• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pressure-induced new chemistry?

    2019-11-06 00:45:22JianyanLin藺健妍XinDu杜鑫andGuochunYang楊國春
    Chinese Physics B 2019年10期

    Jianyan Lin(藺健妍),Xin Du(杜鑫),and Guochun Yang(楊國春)

    Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education,Northeast Normal University,Changchun 130024,China

    Keywords:high pressure,oxidation state,stoichiometry,structural prediction

    1.Introduction

    At ambient conditions,the valence electrons of an atom dominate the chemical properties,rooted in the well-accepted atomic shell structure.[1,2]In general,atoms react with other atoms by losing,obtaining,or sharing their valence electrons.However,the inner-shell electrons or outer empty orbital are not involved in chemical bonding. Thus,the number of the valence electrons of an element is closely related to the oxidation state in its compounds.On the other hand,the preparation of compounds with new oxidation states is a rather attractive topic in condense-mater physics and chemistry.[3–6]This is because compounds with new oxidation states usually contain new types of chemical bonding and exhibit interesting physical and chemical properties.[6–10]

    Pressure,like temperature and volume,is a basic thermodynamic parameter,but it exhibits unique advantages in finding new materials[11–15]and stabilizing unexpected stoichiometric compounds with new oxidation states.[16,17]This can be attributed to the fact that pressure can shorten the interatomic distance,[18]overcome the reaction barrier,[19,20]rearrange the atomic orbital energy level,[21]and modify the electronegativity.[22]In particular,the chemical properties of elements are strongly correlated with the relative orbital energy levels. Although pressure increases the atomic orbital energy levels,the elevated magnitudes of various elements are different.

    High-pressure experiments are expensive. Moreover,many attempts are needed to determine the experimental conditions before obtaining the desirable compounds.However,first-principles structure prediction method has become an alternative way to explore potential experimental conditions and identify new functional materials at high pressures.[23–28]For instance,the recent breakthrough in the field of superconductivity was achieved by a direct investigation on a theoretical prediction of compressed solid H2S with remarkable large superconductive transition temperature.[29,30]This method has also been successfully applied to the discovery of new chemical reactions and oxidation states,not accessible at ambient pressure.[31–34]Some of the research results break through the understanding of atomic shell structure,and realize the chemical bonding involved in inner-shell electrons or outer space orbital.[35–37]Although there have been many important advances in the field of high-pressure new chemistry,[38–42]in this review,we mainly focus on the recent progress discovered by first-principles unbiased structure search(CALYPSO)calculations.

    2.New oxidation states of gold

    Gold(Au)is a magic element in the periodic table and shows unusual physical and chemical properties,mainly originated from the strong relativistic effect.[43–46]Its electron configuration is 5d106s1. The extension of 5d orbital results in the high reactivity of 5d electrons and the tendency to form higher oxidation states. The contraction of 6s orbital leads to the high electronegativity comparable to halogen and the obtainment of electrons from the other atoms,showing a negative oxidation state.[44,47]Au has become a rare representative of negative oxidation state among the metal elements.On the other hand,Au compounds with different oxidation states exhibit interesting properties and wide applications.For example,the negative oxidation state of Au leads to a series of exotic properties,such as ferroelectricity,electric polarization,and catalysis.[48]F-rich Au compounds can be used as strong oxidants originated from their large electron affinity.[49]However,the long-desirable target AuF6has not been reported thus far.[50,51]In the oxidative addition reactions,Au in different oxidation states induces diverse catalytic activity.[52–54]Therefore,the investigation of Au oxidation state has always been the most interesting and active fields in chemistry and material.[47,52,55,56]

    Lithium(Li)and fluorine(F)have strong inclination to lose and acquire electrons in chemical reactions due to their strong electropositivity and electronegativity, respectively.Once pressure stabilized the Li-rich or F-rich Au compounds,they might show new negative or positive oxidation states. In the Li–Au binary compounds,several of Li-rich aurides(e.g.,Li4Au and Li5Au)become stable at megabar pressures.[59]Their common structural feature is the Au-center polyhedrons(Fig.1(a)).The distance between the two nearest Au atoms is significantly longer than the aurophilic interaction distance,indicating that the interatomic Li–Au interaction is dominant. Bader charge analysis shows that Au gains more than one electron from Li,occupying the 6s+6p orbitals.Thus,Au in Li-rich aurides(n3)behaves as a 6p-element.More interestingly,the negative oxidation states of Au can be effectively tuned from ?1 to ?3(or even higher)by modulating the Li compositions.For F-rich Au compounds,AuF4and AuF6were identified under high pressure,[57]exhibiting typical molecular crystal characters(Fig.1(b)).Thus,the oxidation state of Au can be unambiguously assigned as+4 and+6,respectively. The molecular orbital analysis of AuF4shows an obvious Au 5d7electronic configuration,which is consistent with the assignment of the+4 oxidation state in Au.Besides these,two hitherto unknown mixed-valence states of Au have been found in AuO2(+3 and+5)and AuS(+1 and+3)(Fig.1(c)).[58]These studies not only provide a controllable method for achieving the diverse oxidation states of Au,but also widen the understanding of Au element.

    Fig.1.(a)Crystal structure of I4/m Li4Au and Cmcm Li5Au at 50 GPa.The Bader charge of Au in various LinAu(n=1–5)compounds,showing that the negative oxidation state of Au is beyond ?3 in Li4Au and Li5Au.(b)Crystal structures of I4/m AuF4 and R-3 AuF6;molecular orbital plots of Au 5d orbitals in I4/m AuF4.Adapted with permission from Ref.[57].Copyright(2018)American Chemical Society.(c)The two mixed-valence compounds C2/m AuO2 and P-1 AuS.Adapted with permission from Ref.[58].Copyright(2018)Wiley.

    3.New oxidation states of alkali and alkali-earth metal

    Alkali metals,with ns1valence electron configurations,have strong reaction activity and can form ionic compounds with other elements. Thus,for a long time,it has been believed that alkali metals prefer to lose the outermost electron,forming+1 oxidation state,[60]and their core electrons are not involved into chemical bonding.It becomes a huge challenge for alkali metals to form a higher oxidation state.[61–63]On the other hand,since the first discovery of alkali metal anions(named alkalides)in the 1970s,[64,65]there has been much interest in obtaining more electrons of alkali metals from other atoms.[66,67]However,the negative oxidation state of alkali metals is limited to ?1 at ambient pressure.

    Caesium(Cs),with the exception of Fr,is the least electronegative element in alkali metal group. Moreover,its 5p level becomes broadened and even increases to the states around the Fermi level under high pressure.[68–72]Miao et al.predicted that Cs can open its inner shell through the reaction with F at high pressures,allowing its 5p electrons to participate in the chemical reaction and exhibiting the oxidation state beyond+1.[36]Cs in CsF2,CsF3,and CsF5molecular crystals show the formal oxidation states of+2,+3,and+5(Figs.2(a)and 2(b)).This is the first example to announce that inner shell electrons can become reactive at high pressures,breaking through the classical understanding that inner-shell electrons cannot participate in chemical bonds.

    In an opposite way,Cs obtaining electron from Li,at high pressures,shows a new chemical inclination that is not accessible at ambient conditions.At ambient pressure,Li and Cs only exist in the form of alloys.[73]However,LiCs,Li3Cs,Li4Cs,and Li5Cs become stable intermetallic compounds at high pressures.[74]LiCs is stabilized into a CsCl-type structure(Fig.2(d)).For other compounds,Cs–Li polyhedrons are connected with each other through face-or vertice-sharing.Intriguingly,Cs can gain more than one electron from Li,and extend its negative oxidation state beyond ?1.This is due to the fact that the energy increase of Li 2s is much faster than that of Cs 5d,and eventually reordering them with pressure.This character is favor of the charge transfer from Li 2s to Cs 5d,reducing the total energy and stabilizing the Li–Cs compounds.To be noted,the metastable LiCs phase shows superconductivity with a Tcof 21.4 K at 25 GPa.Its superconductivity comes from the charge transfer from Li 2s to Cs 5d,and from 6s to 5d in Cs,inducing a strong electron–phonon coupling.[75]

    Alkali metals can open up the inner electrons at high pressures.It is a natural thought that whether alkaline earth metals have similar properties.However,the electron screening effect on the inner electrons in alkali-earth elements is much stronger than that in alkali elements.As a result,opening up the inner shell of alkali-earth metals might be more difficult with respect to alkali metals.[76]In the periodic table,barium(Ba)is adjacent to Cs,and nonradiative in alkali-earth metal group.Under high pressure,Ba can open up its inert 5p shell through the reaction with F,exhibiting the oxidation states greater than+2 in its F-rich compounds BaF3,BaF4,and BaF5(Fig.2(c)).[77]Alkali and alkali-earth metals in their compounds are usually ionic at ambient pressure. Under high pressure,Cs–F bond are covalent(Fig.2(e))in Cs–F compounds,[36]whereas Ba–F bond are ionic(Fig.2(f)).

    Fig.2.(a)CsF3 at 100 GPa in a C2/m structure.(b)CsF5 at 150 GPa in an Fdd2 structure.(c)F-43m-BaF5 at 200 GPa.(d)LiCs in the CsCl structure at 150 GPa.ELF maps of CsF5(e)and BaF5(f).

    4.Unusual F-rich compounds

    As can be seen above,F is essential in achieving extremely high oxidation states in both transition metals and main group elements.[78]On the other hand,F-rich compounds often exhibit strong oxidating power,serving as fluorinating agents or oxidants.[8,78]For instance, PtF6can oxidize xenon, producing the first noble gas compound,XePtF6.[79]Thus,design and preparation of F-rich compound are rather important from both fundamental and applicable standpoints.[80–82]

    Mercury(Hg),one of the post-transition metals,has a fully filled 5d shell.Its typical oxidation state is+2.When Hg reacts with F under high pressure,its 5d electrons become active,forming HgF3(Fig.3(a))and HgF4(Fig.3(b))compounds,showing+3 and+4 oxidation states in Hg.[83]This discovery resolved the long-standing dispute over whether Hg could be included into transition metals.[84]Moreover,the electronic structure analysis shows that HgF3is metallic and ferromagnetic,resulting from the 5d9electron configuration of Hg.Notably,the Hg–F bond in HgF4is covalent.

    Fig.3.Crystal structures of(a)Fm-3m HgF3 at 100 GPa.(b)I4/m HgF4 at 50 GPa.(c)R-3 IrF8 at 200 GPa.Adapted with permission from Ref.[85].Copyright(2019)American Chemical Society.(d)R-3 IF8 at 300 GPa.

    One of the key factors in the formation of F-rich compounds is that the central atoms can provide more valence electrons. Iridium(Ir)contains nine valence electrons(5d76s2),which can be fully utilized in its compounds,showing the highest oxidation state of+9.[6]However,the high oxidation states of Ir are all in its oxides(e.g.,[(η2-O2)IrVIIO2]+,IrVIIIO4,[IrIXO4]+),[6,86]existing in molecular forms. Thus far,the highest known F stoichiometry in Ir fluoride is only IrF6.Very recently,three IrF8molecular crystals(Fig.3(c))have been predicted to be stable at high pressures,which become the first bulk solid containing the+8 oxidation state in Ir.[85]The spatial symmetry of the basic building block in the three IrF8phases enhances with the increase in the pressure(e.g.,dodecahedron →square antiprism →quasicube).The pressure-induced faster elevation of Ir 5d orbital energy level with respect to F 2p facilitates the charge transfer from Ir 5d to F 2p,reducing the total energy,so that F-rich compounds become stable.Since F-rich compounds are potential oxidants,the oxidizing power of the predicted compounds was evaluated by calculating their electronic affinities.The oxidizing power of the three identified IrF8phases is close to or exceeds PtF6,a recognized strong oxidant.

    As the next transition metal of Ir,platinum(Pt)has one more valence electron than Ir.Thus,we have explored the Frich compounds of Pt at high pressures in order to obtain a higher F stoichiometry.However,the most F-rich compound is PtF6up to 300 GPa(Fig.4(c)).The known PtF4and PtF6undergo structural phase transitions(Figs.4(a)and 4(b))with pressure.Overall,although Pt,Au,and Hg have more valence electrons than Ir,their most F-rich stoichiometries are PtF6,AuF6,and HgF4.The pressure-induced different increase of their 5d atomic orbital energy levels might be responsible for the observations(Fig.4(d)).[85]

    Fig.4.(a)PtF4 in C2/m symmetry at 300 GPa.(b)PtF6 in C2/c symmetry at 300 GPa.(c)Phase stabilities of the considered PtFx(x=1–10)compounds with respect to elemental Pt and F2 solids at 300 GPa.(d)The energy difference between M 5d and F 2p orbital at 100 GPa,and the stable F-richest stoichiometry of M(M=Ir,Pt,Au,Hg).

    The coordination number of an atom in compound has great effect on the structure and property.[87,88]Thus,hypercoordination has become one of the most active research fields.[89–91]Among the halogen elements,except astatine,iodine(I)has the largest atom radius, the weakest electronegativity,and the largest polarizability. These characters might allow more atoms in its coordination sphere. On the other hand,available hypercoordinated I compounds can be applied for the environmentally benign catalysis and the highly selective oxidization.[92–94]Up to now,the highest coordination number of I in neutral compound is seven(e.g.,IF7).[95]The known anionic octafluoride(IF8?)shows square antiprismatic. Pressure-induced stable neutral IF8molecule having a quasi-cube molecular configuration(Fig.3(d)),has been identified through swarm intelligence structural search calculations.[37]At ambient pressure,the I 5d orbital level is much higher than that of I 5p,making the hybridization impossible.Under high pressure,the I 5d orbitals in IF8come down and are split by the cubic ligand field into lower-lying egand higher-lying t2gsets,so that the hybridization with filled F-centered orbitals becomes possible.[96]Thus,I in IF8is not only hypercoordinated,but also hypervalent.Moreover,IF8shows metallic,coming from a hole contribution of F 2p bands.Interestingly,IF8and IrF8exhibit similar quasi-cubic structure with the R-3 symmetry.

    5.Unexpected chemical activity of noble gases

    Noble gases(Ng’s)are the most stable elements due to their closed outer shell. Among them,xenon(Xe)is most likely to be involved in the chemical reactions because of its large atomic size,showing weak binding ability of nuclei to outer electrons. Strong oxidizers with high electron affinity might open the full shell of Xe. As expected,the first noble gas compound,XePtF6,was synthesized in 1962,[79]and three Xe fluorides,XeF2,XeF4,and XeF6,were found in the same year.[97–99]On the other hand,it becomes more active and forms various compounds with other atoms at high pressures.

    Recent investigation on Xe–F binary compounds has found several of new phases,displaying interesting structural characters under high pressure.[100]Besides the synthesized XeF2,XeF4,and XeF6at ambient pressure,the other two Xe-rich stoichiometries,such as Xe2F(Fig.5(a))and Xe3F2,have been discovered at high pressures.Intriguingly,there appear Xe–Xe covalent bonds in these Xe–F compounds,becoming the first evidence of Ng–Ng bond in compound after in Ng cations(e.g.,and).[101–103]Moreover,Xe atoms form intercalated graphitic layers in Xe2F.

    Chlorine(Cl),with a weaker electronegativity than F,can also break the closed shell of Xe. However,the known Xe chloride(XeCl2)cannot be isolated outside a matrix.Under high pressure,a series of Xe–Cl compounds become stable in solid states,such as XeCl,XeCl2,and metastable XeCl4(Fig.5(b)).[104]F can oxidize Xe to+6 oxidation state,[99]while Cl only leads to the formation of XeCl4with+4 oxidation state.The predicted Xe–Cl compounds show diverse electronic properties,ranging from metallicity to semiconducting.

    Except for the high electronegative halogen elements,nitrogen(N),which is chemically inert at normal conditions and stabilizes into the N2molecule,can form compounds with Xe under high pressure.XeN6has been predicted to be the product of Xe and N2at megabar pressures146 GPa).[105]The XeN6phase(Fig.5(c))exhibits intriguing structural characteristics containing the chaired N6hexagons and 12-fold coordination of Xe bonded with N.It is a semiconductor with a band gap of ~1.5 eV.XeN6becomes the potential high energy density material due to its remarkable large energy density of 2.4 kJ·g?1.Unlike the ionic bonds between Xe and F[100]or Cl,[104]Xe–N bond is covalent.

    Transition metals,such as iron(Fe)or nickle(Ni),can also react with Xe under high pressure,forming sable compounds of XeFe,XeFe3(Fig.5(d)),XeFe5,XeNi3(Fig.5(e)),and XeNi5.[106]This breakthrough finding resolves the problem that Xe disappears in the Earth’s core,and provides an opportunity to re-recognize the chemical properties of transition metals. It is well known that transition metals are usually serving as reducing agents and lose their electrons showing positive oxidation states. However,Fe/Ni gains electrons from Xe at high pressures. This is completely different from the understanding of traditional chemical knowledge.The charge transfer from Xe to Fe/Ni under high pressure may be the result of pressure-induced alternation of atomic electronegativity.[22,107]

    For alkali metals,the inclination of losing electrons is less likely to be changed.Alkali metal Ng compounds have been investigated under high pressure,such as Cs–Xe[108]and Li–Ar[109]systems. Cs–Xe compounds(Fig.5(g))exhibit weak ionicity,in which Xe gains electrons from Cs. The charge transfers become more intriguing in Li–Ar compounds(Fig.5(f)),as well as alkali earth metal Ng compounds(e.g.,Mg–Xe(Fig.5(h)),Mg–Kr,and Mg–Ar).[110]In these cases,alkali metals transfer electrons not only to Ng’s,but also to interstitial sites forming electrides.Perhaps,it is not easy to add large amount of electrons to Ng’s,so the excess part is localized in the interstitial regions of the crystal.

    Finally,the most stable inert gas,helium(He),becomes chemically active at high pressures.Several of stable helium compounds have been obtained through reacting with ionic compounds at high pressures.[112]Intriguingly,the electrons of He atoms do not participate in any chemical bonds,but He atom plays a key role in reducing the strong repulsive Coulomb interactions between the majority ions with the same charge,and decreasing the Madelung energy. Based on the identified compounds and the composition of the Earth’s minerals,a large quantity of He could be stored in the Earth’s lower mantle.

    Fig.5.Crystal structures of(a)I4/mcm Xe2F at 200 GPa.(b)P-6m2 XeCl4 at 100 GPa.(c)R-3m XeN6 at 150 GPa.(d)Pm-3m XeFe3 at 250 GPa.(e)Pmmn XeNi3 at 250 GPa.(f)P4/mmm LiAr at 160 GPa.(g)I4/mmm CsXe2 at 200 GPa.(h)I4/mmm Mg2Xe at 200 GPa.(i)Ibam(H2O)2He at 300 GPa.(j)Fd-3m He2H2O at 70 GPa.(k)Phase diagram of the helium-water system at high pressures.Adapted with permission from Ref.[111].Copyright(2019)Nature.

    Ng’s can also combine with H2O molecule at high pressures. He was predicted to form compound with H2O.[113]The only stable stoichiometry is(H2O)2He(Figure 5(i)),in which the strong bonding interaction between He and O atoms(denoted as He...O interaction)plays a major role of the stabilization.The He...O interaction originates from the closedshell of He and O atoms and the strengthen is similar to hydrogen bonding.In(H2O)2He,H2O transfers little charge to He,so that it shows semiconducting property.However,the reactions of Xe and H2O under high pressure and high temperature produces Xe4H12O12.[114]More recently,unusual superionic states have been observed in He–H2O compounds through the reaction of He and H2O under high pressure and high temperature with the aid of machine learning method.[111]This breakthrough finding provides important theoretical evidences for understanding the physical and chemical properties of He at high pressures and the structural evolution of the celestial bodies such as Uranus and Neptune(Figs.5(j)and 5(k)).[111]More interestingly,He and Ne guests can be trapped by alkalimetal oxide and sulfide under pressure,suggesting a new strategy for gas storage.[115]Moreover,Ng’s can also combine with each other to form stable compounds,such as XeHe2,[116]

    ArHe2,[117]and NeHe2.[118,119]

    6.Conclusions and outlook

    Pressure has led to the discovery of numerous unusual chemical reactions,not accessible at ambient pressure.Some of them indicate(i)the inner shell electrons or outer empty orbital participate in the chemical bonding,(ii)abnormal interatomic charge transfer occurs,(iii)noble gases become chemically active and form various kinds of compounds with other elements.Part of the compounds show interesting structures and properties.These findings extend the understanding and cognition of traditional chemistry. However,the research in this field is just beginning.Only a few elements in the periodic table have been studied,and there is still a vast space for exploration.On the other hand,more and more systemic research is needed urgently to explore the reaction mechanism,and establish the basic theory of chemical reaction under high pressure. To be noted,most of these studies are carried out from the standpoint of theoretical calculations. This might originate from some difficulties in high pressure experiments.For instance,strong oxidizing or reducing agents(e.g.,F and Li)are harmful to experimental instruments.[35]Thus,more experimental studies are highly demanded.Theory and experiment complement and verify each other,promoting the development of high-pressure new chemistry.

    Acknowledgment

    The authors acknowledge the National Supercomputer Center in Tianjin,and the calculations were performed on TianHe-1(A).

    狂野欧美激情性xxxx| 国产成人欧美| 不卡av一区二区三区| 国产无遮挡羞羞视频在线观看| 18禁观看日本| 精品一区二区三卡| 大香蕉久久网| 中文字幕人妻丝袜制服| 精品久久蜜臀av无| 大片免费播放器 马上看| 亚洲午夜精品一区,二区,三区| 又紧又爽又黄一区二区| 欧美黑人精品巨大| 99精国产麻豆久久婷婷| 国产熟女午夜一区二区三区| 成人影院久久| 精品国产超薄肉色丝袜足j| av线在线观看网站| 日韩,欧美,国产一区二区三区| 日本a在线网址| 老鸭窝网址在线观看| 中文字幕人妻熟女乱码| 伦理电影免费视频| 亚洲欧美清纯卡通| 成人国产一区最新在线观看| 久久精品人人爽人人爽视色| 久久久国产成人免费| 在线观看免费高清a一片| 午夜两性在线视频| 久久狼人影院| 国产av精品麻豆| 亚洲五月婷婷丁香| 亚洲精品国产一区二区精华液| 日日爽夜夜爽网站| 国产视频一区二区在线看| 亚洲av成人不卡在线观看播放网 | 久久中文字幕一级| 18禁黄网站禁片午夜丰满| 欧美国产精品一级二级三级| 超碰成人久久| 欧美日韩亚洲高清精品| 亚洲,欧美精品.| 亚洲精品中文字幕一二三四区 | 法律面前人人平等表现在哪些方面 | 欧美精品亚洲一区二区| 国产又爽黄色视频| 国产男女超爽视频在线观看| 后天国语完整版免费观看| 十分钟在线观看高清视频www| 亚洲情色 制服丝袜| 侵犯人妻中文字幕一二三四区| 极品少妇高潮喷水抽搐| 国产三级黄色录像| 日本av免费视频播放| 狂野欧美激情性xxxx| 黄片播放在线免费| 男人舔女人的私密视频| 国产在线免费精品| 久久精品亚洲av国产电影网| 中文字幕最新亚洲高清| 97精品久久久久久久久久精品| 国产精品香港三级国产av潘金莲| 亚洲中文av在线| 男女边摸边吃奶| 99热网站在线观看| 精品高清国产在线一区| 成人av一区二区三区在线看 | 黑人欧美特级aaaaaa片| 久久久久国产精品人妻一区二区| 精品人妻1区二区| 在线天堂中文资源库| 免费高清在线观看视频在线观看| 一级毛片电影观看| 国产精品99久久99久久久不卡| 女人高潮潮喷娇喘18禁视频| 99精品欧美一区二区三区四区| 免费观看人在逋| 精品熟女少妇八av免费久了| 一级毛片精品| 欧美成人午夜精品| 另类亚洲欧美激情| 超色免费av| 午夜激情久久久久久久| 女性被躁到高潮视频| 男人舔女人的私密视频| 久久99一区二区三区| 波多野结衣av一区二区av| 亚洲国产日韩一区二区| 免费人妻精品一区二区三区视频| 久久青草综合色| 一级黄色大片毛片| 午夜免费观看性视频| 性色av乱码一区二区三区2| 后天国语完整版免费观看| 丰满人妻熟妇乱又伦精品不卡| 不卡av一区二区三区| 精品亚洲乱码少妇综合久久| 俄罗斯特黄特色一大片| 制服诱惑二区| 亚洲精品av麻豆狂野| 麻豆乱淫一区二区| h视频一区二区三区| 久久中文字幕一级| 精品一区二区三区四区五区乱码| 脱女人内裤的视频| 12—13女人毛片做爰片一| 国产91精品成人一区二区三区 | 久久久久久久久久久久大奶| 爱豆传媒免费全集在线观看| 男男h啪啪无遮挡| 激情视频va一区二区三区| 丝袜喷水一区| 亚洲人成77777在线视频| 日韩有码中文字幕| 久久久久久久精品精品| 天天躁夜夜躁狠狠躁躁| 国产一区二区三区在线臀色熟女 | 国产精品免费大片| 欧美日韩精品网址| 黄片小视频在线播放| 亚洲激情五月婷婷啪啪| 国产高清国产精品国产三级| 亚洲欧美激情在线| 久久久国产精品麻豆| 99热国产这里只有精品6| 亚洲欧洲精品一区二区精品久久久| 亚洲午夜精品一区,二区,三区| 亚洲欧美色中文字幕在线| 在线看a的网站| 最新在线观看一区二区三区| 亚洲国产欧美网| 狠狠精品人妻久久久久久综合| 在线精品无人区一区二区三| 精品国产乱码久久久久久小说| 亚洲精品久久午夜乱码| 女人被躁到高潮嗷嗷叫费观| 成年人免费黄色播放视频| 中文欧美无线码| 久久久久久久久免费视频了| 777久久人妻少妇嫩草av网站| 欧美激情 高清一区二区三区| 亚洲av国产av综合av卡| 国产精品一二三区在线看| 女人被躁到高潮嗷嗷叫费观| 久久中文字幕一级| www.精华液| 97精品久久久久久久久久精品| a级片在线免费高清观看视频| 人成视频在线观看免费观看| www.精华液| 国产精品99久久99久久久不卡| 亚洲精品久久成人aⅴ小说| 一级片免费观看大全| 多毛熟女@视频| 亚洲精品一卡2卡三卡4卡5卡 | 久久99一区二区三区| av网站在线播放免费| 午夜福利视频精品| 日本五十路高清| 亚洲av日韩精品久久久久久密| 久9热在线精品视频| 天堂8中文在线网| 韩国高清视频一区二区三区| 精品福利观看| 一本色道久久久久久精品综合| 久久国产亚洲av麻豆专区| 极品少妇高潮喷水抽搐| 99国产精品一区二区蜜桃av | 性少妇av在线| 色老头精品视频在线观看| 久久精品熟女亚洲av麻豆精品| 深夜精品福利| 国产成人av教育| 国产av国产精品国产| 丰满饥渴人妻一区二区三| a级片在线免费高清观看视频| 一区二区三区精品91| 亚洲国产精品一区三区| 日韩 亚洲 欧美在线| 宅男免费午夜| 国产成人一区二区三区免费视频网站| 中文字幕精品免费在线观看视频| 巨乳人妻的诱惑在线观看| 午夜福利免费观看在线| 亚洲综合色网址| 女性被躁到高潮视频| 久久精品aⅴ一区二区三区四区| 母亲3免费完整高清在线观看| 91大片在线观看| 亚洲熟女毛片儿| 精品少妇黑人巨大在线播放| 老司机午夜十八禁免费视频| 天天躁日日躁夜夜躁夜夜| 午夜影院在线不卡| 人人澡人人妻人| 国产亚洲精品一区二区www | av国产精品久久久久影院| 97精品久久久久久久久久精品| 捣出白浆h1v1| 黄色片一级片一级黄色片| 精品高清国产在线一区| avwww免费| 亚洲精品自拍成人| 在线观看舔阴道视频| 乱人伦中国视频| 亚洲欧美一区二区三区黑人| 亚洲av电影在线观看一区二区三区| 亚洲专区国产一区二区| 亚洲第一av免费看| 国产成人精品久久二区二区91| 人妻久久中文字幕网| 一级黄色大片毛片| 国产男女超爽视频在线观看| 男女高潮啪啪啪动态图| 欧美+亚洲+日韩+国产| 俄罗斯特黄特色一大片| 制服人妻中文乱码| 老司机靠b影院| 狠狠婷婷综合久久久久久88av| 少妇的丰满在线观看| 久久久久网色| 国产欧美亚洲国产| av福利片在线| 一边摸一边抽搐一进一出视频| 久久精品国产亚洲av香蕉五月 | 久久国产亚洲av麻豆专区| 丁香六月天网| 亚洲精品久久久久久婷婷小说| 精品国产国语对白av| 啦啦啦免费观看视频1| 亚洲激情五月婷婷啪啪| 色播在线永久视频| 久久久久久久国产电影| 国产黄色免费在线视频| 黑人操中国人逼视频| 国产日韩欧美亚洲二区| 亚洲激情五月婷婷啪啪| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美中文综合在线视频| 啦啦啦啦在线视频资源| 国产有黄有色有爽视频| 亚洲av电影在线观看一区二区三区| 成年人午夜在线观看视频| 国产又爽黄色视频| 久久女婷五月综合色啪小说| 午夜久久久在线观看| 亚洲中文字幕日韩| 亚洲精品粉嫩美女一区| 美女扒开内裤让男人捅视频| 超碰97精品在线观看| 欧美人与性动交α欧美精品济南到| 免费看十八禁软件| 久久久久精品国产欧美久久久 | 国产精品麻豆人妻色哟哟久久| 香蕉丝袜av| 大片电影免费在线观看免费| 国产一级毛片在线| 精品人妻在线不人妻| 18在线观看网站| 中文字幕av电影在线播放| 丝袜喷水一区| 亚洲成人免费av在线播放| 男女床上黄色一级片免费看| 日本wwww免费看| 免费在线观看视频国产中文字幕亚洲 | 黑丝袜美女国产一区| 法律面前人人平等表现在哪些方面 | 黄色视频,在线免费观看| www.精华液| 国产高清视频在线播放一区 | 国产黄频视频在线观看| 黄色a级毛片大全视频| av在线app专区| 午夜福利在线观看吧| 成人国产av品久久久| 国产免费一区二区三区四区乱码| 天天影视国产精品| 操美女的视频在线观看| 老司机亚洲免费影院| 国产伦理片在线播放av一区| 爱豆传媒免费全集在线观看| 黄网站色视频无遮挡免费观看| 国内毛片毛片毛片毛片毛片| 国产精品欧美亚洲77777| 少妇粗大呻吟视频| 亚洲人成电影观看| 777久久人妻少妇嫩草av网站| 黑丝袜美女国产一区| 我的亚洲天堂| 久久国产精品男人的天堂亚洲| 精品熟女少妇八av免费久了| 亚洲精品中文字幕在线视频| 狂野欧美激情性bbbbbb| 男女边摸边吃奶| 又黄又粗又硬又大视频| 在线精品无人区一区二区三| 亚洲国产中文字幕在线视频| 97在线人人人人妻| 久久性视频一级片| 欧美精品亚洲一区二区| 国产主播在线观看一区二区| 亚洲精华国产精华精| 久久国产亚洲av麻豆专区| 男人添女人高潮全过程视频| 国产成人一区二区三区免费视频网站| 下体分泌物呈黄色| 欧美变态另类bdsm刘玥| 大码成人一级视频| 国产精品久久久久久精品古装| 亚洲人成77777在线视频| 久久久精品94久久精品| videos熟女内射| 久久久久国内视频| 99国产精品一区二区三区| 国产亚洲欧美在线一区二区| 亚洲精品国产一区二区精华液| 三上悠亚av全集在线观看| 亚洲av欧美aⅴ国产| 99久久综合免费| 丁香六月天网| 欧美日韩一级在线毛片| 岛国在线观看网站| 91成年电影在线观看| 中文字幕最新亚洲高清| av在线老鸭窝| 亚洲伊人久久精品综合| 日韩中文字幕欧美一区二区| 男女之事视频高清在线观看| 精品少妇久久久久久888优播| av在线app专区| 最黄视频免费看| 国产精品久久久久久精品电影小说| 19禁男女啪啪无遮挡网站| 法律面前人人平等表现在哪些方面 | 日韩视频一区二区在线观看| 午夜久久久在线观看| 丝袜喷水一区| 亚洲人成电影免费在线| 一区二区三区激情视频| cao死你这个sao货| 亚洲色图综合在线观看| 宅男免费午夜| √禁漫天堂资源中文www| 老熟女久久久| 免费观看a级毛片全部| 欧美激情久久久久久爽电影 | 国产成人欧美| 亚洲av日韩在线播放| 91精品伊人久久大香线蕉| 国产又色又爽无遮挡免| 成人国产av品久久久| 成年美女黄网站色视频大全免费| 美女福利国产在线| 国产欧美日韩一区二区三 | 久久青草综合色| 国产亚洲av片在线观看秒播厂| a在线观看视频网站| 免费日韩欧美在线观看| 午夜福利在线免费观看网站| 国产av国产精品国产| 国产日韩欧美在线精品| 免费高清在线观看视频在线观看| 国产精品熟女久久久久浪| 久久久久精品人妻al黑| 免费久久久久久久精品成人欧美视频| 日本五十路高清| 欧美精品一区二区免费开放| 777久久人妻少妇嫩草av网站| 美女脱内裤让男人舔精品视频| 国产av国产精品国产| 欧美午夜高清在线| 国产亚洲午夜精品一区二区久久| 国产一区有黄有色的免费视频| 女人精品久久久久毛片| 日韩欧美国产一区二区入口| 男人操女人黄网站| 欧美亚洲日本最大视频资源| 一级,二级,三级黄色视频| 波多野结衣一区麻豆| 亚洲精品国产区一区二| 交换朋友夫妻互换小说| 国产精品免费视频内射| 亚洲av日韩在线播放| netflix在线观看网站| 国产欧美日韩精品亚洲av| 高清av免费在线| 国产成人系列免费观看| 亚洲天堂av无毛| 一级a爱视频在线免费观看| 成年美女黄网站色视频大全免费| 日韩免费高清中文字幕av| 国产精品久久久人人做人人爽| 亚洲精品乱久久久久久| 成人国产一区最新在线观看| 欧美日韩福利视频一区二区| 热re99久久精品国产66热6| 亚洲av电影在线进入| 男男h啪啪无遮挡| 国产欧美日韩精品亚洲av| av天堂久久9| 精品一品国产午夜福利视频| 别揉我奶头~嗯~啊~动态视频 | 国产精品久久久久久人妻精品电影 | 国产精品亚洲av一区麻豆| 国产精品国产三级国产专区5o| 99国产精品一区二区蜜桃av | 国产极品粉嫩免费观看在线| 韩国高清视频一区二区三区| 久久久久国内视频| 天堂俺去俺来也www色官网| 亚洲av国产av综合av卡| 9热在线视频观看99| 国产有黄有色有爽视频| 男男h啪啪无遮挡| 叶爱在线成人免费视频播放| 黑人操中国人逼视频| av有码第一页| 久久99热这里只频精品6学生| 国产欧美亚洲国产| 人人澡人人妻人| 91麻豆精品激情在线观看国产 | 丝袜在线中文字幕| 十八禁人妻一区二区| 亚洲国产精品成人久久小说| 久久精品国产亚洲av高清一级| 啦啦啦在线免费观看视频4| 老汉色av国产亚洲站长工具| 9色porny在线观看| 热99久久久久精品小说推荐| 国产精品 欧美亚洲| 日韩电影二区| 一本色道久久久久久精品综合| 日本欧美视频一区| 欧美日韩亚洲国产一区二区在线观看 | 欧美激情 高清一区二区三区| 久久热在线av| a级片在线免费高清观看视频| 高清在线国产一区| av视频免费观看在线观看| 首页视频小说图片口味搜索| 啦啦啦免费观看视频1| 999久久久国产精品视频| 男女之事视频高清在线观看| 老司机深夜福利视频在线观看 | 人人澡人人妻人| 青春草视频在线免费观看| 在线av久久热| 日本91视频免费播放| 日韩制服骚丝袜av| 亚洲精品国产av蜜桃| 欧美日韩一级在线毛片| 成年人黄色毛片网站| 麻豆乱淫一区二区| 国产精品成人在线| 欧美激情久久久久久爽电影 | 国产精品麻豆人妻色哟哟久久| 99久久精品国产亚洲精品| 婷婷色av中文字幕| 69精品国产乱码久久久| 国产欧美日韩一区二区三区在线| 国产三级黄色录像| 国产成人免费无遮挡视频| 亚洲第一av免费看| 亚洲第一欧美日韩一区二区三区 | 国产成人av激情在线播放| 人人妻人人爽人人添夜夜欢视频| 中文字幕最新亚洲高清| 亚洲男人天堂网一区| 啦啦啦中文免费视频观看日本| 久久久精品区二区三区| 丝袜美腿诱惑在线| 国产老妇伦熟女老妇高清| 国产精品国产三级国产专区5o| 久久九九热精品免费| 久久精品国产a三级三级三级| 成年女人毛片免费观看观看9 | 99国产精品一区二区三区| 最近最新免费中文字幕在线| 丝袜在线中文字幕| e午夜精品久久久久久久| 国产主播在线观看一区二区| 黄色怎么调成土黄色| 视频区欧美日本亚洲| 老司机亚洲免费影院| a在线观看视频网站| 三上悠亚av全集在线观看| 成年女人毛片免费观看观看9 | 亚洲熟女毛片儿| 免费在线观看黄色视频的| 午夜福利视频在线观看免费| av一本久久久久| 国产精品九九99| 国产成+人综合+亚洲专区| 亚洲精华国产精华精| 久久久久久人人人人人| 精品久久蜜臀av无| 亚洲第一青青草原| 人妻人人澡人人爽人人| 一级,二级,三级黄色视频| 中文字幕制服av| 桃花免费在线播放| 午夜免费观看性视频| 久久久久久久精品精品| 成年美女黄网站色视频大全免费| 午夜两性在线视频| 操美女的视频在线观看| 国产精品久久久人人做人人爽| 一级毛片女人18水好多| 亚洲七黄色美女视频| 99热全是精品| 久久这里只有精品19| 男人添女人高潮全过程视频| 天堂8中文在线网| 99精国产麻豆久久婷婷| 一边摸一边做爽爽视频免费| 99热国产这里只有精品6| 国产在线观看jvid| 久久人人爽av亚洲精品天堂| 国产精品自产拍在线观看55亚洲 | 99国产精品一区二区三区| 汤姆久久久久久久影院中文字幕| 国产av一区二区精品久久| 免费在线观看日本一区| 国产福利在线免费观看视频| 日韩一区二区三区影片| e午夜精品久久久久久久| 午夜福利一区二区在线看| 午夜免费鲁丝| 男女免费视频国产| 999精品在线视频| 国产精品亚洲av一区麻豆| 亚洲国产精品999| 大片免费播放器 马上看| 亚洲激情五月婷婷啪啪| 丝瓜视频免费看黄片| 高清av免费在线| 亚洲精品粉嫩美女一区| 亚洲自偷自拍图片 自拍| 亚洲五月婷婷丁香| 欧美av亚洲av综合av国产av| 制服人妻中文乱码| 91av网站免费观看| 在线观看www视频免费| 夜夜夜夜夜久久久久| 久久中文看片网| 精品卡一卡二卡四卡免费| 精品福利永久在线观看| 纯流量卡能插随身wifi吗| 老司机午夜福利在线观看视频 | 俄罗斯特黄特色一大片| 国产日韩欧美视频二区| 操美女的视频在线观看| 亚洲男人天堂网一区| 午夜福利影视在线免费观看| 桃红色精品国产亚洲av| 丁香六月天网| 久久人人爽av亚洲精品天堂| 亚洲精品中文字幕一二三四区 | 亚洲国产日韩一区二区| 久久久久网色| 99久久国产精品久久久| 国产av一区二区精品久久| 国产免费一区二区三区四区乱码| 亚洲精品日韩在线中文字幕| 日本五十路高清| 久久综合国产亚洲精品| 久久人妻熟女aⅴ| 欧美 日韩 精品 国产| av网站在线播放免费| 19禁男女啪啪无遮挡网站| 国产精品99久久99久久久不卡| bbb黄色大片| 午夜福利一区二区在线看| 丰满少妇做爰视频| 久久精品亚洲av国产电影网| 欧美在线黄色| 中文字幕av电影在线播放| 久久久久久久久久久久大奶| 午夜免费成人在线视频| 正在播放国产对白刺激| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美日韩亚洲国产一区二区在线观看 | 一本久久精品| 欧美精品一区二区免费开放| 巨乳人妻的诱惑在线观看| 国产成人免费无遮挡视频| 久久免费观看电影| 十八禁高潮呻吟视频| 国产日韩一区二区三区精品不卡| 中文字幕人妻丝袜制服| 老司机靠b影院| 国产激情久久老熟女| 视频区欧美日本亚洲| 亚洲欧美日韩另类电影网站| 亚洲av男天堂| 日本精品一区二区三区蜜桃| 成年人午夜在线观看视频| bbb黄色大片| 国产又色又爽无遮挡免| av不卡在线播放| 亚洲人成电影免费在线| 亚洲视频免费观看视频| 高清欧美精品videossex| 久久久国产成人免费| 在线永久观看黄色视频| 午夜福利影视在线免费观看| 国产av又大| 国产免费av片在线观看野外av| 亚洲一区二区三区欧美精品| av天堂在线播放| 黄片播放在线免费| 伊人亚洲综合成人网| 亚洲少妇的诱惑av| 两个人看的免费小视频| 高清黄色对白视频在线免费看|