多野结衣高清作品| 午夜精品在线福利| 日韩欧美国产在线观看| 亚洲精品中文字幕在线视频| 午夜免费观看网址| 国产精品自产拍在线观看55亚洲| 男人操女人黄网站| 丰满人妻熟妇乱又伦精品不卡| 正在播放国产对白刺激| 激情在线观看视频在线高清| 神马国产精品三级电影在线观看 | 99国产精品99久久久久| 天天一区二区日本电影三级| 免费看a级黄色片| 听说在线观看完整版免费高清| 久久草成人影院| 精品国产国语对白av| 亚洲专区国产一区二区| 搡老岳熟女国产| 国产精品爽爽va在线观看网站 | 国产精品久久电影中文字幕| 亚洲专区字幕在线| 国产男靠女视频免费网站| videosex国产| 夜夜夜夜夜久久久久| 久久久久久久久中文| 亚洲 国产 在线| 国产精品九九99| 人人妻人人澡人人看| 中文资源天堂在线| 成年版毛片免费区| 男女做爰动态图高潮gif福利片| 国产成人精品无人区| 久久草成人影院| 日韩国内少妇激情av| av中文乱码字幕在线| 黄色视频,在线免费观看| 亚洲欧美激情综合另类| 波多野结衣巨乳人妻| 91成人精品电影| 51午夜福利影视在线观看| 在线看三级毛片| 一本大道久久a久久精品| 国产野战对白在线观看| 国产精品精品国产色婷婷| e午夜精品久久久久久久| 无限看片的www在线观看| 国产又爽黄色视频| 国产精品自产拍在线观看55亚洲| 免费在线观看成人毛片| 久久精品国产综合久久久| 一级a爱片免费观看的视频| 久久久久久久午夜电影| 免费在线观看亚洲国产| 免费在线观看视频国产中文字幕亚洲| 亚洲精品在线观看二区| 国产一区二区在线av高清观看| 久久亚洲真实| 亚洲avbb在线观看| 在线十欧美十亚洲十日本专区| 午夜福利欧美成人| 69av精品久久久久久| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品一卡2卡三卡4卡5卡| 免费电影在线观看免费观看| 中亚洲国语对白在线视频| 国产av一区在线观看免费| 又紧又爽又黄一区二区| 岛国视频午夜一区免费看| 桃红色精品国产亚洲av| 日本在线视频免费播放| 亚洲欧美精品综合一区二区三区| 国产av一区二区精品久久| 色播亚洲综合网| www.精华液| 一边摸一边做爽爽视频免费| 黄片小视频在线播放| 99精品久久久久人妻精品| 免费在线观看日本一区| 午夜福利18| 母亲3免费完整高清在线观看| 欧美大码av| 韩国精品一区二区三区| 叶爱在线成人免费视频播放| 亚洲天堂国产精品一区在线| 一进一出抽搐gif免费好疼| 免费观看人在逋| 美女扒开内裤让男人捅视频| 亚洲欧美精品综合一区二区三区| 在线永久观看黄色视频| 两性夫妻黄色片| 精品国内亚洲2022精品成人| 波多野结衣高清无吗| 成人亚洲精品一区在线观看| 老司机福利观看| 美女国产高潮福利片在线看| 国产欧美日韩一区二区三| 成人手机av| 精品国内亚洲2022精品成人| 丝袜在线中文字幕| 天堂√8在线中文| 操出白浆在线播放| 欧美 亚洲 国产 日韩一| 久热这里只有精品99| 在线观看午夜福利视频| 久久草成人影院| 女性被躁到高潮视频| 在线视频色国产色| 国产av又大| 久久精品亚洲精品国产色婷小说| 岛国视频午夜一区免费看| 亚洲成国产人片在线观看| 韩国精品一区二区三区| 色播亚洲综合网| 啦啦啦观看免费观看视频高清| 国产成人欧美| 久久久国产精品麻豆| 国产区一区二久久| 精品卡一卡二卡四卡免费| 两个人免费观看高清视频| 成人手机av| 成人国产综合亚洲| 听说在线观看完整版免费高清| 精品第一国产精品| 国产一区在线观看成人免费| 免费看日本二区| 99久久久亚洲精品蜜臀av| 老鸭窝网址在线观看| 人人妻人人看人人澡| 少妇被粗大的猛进出69影院| 99精品久久久久人妻精品| 日日爽夜夜爽网站| 亚洲熟妇中文字幕五十中出| 国产av一区在线观看免费| 99re在线观看精品视频| 亚洲成人久久爱视频| 久久精品91蜜桃| 丝袜人妻中文字幕| 亚洲 欧美一区二区三区| 色综合亚洲欧美另类图片| 女人被狂操c到高潮| 国产午夜福利久久久久久| 一级片免费观看大全| av电影中文网址| 琪琪午夜伦伦电影理论片6080| 制服人妻中文乱码| avwww免费| 久久久国产成人精品二区| 日韩精品青青久久久久久| 日韩三级视频一区二区三区| 可以免费在线观看a视频的电影网站| 中文字幕人成人乱码亚洲影| 最新美女视频免费是黄的| 国产av不卡久久| 精品国产国语对白av| 日本a在线网址| 成年版毛片免费区| tocl精华| 免费看a级黄色片| 成熟少妇高潮喷水视频| 免费在线观看完整版高清| 日日摸夜夜添夜夜添小说| 黄色视频,在线免费观看| 色老头精品视频在线观看| 夜夜爽天天搞| 动漫黄色视频在线观看| 国内精品久久久久久久电影| 啦啦啦免费观看视频1| 国产高清videossex| 天堂√8在线中文| 亚洲国产日韩欧美精品在线观看 | 窝窝影院91人妻| 黑丝袜美女国产一区| 在线十欧美十亚洲十日本专区| 免费看十八禁软件| 精品电影一区二区在线| 少妇的丰满在线观看| 国产av一区二区精品久久| 亚洲欧美日韩高清在线视频| 丝袜美腿诱惑在线| 黄色成人免费大全| 在线观看免费午夜福利视频| 一级a爱片免费观看的视频| 级片在线观看| 久久久久久大精品| 成年版毛片免费区| 久9热在线精品视频| 男女午夜视频在线观看| 高清在线国产一区| 女性生殖器流出的白浆| 国产精品国产高清国产av| 午夜福利视频1000在线观看| 神马国产精品三级电影在线观看 | 欧美不卡视频在线免费观看 | 啦啦啦观看免费观看视频高清| 天天添夜夜摸| 亚洲精品一卡2卡三卡4卡5卡| 欧美色视频一区免费| 国产av在哪里看| 欧美中文综合在线视频| 日韩三级视频一区二区三区| 亚洲最大成人中文| 欧美乱妇无乱码| 韩国精品一区二区三区| 欧美中文综合在线视频| 女生性感内裤真人,穿戴方法视频| 国产成+人综合+亚洲专区| 亚洲精品久久国产高清桃花| 久久欧美精品欧美久久欧美| 成人18禁在线播放| videosex国产| 国产乱人伦免费视频| 一级作爱视频免费观看| 欧美在线黄色| 脱女人内裤的视频| av视频在线观看入口| 国产一级毛片七仙女欲春2 | 国产精品免费一区二区三区在线| 在线国产一区二区在线| 一个人观看的视频www高清免费观看 | 99国产极品粉嫩在线观看| 欧美日韩一级在线毛片| 久久久久久人人人人人| 国产精品美女特级片免费视频播放器 | 在线永久观看黄色视频| 久久久久精品国产欧美久久久| 国产一卡二卡三卡精品| 怎么达到女性高潮| 国产精品日韩av在线免费观看| 国产精品电影一区二区三区| 男女床上黄色一级片免费看| www国产在线视频色| 免费在线观看影片大全网站| 嫁个100分男人电影在线观看| 免费在线观看视频国产中文字幕亚洲| 99在线人妻在线中文字幕| 日本三级黄在线观看| 18禁黄网站禁片免费观看直播| 两人在一起打扑克的视频| 老熟妇仑乱视频hdxx| 操出白浆在线播放| 欧美三级亚洲精品| 国产熟女午夜一区二区三区| 黑人巨大精品欧美一区二区mp4| 男女视频在线观看网站免费 | 精品久久久久久久人妻蜜臀av| 国产精品一区二区三区四区久久 | 99国产精品一区二区三区| 欧美性猛交╳xxx乱大交人| 一级毛片高清免费大全| www.999成人在线观看| 黄色a级毛片大全视频| www.999成人在线观看| 中文字幕久久专区| 久久久久久久久久黄片| 亚洲天堂国产精品一区在线| 男女下面进入的视频免费午夜 | 久久 成人 亚洲| 99在线人妻在线中文字幕| 成人18禁高潮啪啪吃奶动态图| 久热这里只有精品99| 99久久综合精品五月天人人| 亚洲精品在线观看二区| 无人区码免费观看不卡| 黄色 视频免费看| 黄片大片在线免费观看| 精品国产亚洲在线| 亚洲一卡2卡3卡4卡5卡精品中文| 韩国精品一区二区三区| 首页视频小说图片口味搜索| 亚洲国产精品999在线| 色av中文字幕| 少妇被粗大的猛进出69影院| 夜夜躁狠狠躁天天躁| 露出奶头的视频| 欧美乱码精品一区二区三区| 国产一区二区激情短视频| 怎么达到女性高潮| 国产一区二区激情短视频| 亚洲 欧美一区二区三区| 国产精品日韩av在线免费观看| 国产aⅴ精品一区二区三区波| 99热只有精品国产| 我的亚洲天堂| 男女床上黄色一级片免费看| 天堂影院成人在线观看| 香蕉av资源在线| 亚洲欧美精品综合久久99| 18禁黄网站禁片免费观看直播| 欧美中文日本在线观看视频| 国产在线观看jvid| 国产成人欧美在线观看| 久久久国产欧美日韩av| 亚洲第一欧美日韩一区二区三区| 国产真人三级小视频在线观看| 亚洲欧美精品综合久久99| 久久精品夜夜夜夜夜久久蜜豆 | 国产精品爽爽va在线观看网站 | 日本五十路高清| 99久久精品国产亚洲精品| 精华霜和精华液先用哪个| 欧美另类亚洲清纯唯美| 国产精品久久久人人做人人爽| 最近最新中文字幕大全电影3 | 久久精品国产亚洲av高清一级| 人妻丰满熟妇av一区二区三区| 国产欧美日韩精品亚洲av| 国产99久久九九免费精品| 99在线人妻在线中文字幕| 黄色a级毛片大全视频| 亚洲国产欧洲综合997久久, | 丰满的人妻完整版| 国产精品久久电影中文字幕| 一a级毛片在线观看| 法律面前人人平等表现在哪些方面| 久久精品夜夜夜夜夜久久蜜豆 | 中亚洲国语对白在线视频| 麻豆成人av在线观看| 一本一本综合久久| 国产爱豆传媒在线观看 | av福利片在线| 韩国精品一区二区三区| 欧美黄色淫秽网站| 精品国产一区二区三区四区第35| √禁漫天堂资源中文www|