• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The role of CALYPSO in the discovery of high-Tc hydrogen-rich superconductors?

    2019-11-06 00:45:46WenwenCui崔文文andYinweiLi李印威
    Chinese Physics B 2019年10期
    關鍵詞:文文

    Wenwen Cui(崔文文)and Yinwei Li(李印威)

    Laboratory of Quantum Materials Design and Application,School of Physics and Electronic Engineering,Jiangsu Normal University,Xuzhou 221116,China

    Keywords:CALYPSO,structure prediction,hydrogen-rich superconductors

    1.Introduction

    Superconductivity,one of the most intriguing material properties,has sparked countless studies since its discovery in 1911.[1]Superconductors are categorized as either conventional(if their behaviour can be explained by the Bardeen–Cooper–Schrieffer(BCS)theory[2]or its derivatives)or unconventional(otherwise). Based on BCS theory,materials with light elements are especially favourable for achieving superconductivity because these elements provide high frequencies in the phonon spectrum. This theory has underpinned the design of conventional high-Tcsuperconductors.For many years,the development of superconductors was restricted by the Mcmillan limit,[3]which states that the maximum Tcin conventional superconductors cannot exceed 40 K.To overcome this limit,scientists addressed the following two questions. Are there conventional superconductors with Tcabove 40 K in nature based on the known materials? What is the origin of the superconductivity? Ashcroft’s proposal that solid hydrogen(H2)and hydrogen-rich compounds represent candidates for high-Tcsuperconductors provided a turning point.[4,5]However,the metallization of solid hydrogen is challenging experimentally. A claim by Dias and Silvera to have observed atomic metallic hydrogen in the laboratory[6]remains controversial.[7,8]

    Hydrogen-rich materials have become the main focus of superconductor research because metallization can be realized at lower pressures due to chemical precompression.[5]There are vast numbers of hydrides in nature, including many known hydrides and many new hydrides that can only be formed at high pressure. Therefore,discovering new hydrogen-containing superconductors by using traditional experimental methods based on trial and error is painstaking,and time-consuming work. Consequently,theoretical predictions are urgently required to guide the experimental synthesis of high-Tcsuperconductors. The key to designing H-containing superconductors at high pressure is to determine the crystal structures. Crystal structure AnaLYsis by Particle Swarm Optimization(CALYPSO)[9–11]is one of the most efficient structure prediction methods,and only needs the chemical composition and external conditions,such as pressure,to predict stable and metastable structures in combination with first-principles calculations.[12–18]CALYPSO has theoretically predicted large numbers of superconductors,[19,20]some of which have been confirmed experimentally.

    Fig.1. Calculated and experimental Tc values of hydrogen-rich superconductors by year of publication.Solid red circles denote the calculated Tc of hydrogen-rich superconductors predicted by CALYPSO.Three experimental results are denoted by green squares,a blue triangle,and a pink diamond.

    Given the accuracy and fruitful results of CALYPSO in searching for high-Tcsuperconductors,we present a review of the recent advances in the CALYPSO prediction of superconducting hydrides at high pressure(Fig.1).Experimentalists have attempted to obtain many predicted superconductors,among which hydrogen sulfides[21]and LaH10[22,23]have set record Tcvalues of 203 K and 250 K,respectively.

    2.Superconductors predicted by CALYPSO

    CALYPSO in combination with first-principles calculations has predicted many hydrides with high Tcvalues,including alkaline earth metal hydrides(e.g.,CaH6,[24]MgH6[25]),rare-earth metal hydrides(e.g.,YH6,[26]YH10,and LaH10[27,28]),transition metal hydrides(e.g.,NbH4,[29]VH8,[30]TcH2,[31]WH5,and WH6[32]),boron group hydrides (e.g., GaH3[33]), tetragen hydrides (e.g., SiH4[34]and PbH8[35]),pnictogen hydrides(e.g.,PH3,[36]P4H6,[37]and AsH8[38]),chalcogen hydrides(e.g.,H2S,[39]H4S3,[40]H3Se,[41]H4Te, and H5Te2[42]), halogen hydrides (e.g.,HBr[43]and HCl[44]),and noble gas hydrides(XeH2[45]).These hydrides have a wide range of Tcvalues up to 326 K.The compressed hydrogen sulfides[39]and lanthanum hydrides[27,28]have been synthesized experimentally.[21–23]Thus,we discuss these two breakthrough compounds in detail.

    Fig.2.Typical structures predicted by CALYPSO in sulfur hydrides:(a) H2S(90 GPa),(b)Cmca H2S(170 GPa),(d)P212121 H3S4(25 GPa),and(d)Pnma H3S4(100 GPa). The small pink and large yellow spheres represent hydrogen and sulfur atoms,respectively.

    2.1.Hydrogen sulphide:the first example of a predicted superconductor confirmed experimentally

    As a typical molecular system,H2S crystallizes in three different phases at ambient pressure.[46,47]Under high pressure, more complicated phases emerge theoretically and experimentally,[48,49]but these remain elusive.[39]H2S was not initially identified as a promising superconductor because it was expected to dissociate into its constituent elements at high pressure(80 GPa)before metallization.[50,51]In 2014,CALYPSO predicted that H2S is thermodynamically stable up to at least 200 GPa.In addition,the structure predictions also identifeid two metallic phases with space groups(Fig.2(a))and Cmca(Fig.2(b))that are stable above 80 GPa and are superconductor candidates with estimated Tcaround 80 K.[39]Inspired by this prediction,Drozdov et al.[21]compressed the sulfur hydrides in a diamond anvil cell.They detected superconductivity by a sharp drop to zero resistance and magnetic susceptibility measurements.The measured Tcwas sensitive to temperature,which suggested that there was a low-Tcphase with Tcof 33–150 K at 110–220 GPa when the samples were prepared at low temperature(<100 K)and a high-Tcphase with Tcof 203 K when the sample was heated to room temperature.Drozdov et al.did not identify the two phases,however,they suggested that the low-Tcphase was H2S because it agreed well with our predicted results.[39]

    Many subsequent studies investigated the origin of the Tcvalue of 203 K.Theoretical studies reported that the high-Tcphase originated from H3S,formed by the decomposition of compressed H2S at high pressure.[52–58]H3S was first synthesized in 2011 by Strobel et al.,and then was predicted as a superconductor with a high Tcof ~200 K,[50]close to the experimentally observed high Tcvalue.[21]The decomposition product of compressed H2S was studied under high pressure by first-principles structure predictions and x-ray diffraction(XRD)experiments.[40]In addition to H2S and H3S,CALYPSO predicted new stoichiometries of H2S3,H3S2,HS2,and H4S3.Based on these results,a possible dissociation path for H2S of 8H2S →S+4H3S+H4S3was proposed and confirmed by high-pressure XRD experiment.This was also the first demonstration of the partial decomposition of H2S into H3S at high pressure.The co-existence of H3S and H2S provided direct evidence that explained the experimental observation of two superconductive phases.The P212121and Pnma structures of H4S3are shown in Figs.2(c)and 2(d),respectively,and the Pnma phase is superconducting with Tcof ~2 K at 140 GPa.

    The mechanism of the superconductivity at 203 K in compressed hydrogen sulfide at high pressure has been widely studied to aid the design of new high-Tcsuperconductors.[52,58–60]Several theoretical studies revealed that covalent bonding plays a key role in the large electron–phonon coupling.[61–63]To establish the relationship between Tcand covalent bond strength,we constructed a hypothetical compound,H6SSe,by substituting half of the S atoms in H3S with Se atoms.[62]Using the unbiased CALYPSO method,we identified three dynamically stable structures(Figs.3(b)–3(d)). These three structures retain the maincubic framework of H3S(Fig.3(a))with different Se substitution positions,leading to the formation of covalent S–H and Se–H bonds with different bond strengths.To investigate the effect of covalent bonding on the high Tcof chalcogen hydrides,we plotted Tcas a function of bond strength reflected by the Laplacian ?2ρ(Fig.3(e)).Tcdecreased from 195 to 115 K as the strength of the weakest covalent H–S or H–Se bond in each structure decreased,indicating that strong covalent bonds are important in determining the high Tcof the H3S system.

    Fig.3.(a)structure of H3S and the predicted(b)(c)Cmmm,and(d) structures of H6SSe at 200 GPa.(e)Tχ and electron–phonon coupling constant λ as functions of bond strength of the weakest covalent bonds in H3S and H6SSe.

    2.2.Clathrate hydrides:a leap to room-temperature superconductivity

    2.2.1.LaH10

    Hydrogen sulfide superconductivity is not the only prediction that has been confirmed experimentally.[21]In 2017,two separate CALYPSO studies of lanthanum hydride systems revealed new compounds with stoichiometries of LaH3,LaH4,LaH5,LaH8,and LaH10,as well as the known compound LaH2.[27,28]LaH10was predicted to be dynamically stable above 220 GPa with a face-centred cubic(fcc)structure(space groupthat was a unique H32clathrate-like structure,consisting of four H squares and 12 H hexagons(Fig.4(a)).The Tcof LaH10was estimated to be 257–274 K at 250 GPa,which is close to room temperature.The astonishing predicted Tcin LaH10prompted these hydrides to be experimentally synthesized. Just after the theoretical work was published,Geballe et al.[64]synthesized the lanthanum superhydrides LaH10±x(?2 ≤x ≤1)by directly compressing La and H2samples at 170 GPa and 1000 K.They subsequently published a different synthesis route using ammonia borane(NH3BH3)as the hydrogen source,[22]which produced LaH10±xat pressures of 180–200 GPa.They observed sharp drops in resistivity when they cooled the samples to 260 K,which indicates the superconducting transition. Drozdov et al.[23]also reported the superconductivity of fcc LaH10with Tcof 250 K at 170 GPa,synthesized by direct reaction of lanthanum and hydrogen under high pressures. The superconductivity was supported by the observation of zero resistance,the isotope effect,and a decrease in Tcupon the application of an external magnetic field.Previously,they had reported a Tcof 215 K in lanthanum hydrides,[65]which may correspond to other LaHxphases.The measured Tcof 250–260 K from the two independent experiments agree well with the predicted Tcof LaH10,[27,28]which demonstrates that CALYPSO is a powerful tool in the search for high-Tcsuperconductors.

    Fig. 4. Clathrate hydrides predicted by CALYPSO. (a) La(y)H10,(b)Im3m Ca(y)H6,(c)P63/mmc Sc(Y,Ce)H9,and(d)Li2MgH16.[66]The building block metal atoms centred in the H32,H24,H29,H18 and H28 cages are also shown in each panel.

    2.2.2.Other clathrate hydrides

    LaH10was not the first structure containing an H-cage to be predicted. In 2012,Ma’s group used CALYPSO to predict that a new calcium hydride,CaH6,could be synthesized by compressing elemental calcium and hydrogen or CaH2and hydrogen.[24]In the CaH6structure,hydrogen atoms linked by weak covalent bonds form a clathrate with a calcium atom at the centre(Fig.4(b)).This unique body-centred cubic structure had a predicted Tcof 235 K at 150 GPa,which was the first time that a Tcof more than 200 K was predicted for a hydride.Later,this type of structure was also found in yttrium hydrides.In 2015,using CALYPSO,we predicted that a yttrium atom can react with six hydrogen atoms to form YH6at 120 GPa with the same structure as CaH6and a higher Tcof 264 K,[26]approaching room temperature. In 2017,in the same study that predicted LaH10,YH10was predicted to have a Tcof up to 305–326 K at 250 GPa,surpassing room temperature.[27,28]Ref.[28]also found that H atoms could form different cages in the rare earth(RE=Sc,Y,La,Ce,Pr,etc.)hydrides,such as,H24in REH6,H29in REH9,and H32in REH10(Fig.4).Surprisingly,it is also demonstrated that the calculated Tcfor the clathrates increases with increasing H cage size.For example,YH6,YH9,and YH10have Tcof 264 K(120 GPa),276 K(150 GPa),and 303 K(400 GPa),respectively.Other RE hydrides,LaH9,CeH9,CeH10,and PrH9,had much lower Tc(<56 K)due to the higher mass of the RE elements,although ScH6and ScH9had Tcof ~190 K.Liang et al.used CALYPSO to predict the ternary clathrate hydride,CaYH12,[67]which had a similar H clathrate structure to YH6and CaH6and possessed a Tcof 258 K at 200 GPa. More recently,Ma’s group predicted a clathrate structure in ternary hydride,Li2MgH16[66]with space group(Fig.4(d)),which contains Li-centered H18cages and Mg-centered H28cages. In particular,it exhibits a Tcof around 473 K at 250 GPa,the highest Tcin all the hydrides,which provides the possibility to obtain superconductivity even higher than room temperature.

    3.Other superconductors

    Owing to the high-Tcsuperconductivity of hydrogen sulfide,hydrides of elements neighbouring S,such as P,[36,38,68,69]Se,[41]and Te,[42]have been investigated.

    3.1.Phosphorus hydrides

    Just after the experimental observation of superconductivity in compressed H2S,Drozdov et al.compressed PH3,[70]an analogue of H2S,and observed a high Tcof ~100 K around 200 GPa,indicated by the abrupt drop to zero resistance.However,they did not identify the origin of the superconducting phase.Analogous to the decomposition of hydrogen sulfides,PH3may also decompose to new P–H compounds. Hence,it is important to search for new structures and stoichiometries to explain the origin of the Tcof ~100 K.CALYPSO structure prediction has been vital in exploring the origin of the superconductivity in phosphorous hydrides.In 2016,Liu et al.performed a structure search in the PHx(x=1,2,3,4,5)system at high pressure with CALYPSO.[36]The P212121(<210 GPa,Fig.5(a))andC2/m(>210 GPa,Fig.5(b))phases of PH3were discovered at high pressure. The calculated Tcof the C2/m phase was 83 K,which agreed well with the experimental results.However,these two phases were predicted to be energetically unstable,and decomposed into P and H at high pressure.

    Wang’s group explored the decomposition of PH3at high pressure via a combination of experiments and CALYPSO prediction.[37]XRD and Raman measurements showed that PH3underwent decomposition at high pressures to produce a new stable compound,P4H6. P4H6is generated stepwise.First,dimerized PH3decomposes to P2H4:2PH3→P2H4+H2. Then,P4H6is generated by the further decomposition of P2H4:2P2H4→P4H4+H2. At low temperatures,P4H6can be observed up to 200 GPa.[70]However,the exact structure could not be determined experimentally.CALYPSO predicted the metallic structures of P4H6to be Cmcm(<182 GPa,Fig.5(c))and C2/m(>182 GPa,Fig.5(d)).In addition,the Tcof the C2/m phase was estimated to be 67 K at 200 GPa,which agreed with the measured Tc,indicating that P4H6could be the superconductor observed experimentally by Drozdov et al.[70]

    3.2.Other chalcogen hydrides

    In 2016,Ma’s group used CALYPSO to predict three metallic stoichiometries of HSe2,HSe,and H3Se,all of which exhibit superconductivity.[41]H3Se had the same cubic structure(Fig.3(a))as H3S and had a predicted Tcof 110 K at 250 GPa.Although H3Se and H3S have the same structures,the spectral functional are different because the Se atoms are heavier,which contributes to the lower Tc.In the same year,they identified three metallic stoichiometries of H4Te,H5Te2,and HTe3.Unlike the covalent bonds of H–S(Se)in H3S(Se),the H–Te bonds in tellurium hydrides are ionic bonds.[42]Especially,P6/mmm H4Te(Fig.6(a))contains elongated“H2”molecules,which is a superconductor with estimated Tcof 104 K at 170 GPa. While H5Te2,with space group C2/m(Fig.6(b)),has a relatively lower Tcof 58 K at 200 GPa.

    Fig.5.Structures of phosphorus hydride compounds predicted by CALYPSO.(a)P212121 PH3,(b)C2/m PH3,(c)Cmcm P4H6,and(d)C2/m P4H6.

    3.3.Other hydrides

    In addition to the typical hydride superconductors,CALYPSO has predicted other hydrogen-containing superconductors (Fig. 1) such as GaH3,[33]NbH4,[29]BeH2,[71]W–H,[32]and MgSiH6.[75]However,their Tcvalues are low(10–140 K).Thus,we do not discuss them in detail in this review.

    Fig.6. Structures of tellurium hydrides predicted by CALYPSO.(a)P6/mmm H4Te and(b)C2/m H5Te2.

    4.Summary and outlook

    We have summarized progress in high-Tcsuperconductors predicted by CALYPSO,and described the prediction of H2S and LaH10,which stimulated subsequent experimental studies. The observed Tcvalues of these compounds of 250–260 K pave the way to room-temperature superconductivity.Crystal structure prediction has been important in finding high-Tcsuperconductors. Because theorists have calculated Tcof binary hydrides for most elements in the periodic table,research can now focus on ternary hydrides as the next area in which to discover superconductors,however,the computational burden for these studies will be far higher.Experimentalists still face the challenge of synthesizing theoretically predicted materials.Furthermore,reducing the pressures at which superconducting phases appear is also a major challenge,so that superconductivity can be observed outside of diamond anvil cells and used in practical applications.The search for superconductors with higher Tcis another area of research.For example,predicting clathrate structures with larger cages may be a possible route to higher-Tcsuperconductors.

    猜你喜歡
    文文
    CLIMATE IN CRISIS
    漢語世界(2022年5期)2022-10-15 12:27:00
    TEA LEAVES
    漢語世界(2022年4期)2022-08-08 14:38:00
    Auto Ad Infringement
    Cash Withheld
    Breaking the Chain
    TEA LEAVES
    漢語世界(2022年1期)2022-03-01 05:54:40
    茶話會
    TEA LEAVES
    漢語世界(2021年6期)2021-12-17 10:53:32
    Power Down
    China’s Other Vaccine Drive
    黑人操中国人逼视频| 久久精品国产综合久久久| 成年版毛片免费区| 欧美最黄视频在线播放免费| 国产aⅴ精品一区二区三区波| 国产麻豆成人av免费视频| 性欧美人与动物交配| 大码成人一级视频| 黑人欧美特级aaaaaa片| 最新美女视频免费是黄的| 又黄又粗又硬又大视频| 午夜福利18| 久久久水蜜桃国产精品网| 黄片大片在线免费观看| 亚洲欧美日韩高清在线视频| 成人av一区二区三区在线看| 色综合站精品国产| 欧美色欧美亚洲另类二区 | 少妇被粗大的猛进出69影院| 久久久久久大精品| 久久久久久亚洲精品国产蜜桃av| 又黄又粗又硬又大视频| 日韩精品免费视频一区二区三区| cao死你这个sao货| 正在播放国产对白刺激| 黄网站色视频无遮挡免费观看| 黄色女人牲交| 日本免费a在线| 国产成人精品无人区| 久久精品国产99精品国产亚洲性色 | 老司机午夜十八禁免费视频| 好看av亚洲va欧美ⅴa在| 欧美+亚洲+日韩+国产| 国产一区二区三区综合在线观看| 国产成人一区二区三区免费视频网站| 91九色精品人成在线观看| 嫩草影视91久久| 亚洲精品国产精品久久久不卡| tocl精华| 脱女人内裤的视频| 欧美亚洲日本最大视频资源| videosex国产| 桃色一区二区三区在线观看| www日本在线高清视频| 精品久久久久久,| 叶爱在线成人免费视频播放| 精品午夜福利视频在线观看一区| 九色亚洲精品在线播放| 美女高潮喷水抽搐中文字幕| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲av片天天在线观看| 亚洲第一av免费看| 一级,二级,三级黄色视频| www.精华液| 激情在线观看视频在线高清| 国产成人精品在线电影| 国产单亲对白刺激| 亚洲一区中文字幕在线| 91麻豆精品激情在线观看国产| 国产精品久久视频播放| 亚洲国产精品久久男人天堂| 欧美日韩精品网址| av欧美777| 日韩av在线大香蕉| av天堂久久9| 亚洲中文字幕日韩| 久久久久久久午夜电影| www国产在线视频色| 熟妇人妻久久中文字幕3abv| 亚洲欧美日韩无卡精品| 亚洲精品中文字幕一二三四区| 亚洲免费av在线视频| 黑人操中国人逼视频| 涩涩av久久男人的天堂| 老鸭窝网址在线观看| 久久伊人香网站| 九色亚洲精品在线播放| 免费高清视频大片| 日韩有码中文字幕| 一本大道久久a久久精品| 精品久久久久久,| 最近最新中文字幕大全免费视频| 最近最新中文字幕大全电影3 | 自线自在国产av| 亚洲av日韩精品久久久久久密| 精品一区二区三区四区五区乱码| 久久久久国产精品人妻aⅴ院| 午夜福利欧美成人| 人成视频在线观看免费观看| 国产日韩一区二区三区精品不卡| 妹子高潮喷水视频| 亚洲无线在线观看| 婷婷丁香在线五月| 日本黄色视频三级网站网址| 久久久久久国产a免费观看| 无人区码免费观看不卡| 99国产精品一区二区三区| 午夜福利欧美成人| 好男人在线观看高清免费视频 | 女人被躁到高潮嗷嗷叫费观| 日本免费a在线| 91麻豆av在线| 夜夜看夜夜爽夜夜摸| 日韩欧美三级三区| 好男人在线观看高清免费视频 | 久久久久亚洲av毛片大全| 亚洲精品国产精品久久久不卡| 精品无人区乱码1区二区| 午夜福利影视在线免费观看| 丰满的人妻完整版| 精品熟女少妇八av免费久了| 一本大道久久a久久精品| av在线播放免费不卡| 在线观看午夜福利视频| 国产精品野战在线观看| 巨乳人妻的诱惑在线观看| 久久亚洲真实| 亚洲 欧美一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 两个人视频免费观看高清| 午夜成年电影在线免费观看| 免费在线观看影片大全网站| 一夜夜www| 欧美另类亚洲清纯唯美| 欧美亚洲日本最大视频资源| 狠狠狠狠99中文字幕| 国产片内射在线| 亚洲一区二区三区色噜噜| 琪琪午夜伦伦电影理论片6080| 亚洲免费av在线视频| 老熟妇乱子伦视频在线观看| 亚洲精品粉嫩美女一区| 三级毛片av免费| 国内久久婷婷六月综合欲色啪| 亚洲人成网站在线播放欧美日韩| av视频免费观看在线观看| 亚洲七黄色美女视频| 日本三级黄在线观看| 亚洲一区二区三区色噜噜| 午夜福利免费观看在线| 久久久久精品国产欧美久久久| 麻豆久久精品国产亚洲av| 淫秽高清视频在线观看| 国产av一区在线观看免费| 亚洲精品国产区一区二| 最近最新中文字幕大全免费视频| av天堂久久9| 天天躁夜夜躁狠狠躁躁| 亚洲黑人精品在线| 国产精品野战在线观看| 久久婷婷人人爽人人干人人爱 | 亚洲国产精品sss在线观看| 免费搜索国产男女视频| 看黄色毛片网站| 啦啦啦免费观看视频1| 十八禁人妻一区二区| 精品久久久久久久人妻蜜臀av | 99久久精品国产亚洲精品| 又黄又爽又免费观看的视频| 在线天堂中文资源库| 久久久久久亚洲精品国产蜜桃av| 身体一侧抽搐| cao死你这个sao货| 亚洲中文日韩欧美视频| 日韩精品免费视频一区二区三区| 午夜老司机福利片| 欧美成人午夜精品| 性色av乱码一区二区三区2| 国内久久婷婷六月综合欲色啪| 少妇粗大呻吟视频| 色精品久久人妻99蜜桃| 91在线观看av| 欧美黄色片欧美黄色片| 99久久精品国产亚洲精品| 国产精品1区2区在线观看.| 变态另类丝袜制服| 欧洲精品卡2卡3卡4卡5卡区| av中文乱码字幕在线| 电影成人av| 中文字幕av电影在线播放| 国产在线观看jvid| 日韩有码中文字幕| 国产亚洲av高清不卡| 视频区欧美日本亚洲| 亚洲男人的天堂狠狠| 久久婷婷成人综合色麻豆| 黑丝袜美女国产一区| 婷婷丁香在线五月| 乱人伦中国视频| 免费搜索国产男女视频| 亚洲国产日韩欧美精品在线观看 | 亚洲人成电影观看| 欧美性长视频在线观看| 亚洲中文av在线| 欧美一级毛片孕妇| 91字幕亚洲| 国产极品粉嫩免费观看在线| 亚洲最大成人中文| 琪琪午夜伦伦电影理论片6080| 校园春色视频在线观看| 18禁观看日本| a在线观看视频网站| 韩国av一区二区三区四区| 国产av一区二区精品久久| 无人区码免费观看不卡| 亚洲五月色婷婷综合| av有码第一页| 最新美女视频免费是黄的| 最好的美女福利视频网| 中国美女看黄片| 99国产精品99久久久久| 午夜福利,免费看| 国产精品亚洲av一区麻豆| 中文亚洲av片在线观看爽| 久久久精品欧美日韩精品| 国产人伦9x9x在线观看| 久久欧美精品欧美久久欧美| 青草久久国产| 老司机在亚洲福利影院| 日韩欧美免费精品| 一区二区三区国产精品乱码| 亚洲熟妇中文字幕五十中出| √禁漫天堂资源中文www| 伊人久久大香线蕉亚洲五| 午夜福利在线观看吧| 男男h啪啪无遮挡| 两个人免费观看高清视频| 日本一区二区免费在线视频| 国产99白浆流出| 日日干狠狠操夜夜爽| 亚洲精品av麻豆狂野| 日本 av在线| 美女 人体艺术 gogo| 国产精品免费视频内射| 嫩草影院精品99| 天堂影院成人在线观看| 日韩 欧美 亚洲 中文字幕| 一进一出抽搐动态| 国产一区二区三区视频了| 男女下面插进去视频免费观看| 日日摸夜夜添夜夜添小说| 国产主播在线观看一区二区| 老司机午夜福利在线观看视频| 国产一区二区三区视频了| 99国产精品一区二区蜜桃av| 国产精品亚洲美女久久久| 两个人免费观看高清视频| av片东京热男人的天堂| 天天躁夜夜躁狠狠躁躁| 麻豆国产av国片精品| 老司机在亚洲福利影院| 日日干狠狠操夜夜爽| 精品高清国产在线一区| 亚洲精品美女久久久久99蜜臀| 精品午夜福利视频在线观看一区| 午夜影院日韩av| 99在线视频只有这里精品首页| 日韩精品中文字幕看吧| 黄频高清免费视频| 一区二区三区国产精品乱码| 黄色视频不卡| 50天的宝宝边吃奶边哭怎么回事| 宅男免费午夜| 亚洲精品国产色婷婷电影| 亚洲国产精品sss在线观看| 在线观看免费午夜福利视频| 亚洲五月色婷婷综合| 18禁美女被吸乳视频| 99国产精品99久久久久| 欧美激情极品国产一区二区三区| 国内精品久久久久精免费| 精品人妻在线不人妻| 日本vs欧美在线观看视频| 精品一区二区三区视频在线观看免费| www.www免费av| 岛国在线观看网站| 18禁美女被吸乳视频| 亚洲av片天天在线观看| 视频区欧美日本亚洲| 久久人人爽av亚洲精品天堂| 欧美老熟妇乱子伦牲交| 久久伊人香网站| 搡老岳熟女国产| 精品一区二区三区四区五区乱码| 好男人电影高清在线观看| 午夜免费激情av| 亚洲av五月六月丁香网| 亚洲av熟女| 咕卡用的链子| 极品教师在线免费播放| 精品国产国语对白av| 天堂动漫精品| 亚洲欧美日韩高清在线视频| 国产精品二区激情视频| 精品一区二区三区av网在线观看| 久久天堂一区二区三区四区| 欧洲精品卡2卡3卡4卡5卡区| 久久亚洲精品不卡| 亚洲国产中文字幕在线视频| 美女午夜性视频免费| 两人在一起打扑克的视频| 亚洲成人久久性| 在线观看免费日韩欧美大片| 日韩中文字幕欧美一区二区| 嫁个100分男人电影在线观看| 一边摸一边抽搐一进一出视频| 天天添夜夜摸| 韩国av一区二区三区四区| 黄色视频不卡| 丁香六月欧美| 亚洲中文av在线| 一级毛片女人18水好多| 欧美日本中文国产一区发布| 精品国内亚洲2022精品成人| 一二三四社区在线视频社区8| 午夜久久久久精精品| 精品一品国产午夜福利视频| 欧美成人免费av一区二区三区| 国产精品影院久久| 很黄的视频免费| 999久久久国产精品视频| 真人一进一出gif抽搐免费| 女同久久另类99精品国产91| 1024视频免费在线观看| 黑人巨大精品欧美一区二区mp4| 免费搜索国产男女视频| 国产精品98久久久久久宅男小说| 1024视频免费在线观看| 欧美成人午夜精品| 成人手机av| 侵犯人妻中文字幕一二三四区| 亚洲黑人精品在线| 亚洲专区国产一区二区| 亚洲精品久久国产高清桃花| 亚洲中文字幕日韩| 大香蕉久久成人网| 欧美亚洲日本最大视频资源| 别揉我奶头~嗯~啊~动态视频| 不卡一级毛片| 好男人在线观看高清免费视频 | 一二三四社区在线视频社区8| 精品第一国产精品| 国产精品一区二区三区四区久久 | 黑人操中国人逼视频| 琪琪午夜伦伦电影理论片6080| 亚洲色图综合在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲中文字幕日韩| 两性夫妻黄色片| 国产亚洲精品久久久久久毛片| 国产精品久久久久久人妻精品电影| 亚洲国产精品合色在线| 久久久久久久久久久久大奶| 亚洲欧美日韩另类电影网站| 18禁裸乳无遮挡免费网站照片 | 亚洲全国av大片| 久久香蕉激情| 韩国精品一区二区三区| 亚洲免费av在线视频| 国产野战对白在线观看| 大码成人一级视频| 一区福利在线观看| 国产av一区在线观看免费| 国产蜜桃级精品一区二区三区| 亚洲国产中文字幕在线视频| 久久天堂一区二区三区四区| 淫妇啪啪啪对白视频| 欧美激情 高清一区二区三区| 久久午夜综合久久蜜桃| 99精品欧美一区二区三区四区| 黑人欧美特级aaaaaa片| 变态另类丝袜制服| 亚洲av成人一区二区三| 亚洲无线在线观看| 无限看片的www在线观看| 亚洲中文字幕日韩| 日韩大码丰满熟妇| 亚洲精品在线美女| 久久性视频一级片| 纯流量卡能插随身wifi吗| 欧美日韩一级在线毛片| www.自偷自拍.com| 亚洲成a人片在线一区二区| 午夜影院日韩av| 性欧美人与动物交配| 亚洲国产精品999在线| 亚洲第一欧美日韩一区二区三区| 巨乳人妻的诱惑在线观看| 人妻久久中文字幕网| 一区福利在线观看| 国产日韩一区二区三区精品不卡| 99在线人妻在线中文字幕| 国产成人免费无遮挡视频| 91成年电影在线观看| 韩国av一区二区三区四区| 欧美激情高清一区二区三区| 欧美激情久久久久久爽电影 | 12—13女人毛片做爰片一| 久99久视频精品免费| 18禁观看日本| 欧美黄色淫秽网站| 日本 av在线| 天堂影院成人在线观看| АⅤ资源中文在线天堂| 黑人操中国人逼视频| 少妇裸体淫交视频免费看高清 | 一卡2卡三卡四卡精品乱码亚洲| 精品一品国产午夜福利视频| 最近最新中文字幕大全电影3 | 欧美日韩乱码在线| 免费在线观看视频国产中文字幕亚洲| 夜夜爽天天搞| 国产一级毛片七仙女欲春2 | 亚洲av成人一区二区三| 亚洲精品中文字幕一二三四区| 美女国产高潮福利片在线看| 一边摸一边抽搐一进一小说| 麻豆久久精品国产亚洲av| bbb黄色大片| 午夜免费成人在线视频| 欧美日韩亚洲国产一区二区在线观看| 国产精品久久久人人做人人爽| 两个人看的免费小视频| 视频区欧美日本亚洲| 国产亚洲精品一区二区www| 亚洲欧美一区二区三区黑人| 女同久久另类99精品国产91| 中文字幕人妻熟女乱码| 色在线成人网| 国产精品久久电影中文字幕| 深夜精品福利| 午夜日韩欧美国产| 国产高清有码在线观看视频 | 欧美久久黑人一区二区| 久久久久久久午夜电影| 久久精品亚洲熟妇少妇任你| 日韩大码丰满熟妇| 天天躁夜夜躁狠狠躁躁| 精品欧美一区二区三区在线| 18禁国产床啪视频网站| 窝窝影院91人妻| 亚洲九九香蕉| 免费无遮挡裸体视频| 大香蕉久久成人网| 久久欧美精品欧美久久欧美| 校园春色视频在线观看| 99精品欧美一区二区三区四区| 精品人妻1区二区| 中国美女看黄片| 老汉色∧v一级毛片| 美女 人体艺术 gogo| 日本免费一区二区三区高清不卡 | 欧美午夜高清在线| 国产精品野战在线观看| 亚洲精品中文字幕一二三四区| 久热爱精品视频在线9| 后天国语完整版免费观看| 乱人伦中国视频| 人妻久久中文字幕网| 国产一卡二卡三卡精品| 亚洲中文日韩欧美视频| 狠狠狠狠99中文字幕| 一边摸一边做爽爽视频免费| 国产国语露脸激情在线看| 无遮挡黄片免费观看| 久久伊人香网站| 老汉色av国产亚洲站长工具| 国产精品亚洲美女久久久| 日本 欧美在线| 国产成人欧美| 狂野欧美激情性xxxx| 精品国产美女av久久久久小说| 一级毛片女人18水好多| 午夜亚洲福利在线播放| 亚洲成人免费电影在线观看| 精品无人区乱码1区二区| 午夜福利欧美成人| 精品国产乱子伦一区二区三区| 天天添夜夜摸| 久热爱精品视频在线9| 久久香蕉激情| 日本欧美视频一区| 精品久久久久久久久久免费视频| 国产精品自产拍在线观看55亚洲| 国产精品1区2区在线观看.| 国产熟女午夜一区二区三区| 美女大奶头视频| 久久影院123| 国产亚洲欧美在线一区二区| 欧美 亚洲 国产 日韩一| 夜夜爽天天搞| 日本免费一区二区三区高清不卡 | 美女高潮喷水抽搐中文字幕| 在线观看舔阴道视频| a级毛片在线看网站| 国产精品综合久久久久久久免费 | 国产精品久久久久久亚洲av鲁大| 午夜福利成人在线免费观看| 十八禁网站免费在线| 成人永久免费在线观看视频| 黄片大片在线免费观看| 男女午夜视频在线观看| 国产人伦9x9x在线观看| 精品久久久久久久毛片微露脸| 成年版毛片免费区| 久99久视频精品免费| 久久国产精品男人的天堂亚洲| 国产精品一区二区免费欧美| 久久人妻福利社区极品人妻图片| 一边摸一边做爽爽视频免费| 99久久精品国产亚洲精品| 国产蜜桃级精品一区二区三区| 日日摸夜夜添夜夜添小说| 亚洲av第一区精品v没综合| 精品国产亚洲在线| 国产亚洲欧美98| 18禁国产床啪视频网站| 精品久久久精品久久久| 午夜免费激情av| 最好的美女福利视频网| 国产日韩一区二区三区精品不卡| 极品教师在线免费播放| 成人特级黄色片久久久久久久| 99久久精品国产亚洲精品| 丰满的人妻完整版| 国产亚洲精品av在线| 久久精品91无色码中文字幕| 亚洲 国产 在线| 欧美国产日韩亚洲一区| 精品久久久久久久毛片微露脸| 亚洲专区国产一区二区| aaaaa片日本免费| 午夜福利欧美成人| 久久 成人 亚洲| 一个人观看的视频www高清免费观看 | 国产精品九九99| 757午夜福利合集在线观看| 99在线视频只有这里精品首页| 国产xxxxx性猛交| 国产成人av激情在线播放| 男女之事视频高清在线观看| 老司机靠b影院| 欧美日韩亚洲国产一区二区在线观看| 国产午夜精品久久久久久| 曰老女人黄片| 国产成人一区二区三区免费视频网站| 国产av一区二区精品久久| 久久久久久久久中文| 一边摸一边抽搐一进一小说| 国产亚洲精品第一综合不卡| 欧美久久黑人一区二区| 亚洲精品中文字幕一二三四区| 黄色 视频免费看| 精品午夜福利视频在线观看一区| 啦啦啦 在线观看视频| 老司机在亚洲福利影院| 亚洲人成伊人成综合网2020| 亚洲第一青青草原| 天天一区二区日本电影三级 | 美女大奶头视频| 脱女人内裤的视频| 久久久久久久久久久久大奶| 日韩精品青青久久久久久| 亚洲精品国产色婷婷电影| 丝袜美腿诱惑在线| 欧美亚洲日本最大视频资源| 亚洲男人的天堂狠狠| 国产成人精品在线电影| 日本黄色视频三级网站网址| 精品欧美一区二区三区在线| 久久香蕉国产精品| 亚洲欧美日韩另类电影网站| 亚洲一区高清亚洲精品| 亚洲精品美女久久av网站| 成年版毛片免费区| 老司机午夜十八禁免费视频| 亚洲av美国av| 亚洲激情在线av| xxx96com| 狠狠狠狠99中文字幕| 亚洲专区中文字幕在线| 黄色丝袜av网址大全| 制服丝袜大香蕉在线| 欧美亚洲日本最大视频资源| 法律面前人人平等表现在哪些方面| 精品久久久久久久毛片微露脸| 精品国产亚洲在线| 中出人妻视频一区二区| 日韩欧美三级三区| 国产亚洲精品av在线| 色播亚洲综合网| 老汉色∧v一级毛片| e午夜精品久久久久久久| 一进一出抽搐gif免费好疼| 男女下面进入的视频免费午夜 | 人成视频在线观看免费观看| 欧美日韩黄片免| 国产成人欧美在线观看| av视频免费观看在线观看| 波多野结衣巨乳人妻| 国产精品久久久久久人妻精品电影| 12—13女人毛片做爰片一| 老司机福利观看| 人人妻人人爽人人添夜夜欢视频| netflix在线观看网站| 日日干狠狠操夜夜爽| 日韩中文字幕欧美一区二区| 精品一区二区三区四区五区乱码| 啦啦啦免费观看视频1| 精品久久久久久久久久免费视频| 国产三级黄色录像| www日本在线高清视频| 国产熟女午夜一区二区三区| 啦啦啦免费观看视频1| 国产精品电影一区二区三区|