• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Defects and electrical properties in Al-implanted 4H-SiC after activation annealing?

    2019-11-06 00:45:00YiDanTang湯益丹XinYuLiu劉新宇ZhengDongZhou周正東YunBai白云andChengZhanLi李誠瞻
    Chinese Physics B 2019年10期
    關(guān)鍵詞:正東白云

    Yi-Dan Tang(湯益丹),Xin-Yu Liu(劉新宇),Zheng-Dong Zhou(周正東),Yun Bai(白云),and Cheng-Zhan Li(李誠瞻)

    1High-Frequency High-Voltage Devices and Integrated Circuits Research and Development Center,Institute of Microelectronics of Chinese Academy of Sciences,Beijing 100029,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    3Zhuzhou CRRC Times Electric Co.,Ltd,Zhuzhou 412001,China

    Keywords:Al-implanted 4H-SiC,activation annealing,extended defects,carbon vacancies

    1.Introduction

    Semiconductor material,SiC,is attractive for the applications in high power,high temperature,high frequency,and high reliability device due to its exceptional properties.[1–8]Ptype doping of 4H-SiC using ion implantation and high temperature activation annealing is the key process in the fabrication of SiC devices.[2,3]Compared with boron(B),aluminum(Al)has a shallow acceptor level and a strong tendency to occupy atomic sites in the silicon(Si)sublattice,which makes Al+ion implantation more suitable for the production of heavily doped layers.[9–14]However,a great challenge exists in the effective doping of Al,because high energy of Al ion implantation inevitably produces defects and lattice disorder. Although redistribution of the implanted dopants and partial ion-induced damages can be reduced by high temperature implantation followed by high temperature annealing,not all the damages could be annealed out by higher temperature annealing,such as residual damages(distortion of lattice,vacancies and interstitials)and extended defects,because of dynamic defect recovery and generation in the activation annealing process.[13–26]And it was reported that the formation of extended defects in the implanted layers and the interfacial dislocations of the ion-implanted layer can occur in the annealing process.[15,20,23]Such high residual damages and extended defects of the implanted layers will greatly affect the electrical performance and reliability of SiC device,such as the mobility in MOSFETs and leakage current in PIN diodes.How to suppress the generation and distribution of these defects is still an open issue in the study of this subject.Therefore,a clearer understanding of the recovery,formation and distribution of the defects in the Al-implanted layers during the implantation and annealing processing is beneficial to obtaining the better electrical properties in Al-implanted 4H-SiC through optimization of activation annealing conditions.

    In this paper,the defects and electrical properties in Alimplanted 4H-SiC after high-temperature activation annealing(1600?C–1800?C)are investigated. The ion implantationinduced damages and the extended defects after the annealing process are investigated by using Rutherford backscattering spectroscopy(RBS/C),secondary ion mass spectroscopy(SIMS),transmission electron microscopy(TEM)analyses.The optimized activation annealing conditions are achieved,under which the lower defects and acceptable electrical properties are achieved and demonstrated by the Hall effect measurement.

    2.Experiment

    Multiple-energy Al implantations were performed on ntype,4?off the(0001)oriented 4H-SiC epilayer at a doping concentration of 1×1016cm?3. Hot implantation(500?C)was used to hinder amorphization and improve the quality of crystalline in Al-implanted 4H-SiC.As seen from Fig.1(a),the implantation at energy ranging from 30 keV to 300 keV with a total dose of 8.41×1014cm?2formed a box-like doping profile with a 6-nm-thick sacrificial oxidation silicon dioxide(SiO2)layer. And the obtained doping concentration of Ct=2×1019cm?3with a depth of about 320 nm after removing a 60-nm-thick sacrificial oxidation SiO2layer was characterized by SIMS measurement as shown in Fig.1(b).

    Fig.1. (a)Simulated concentration versus depth profiles of Al atoms after multiple energy implantations into SiC with the purpose of forming a box-like profile by using the Silvaco TCAD,and(b)doping concentration profiles measured by SIMS after removing 60-nm-thick sacrificial oxidation SiO2 layer.

    Post-implantation annealing was processed at 1600?C–1800?C with a protective carbon capping layer. Effects on Al ion implantation on n-type 4H-SiC followed by annealing at various temperatures was studied by using RBS/C,SIMS,TEM,and atomic force microscope(AFM)analyses.Transmission line model(TLM)and Hall effect measurements are also conducted to analyze the electrical properties.

    3.Results and discussion

    3.1.Defects analysis

    As one of the most common surface analytical techniques,Rutherford backscattering spectrometry along a low index crystallographic direction or channel(RBS/C)is sensitive to very small atomic displacements from the crystalline lattice sites. The RBS/C interaction yield is strongly influenced by the crystal disorder and crystal orientation,which makes the technique unique for the analysis of ion implantation damage in single-crystal films and wafers.As shown in Fig.2,A,B,and C represent three relationships between location and the status of damages with the RBS/C from surface to inner region.The energy of backscattering atoms of A have little energy loss and most of ion-beams can be channeled,indicating A is near the surface and has good order lattice.B has an obvious peak,which indicates that many dislocation atoms or disorder lattices exist under the surface;C is the inner part of the crystal,which contains the damage status of C and the effect of B.The high yield in C is mainly due to a mass of dislocation atoms,containing the distortion lattice of C and the little random atoms of B.

    Fig.2.Relationship between the location and the status of damages with RBS/C.

    The Xminrefers to the ratio of the channeled intensity to the random intensity in the region just below the surface scattering peak.It yields information about the crystallinity in the near surface of the sample(the first 3 nm–15 nm in depth),which is related to the surface damage,contamination and the existence of oxides.Figure 3 shows the Xminvalues of samples before and after thermal implantation annealing at various temperatures(1600?C–1800?C)for 15 min.Each of all the annealed samples has a smaller Xminvalue than that of the asimplanted(Xmin=0.403)and the Xminvalue decreases with annealing temperature rising up.With the annealing temperature higher than 1700?C,the sample’s surface damage can be effectively reduced.

    Fig.3. Variation of Xmin(160?detector)with temperature of implanted samples before and after activation annealing for 15 min.

    From Figs.4(a)–4(c),all the samples of SiC samples can be channeled,and the channeling yield increases with channel number decreasing without obvious damage peaks,which do not reach the random level. The crystal has no obvious amorphous layer and the experimentally obtained RBS spectra after annealing are closely identical to the fresh virgin spectrum. It can be concluded that the use of hot temperature(500?C)implantation can avoid forming the high-density extended defects,dopant redistribution,and surface decomposition in the implanted layer.However,corresponding to the random spectra,a defective layer containing a low level of lattice displacement or distortion is formed on the implanted sample in Fig.4(a).

    In the amplified regions on the right in Figs.4(b)and 4(c),the densities of defects near surface under all the annealing conditions except for the sample of 1600?C for 15 min,are lower than that of the as-implanted one,which proves that the defects near-surface region are greatly affected by annealing temperature.However,for the annealing time of 15 min,the defects near the bottom of the ion-implanted layer for each of all annealing samples are more than those of as-implanted sample at the different temperatures(from 1600?C–1800?C),indicated by the through RBS/C analysis results as shown in Fig.4(b).

    In order to reduce the defects both near the surface and bottom of the ion-implanted layer in high temperature annealing process,the annealing is carried under the conditions of 1800?C for 5 min and 15 min.It is shown in the amplified region on the right in Fig.4(c)that the damages near the surface and the bottom of the sample annealed for 1800?C and 15 min are more pronounced than for 1800?C and 5 min.Furthermore,as seen in Fig.4(c),the density of defects near the bottom region under the annealing condition of 1800?C for 15 min is higher than that of the as-implanted one,but not under the condition of 1800?C and 5 min.It may be because the longer time thermal annealing induces new extended defects near the bottom of the ion-implanted layers. Therefore,the annealing time is another key factor affecting the generation of extended defects.

    Fig.4.Overlays of implanted samples(a)before and(b)after activation annealing at various temperatures for 15 min and(c)at 1800 ?C and different annealing times.

    In Fig.5,all samples are tested after removing protective carbon capping layer and sacrificial oxidation. Profiles of implanted atoms before and after annealing at 1800?C,15 min,and 5 min by SIMS do not coincide with each other near the bottom of the ion-implanted layer.Possible reasons are that the defect agglomeration and dopant redistribution occur near the bottom of the ion-implanted layer in the annealing process. This is consistent with the conclusion that the defects near the bottom of the ion-implanted layer will be dynamically restored and generated in the activation annealing process.Therefore,it is necessary to optimize the annealing conditions to minimize the defects near the bottom of the ionimplanted layer.As shown in the amplified area of Fig.5,the curve of the sample obtained under the activation annealing condition(1800?C/5 min)is highly coincident with that near the bottom of the as-implanted sample.

    Fig.5.Profiles of implanted atoms before and after annealing at 1800 ?C,15 min/5 min by SIMS after removing protective carbon capping layer and 60-nm-thick sacrificial oxidation SiO2 layer.

    From the above results of the RBS-C technique,we find quite a low level of the residual disorders and extended defects in the implanted and annealed SiC layers.As a complement to RBS/C,cross section samples in the implanted region are prepared.And the lattice structure of the implanted layer and the annealed layerare also measured with TEM,which is equipped with an FEI Talos F200 transmission electron microscope at 200 kV.The samples for TEM are cross-sectioned,prepared by focused ion beam(FIB).

    Figures 6(a)and 6(b)show cross-sectional[100]bright field-electron(BF)micrographs of identically Al-implanted samples with the annealing temperature at 1800?C for 15 min and 5 min,respectively.As seen from Figs.6(a)and 6(b),the visible depths of the damage areas are 445 nm and 467 nm respectively.From the above SIMS test data,it can be inferred that the damage areas include ion implantation region and part of trailing region.In Fig.6,all of the extended defects are visible in the Al-implanted region after 1800?C/5 min annealing and 1800?C/15 min annealing,especially near the bottom of Al-implanted region.These defects are lettered from A to C,which are polygonal loops differing in size.These loops form a network of almost orthogonal trace. Defect A is smallest,next is defect B.In the case of defect C,it is possible to demonstrate that it has a complex structure related to dislocations or carbon vacancy agglomerates.[19–24]The distribution of these defects is not uniform and appears to peak in a buried region close to the end of the Al-implanted region,which is between the bottom of implanted Al region and the unimplanted substrate.The defects of 1800?C/15 min sample(Fig.6(a))are obviously more than those of the sample with 1800?C/5 min(Fig.6(b)).This indicates that the longer annealing time will lead to more extended defects at the same temperature,which is in good agreement with the RBS analysis results.As shown in the amplified defects area in Figs.7(b)and 7(c),there are many polygonal dislocation loops with different sizes. The micrograph indicates that most of the defects at the bottom of implanted Al layers created during annealing are dislocations as indicated by arrows in Fig.7(c).The formation of these dislocations may be related to a cluster of C-related defects,such as carbon vacancies.[19–26]

    Fig. 6. Cross-sectional micrograph in Al-implanted region by (a)1800 ?C/5 min annealing and(b)1800 ?C/15 min annealing.

    Fig.7.Cross-sectional micrograph in Al-implanted region by 1800 ?C/5 min annealing.

    Fig.8.Defect model in Al-implanted 4H-SiC layer.

    To obtain the mechanisms responsible for the formation and elimination of extended defects,according to the previous defect theory,[15,21–23]the defect model in Al-implanted 4HSiC layer is also investigated.The high temperature activation annealing is the process of replacing the implanted Al atoms with Si.During the activation annealing,most of dopants are activated,and the ion-induced damages are recovered because of the recrystallization of the annealed samples.As seen from Fig.8,in the high temperature activation annealing process,the persistent carbon vacancies in the drift layers after epitaxy can be effectively recombined by the excess carbon interstitials Cicreated by implation.At the same time,new carbon vacancies will be formed in the high temperature process.So,the optimization of annealing conditions can be realized by controlling the generation and elimination of carbon vacancy(VC)density in the ion implanted layers.

    3.2.Electrical and surface property analysis

    As seen from Table 1,the Hall hole density P,Hall mobilityμand electrical activation ratio A(A=P/Ct)are improved by increasing annealing temperature through using Pensl et al.’s Hall scattering factor. Sheet resistance R and specific contact resistance(SCR)decrease with annealing temperature increasing.As the temperature increases,the rate of annealing activation increases.At the same annealing temperature,the longer time annealing can improve the electrical activation properties effectively.However,the consideration of the lower defects,the sample annealed at 1800?C/5 min shows relatively good electrical properties.

    Table 1.Values obtained by Hall-effect and TLM measurements for p-type 4H-SiC samples at room temperature(RT).

    Furthermore, the surface roughness values of Alimplanted samples before and after activation annealing at various temperatures are measured by AFM.We use the 5-point average of the large area implantation and activation annealing sample.The results in Table 2 show that the average surface roughness values increase slightly from 0.058 nm to 0.110 nm after Al hot implantation,the surface deterioration may be due to the Al implantation.After annealing at 1600?C–1800?C for 15 min,the discontinuity of surface is not obviously raised,which is below 0.304 nm.The surface step-bunching is effectively suppressed and the surface roughness values of all the samples are not obviously deteriorated,which is due to the existence of an effective protective carbon capping layer.

    Table 2.Average surface roughness values of Al-implanted 4H-SiC followed by annealing at various temperatures.

    4.Conclusions

    The defects and electrical properties in Al-implanted 4HSiC after activation annealing(1600?C–1800?C)are investigated. High temperature annealing can reduce the ion implantation-induced damage effectively,but it may induce extended defects at the same time.How to suppress the generation and distribution of the defects is very critical. According to Xminand RBS/C analysis,the ion implantationinduced surface damage could be effectively reduced by annealing at temperatures higher than 1700?C,demonstrating that the damage near the surface region is greatly affected by annealing temperature.However,the effect of annealing temperature on the suppression of the defects near the bottom region is not obvious.The longer thermal annealing time(such as 15 min)may induce new extended defects near the bottom of the ion-implanted layers,which is mainly due to dynamic defect recovery and generation in the activation annealing process.Therefore,the annealing time is another key factor influencing the generation of extended defects.

    From the RBS/C,SIMS,TEM,and defect model analysis,two sources of the residual defects are existent in the ion-implanted layer after annealing:one is the defects generated in ion implantation process,which cannot be completely annealed out by high temperature annealing process,and the other is the extended defects induced during activation annealing,especially for the longer activation annealing time. It can be inferred that the generation and elimination density of extended defects in the ion implanted devices are closely related to annealing conditions. The surface roughness values of all the samples after annealing are not obviously deteriorated due to the existence of an effective protective carbon capping layer.The optimized activation annealing conditions of 1800?C/5 min are achieved,and thus the lower defects(near the surface and bottom region)and acceptable electrical properties are obtained,which are conducive to the application of numerous SiC-based devices.

    猜你喜歡
    正東白云
    Design and Development of Garment Fabric Database Management System
    三塔四跨鋼-混凝土結(jié)合梁懸索橋成橋荷載試驗(yàn)研究
    白云(外三首)
    天津詩人(2017年2期)2017-11-29 01:24:14
    陜西省咸陽市教學(xué)能手——陳正東
    棒棒糖
    尋找丟失的快樂
    兒子簽下替母還款保證是否有效
    女性天地(2015年10期)2015-04-29 00:44:03
    白云的來歷
    我喜歡白云
    滇池(2014年5期)2014-05-29 07:32:31
    白云
    欧美亚洲 丝袜 人妻 在线| 26uuu在线亚洲综合色| 99国产精品免费福利视频| 九九爱精品视频在线观看| 成年人午夜在线观看视频| 欧美精品av麻豆av| 久久精品国产亚洲av高清一级| 亚洲国产日韩一区二区| 国产亚洲精品第一综合不卡| 亚洲精品日本国产第一区| 国产一区亚洲一区在线观看| 欧美日韩视频精品一区| 一级毛片黄色毛片免费观看视频| 波多野结衣av一区二区av| 王馨瑶露胸无遮挡在线观看| 最近最新中文字幕免费大全7| 欧美日韩一区二区视频在线观看视频在线| 久久婷婷青草| 美女国产高潮福利片在线看| av网站在线播放免费| 男女边摸边吃奶| 少妇被粗大猛烈的视频| 国产精品二区激情视频| 在线观看免费视频网站a站| 国产色婷婷99| 999久久久国产精品视频| 国产无遮挡羞羞视频在线观看| 免费看av在线观看网站| 欧美日韩视频精品一区| 国产伦理片在线播放av一区| 自线自在国产av| 黄色怎么调成土黄色| av又黄又爽大尺度在线免费看| 欧美xxⅹ黑人| videos熟女内射| 国产日韩欧美视频二区| 免费在线观看黄色视频的| 精品酒店卫生间| 天天影视国产精品| 18禁动态无遮挡网站| 9191精品国产免费久久| 黑人欧美特级aaaaaa片| 国产麻豆69| 久久免费观看电影| 黄频高清免费视频| 日韩欧美一区视频在线观看| av线在线观看网站| 水蜜桃什么品种好| av卡一久久| 两个人看的免费小视频| 人成视频在线观看免费观看| 亚洲婷婷狠狠爱综合网| 国产激情久久老熟女| 久久久久视频综合| 国产一区二区三区av在线| 日本免费在线观看一区| 日本黄色日本黄色录像| av在线app专区| 精品少妇一区二区三区视频日本电影 | 高清在线视频一区二区三区| 国产乱来视频区| 夫妻午夜视频| 亚洲av成人精品一二三区| 久久精品国产亚洲av高清一级| 赤兔流量卡办理| 老熟女久久久| 国产精品久久久久久精品古装| 午夜老司机福利剧场| 黄色怎么调成土黄色| 亚洲国产欧美在线一区| 观看av在线不卡| 麻豆av在线久日| 亚洲欧美成人精品一区二区| 女人被躁到高潮嗷嗷叫费观| 曰老女人黄片| 99九九在线精品视频| 伦理电影免费视频| 成人国语在线视频| 一区二区三区精品91| 日本-黄色视频高清免费观看| 午夜福利,免费看| 男女无遮挡免费网站观看| 免费黄频网站在线观看国产| 五月天丁香电影| 色婷婷av一区二区三区视频| 伊人亚洲综合成人网| 叶爱在线成人免费视频播放| 精品少妇黑人巨大在线播放| 一区福利在线观看| 国产亚洲av片在线观看秒播厂| 超碰97精品在线观看| 久久午夜综合久久蜜桃| 中国三级夫妇交换| 1024视频免费在线观看| 久久精品国产亚洲av涩爱| 天天躁狠狠躁夜夜躁狠狠躁| 蜜桃国产av成人99| 一级a爱视频在线免费观看| 国产男女内射视频| 精品一区二区三区四区五区乱码 | 亚洲四区av| 中文字幕色久视频| 哪个播放器可以免费观看大片| 天堂中文最新版在线下载| 国产精品国产av在线观看| 亚洲精品一区蜜桃| 久久久精品区二区三区| 一级a爱视频在线免费观看| 日日爽夜夜爽网站| 国产激情久久老熟女| 一区二区三区精品91| 满18在线观看网站| 秋霞在线观看毛片| 亚洲精品日韩在线中文字幕| 久久精品国产亚洲av涩爱| 精品亚洲成国产av| 一本大道久久a久久精品| 国产av国产精品国产| 可以免费在线观看a视频的电影网站 | av在线app专区| 咕卡用的链子| 亚洲精品av麻豆狂野| 国产精品女同一区二区软件| 一边亲一边摸免费视频| 丝袜人妻中文字幕| 久久精品人人爽人人爽视色| av在线app专区| 欧美 日韩 精品 国产| 免费日韩欧美在线观看| 亚洲精品久久午夜乱码| 欧美少妇被猛烈插入视频| 欧美日韩av久久| 久久 成人 亚洲| 丰满迷人的少妇在线观看| 久久99蜜桃精品久久| 亚洲激情五月婷婷啪啪| 日韩,欧美,国产一区二区三区| 久久这里有精品视频免费| 国产 精品1| 久久午夜福利片| 国产免费一区二区三区四区乱码| 一区二区三区四区激情视频| 国产一区二区 视频在线| 一本—道久久a久久精品蜜桃钙片| av网站免费在线观看视频| 国产熟女欧美一区二区| 夫妻性生交免费视频一级片| 国产探花极品一区二区| 午夜福利,免费看| 秋霞伦理黄片| 香蕉精品网在线| 蜜桃国产av成人99| 久久久久久免费高清国产稀缺| 麻豆乱淫一区二区| av女优亚洲男人天堂| 一区二区三区乱码不卡18| 少妇猛男粗大的猛烈进出视频| 人人澡人人妻人| 又粗又硬又长又爽又黄的视频| 久久久久视频综合| av片东京热男人的天堂| 国产极品粉嫩免费观看在线| 日本色播在线视频| 午夜av观看不卡| 18在线观看网站| 日韩欧美一区视频在线观看| 亚洲伊人色综图| 午夜精品国产一区二区电影| av线在线观看网站| 精品亚洲成国产av| 99久久人妻综合| 最近的中文字幕免费完整| 热99国产精品久久久久久7| 久久 成人 亚洲| 成人影院久久| 精品第一国产精品| 成人18禁高潮啪啪吃奶动态图| 久久ye,这里只有精品| 又粗又硬又长又爽又黄的视频| 免费不卡的大黄色大毛片视频在线观看| av网站在线播放免费| 色哟哟·www| 亚洲欧美成人综合另类久久久| 69精品国产乱码久久久| 欧美日韩成人在线一区二区| 亚洲美女黄色视频免费看| 亚洲av国产av综合av卡| 久久99一区二区三区| 国产成人精品在线电影| 尾随美女入室| 伦精品一区二区三区| 1024香蕉在线观看| 亚洲精华国产精华液的使用体验| 一区二区日韩欧美中文字幕| 久久精品aⅴ一区二区三区四区 | 欧美人与性动交α欧美软件| 一二三四在线观看免费中文在| 啦啦啦啦在线视频资源| 乱人伦中国视频| 乱人伦中国视频| 久久精品国产鲁丝片午夜精品| 成年女人在线观看亚洲视频| 国产毛片在线视频| 欧美日韩综合久久久久久| av.在线天堂| 黄频高清免费视频| 欧美日韩综合久久久久久| 亚洲成人av在线免费| 久久人妻熟女aⅴ| av网站免费在线观看视频| 制服诱惑二区| 只有这里有精品99| 男女啪啪激烈高潮av片| 黑丝袜美女国产一区| 国产精品av久久久久免费| 成人亚洲精品一区在线观看| 亚洲国产日韩一区二区| 老汉色av国产亚洲站长工具| 99re6热这里在线精品视频| 久热这里只有精品99| 亚洲三区欧美一区| 日韩免费高清中文字幕av| 日日摸夜夜添夜夜爱| 久久国产亚洲av麻豆专区| av天堂久久9| 国产亚洲最大av| 91午夜精品亚洲一区二区三区| 免费观看av网站的网址| 男女免费视频国产| 中文字幕另类日韩欧美亚洲嫩草| 精品酒店卫生间| 久久久国产精品麻豆| 久久久国产精品麻豆| 久久av网站| 99re6热这里在线精品视频| 亚洲人成网站在线观看播放| 亚洲国产毛片av蜜桃av| 亚洲av在线观看美女高潮| 高清在线视频一区二区三区| videos熟女内射| 国产午夜精品一二区理论片| 黄色配什么色好看| 亚洲av电影在线进入| 18在线观看网站| 国产极品粉嫩免费观看在线| 少妇人妻 视频| 91久久精品国产一区二区三区| 婷婷色综合www| 高清欧美精品videossex| 精品亚洲成a人片在线观看| 美女午夜性视频免费| av视频免费观看在线观看| 亚洲国产精品999| 一级毛片黄色毛片免费观看视频| 亚洲精品,欧美精品| 精品国产一区二区久久| 日韩av免费高清视频| 免费观看性生交大片5| 中文字幕最新亚洲高清| www.熟女人妻精品国产| 欧美精品av麻豆av| 一级片'在线观看视频| 亚洲欧洲国产日韩| 亚洲av中文av极速乱| 高清黄色对白视频在线免费看| 久久久久久久久久久免费av| videosex国产| 五月开心婷婷网| 高清视频免费观看一区二区| 欧美人与善性xxx| 日韩在线高清观看一区二区三区| 伦理电影大哥的女人| 成年动漫av网址| 宅男免费午夜| 在线天堂中文资源库| 交换朋友夫妻互换小说| av福利片在线| 国产激情久久老熟女| 咕卡用的链子| 一边摸一边做爽爽视频免费| 久久人人97超碰香蕉20202| 亚洲人成网站在线观看播放| 日韩,欧美,国产一区二区三区| 中文欧美无线码| 一边亲一边摸免费视频| 高清欧美精品videossex| 一区二区三区激情视频| 涩涩av久久男人的天堂| 久久精品国产亚洲av涩爱| 日本-黄色视频高清免费观看| 丝袜美腿诱惑在线| 午夜福利网站1000一区二区三区| 国产免费福利视频在线观看| 麻豆av在线久日| 日韩制服骚丝袜av| 夫妻午夜视频| 国产成人a∨麻豆精品| 亚洲五月色婷婷综合| 久久婷婷青草| 天天躁夜夜躁狠狠久久av| 男人操女人黄网站| 亚洲国产欧美在线一区| 中文字幕av电影在线播放| 丝袜脚勾引网站| 高清在线视频一区二区三区| 午夜免费男女啪啪视频观看| 高清视频免费观看一区二区| 欧美日本中文国产一区发布| 一级毛片黄色毛片免费观看视频| 国产精品.久久久| 男女免费视频国产| 91aial.com中文字幕在线观看| 一级毛片电影观看| 日韩成人av中文字幕在线观看| 大片免费播放器 马上看| 亚洲精品日本国产第一区| 天堂俺去俺来也www色官网| 欧美成人午夜免费资源| 亚洲国产看品久久| 亚洲精品美女久久久久99蜜臀 | 亚洲精品国产av成人精品| a 毛片基地| 丝瓜视频免费看黄片| av线在线观看网站| 一区二区日韩欧美中文字幕| 久久精品国产亚洲av涩爱| 中文字幕另类日韩欧美亚洲嫩草| 久久精品亚洲av国产电影网| 天天影视国产精品| 久久这里有精品视频免费| 国产又爽黄色视频| 亚洲精品一二三| av视频免费观看在线观看| 久久久久久久久久久免费av| 精品人妻偷拍中文字幕| 国产极品粉嫩免费观看在线| 高清av免费在线| 亚洲,一卡二卡三卡| 欧美人与性动交α欧美软件| 纯流量卡能插随身wifi吗| 美女午夜性视频免费| 国产在线视频一区二区| 中文天堂在线官网| 精品国产一区二区久久| 2018国产大陆天天弄谢| 美女福利国产在线| av线在线观看网站| 波野结衣二区三区在线| 国产精品秋霞免费鲁丝片| 91精品国产国语对白视频| 日韩中文字幕欧美一区二区 | 哪个播放器可以免费观看大片| 精品第一国产精品| 久久久精品区二区三区| 18禁国产床啪视频网站| 汤姆久久久久久久影院中文字幕| 日韩av免费高清视频| a 毛片基地| 看免费成人av毛片| 日韩伦理黄色片| 最近中文字幕高清免费大全6| 在线免费观看不下载黄p国产| 国产在线一区二区三区精| 日韩在线高清观看一区二区三区| 丝袜美腿诱惑在线| 久久久久精品久久久久真实原创| 亚洲av福利一区| 嫩草影院入口| 国产精品久久久久久精品古装| 久久狼人影院| 波野结衣二区三区在线| 大香蕉久久成人网| 人人澡人人妻人| 国产成人aa在线观看| 高清在线视频一区二区三区| 国产一区二区三区综合在线观看| 免费女性裸体啪啪无遮挡网站| 色94色欧美一区二区| 国产黄色免费在线视频| 精品午夜福利在线看| 久久国产亚洲av麻豆专区| 中文字幕精品免费在线观看视频| 激情视频va一区二区三区| 欧美精品高潮呻吟av久久| 在线精品无人区一区二区三| 久久99精品国语久久久| 欧美中文综合在线视频| 日韩免费高清中文字幕av| 成人二区视频| 国产不卡av网站在线观看| 寂寞人妻少妇视频99o| 国产成人91sexporn| 日本爱情动作片www.在线观看| 国产片特级美女逼逼视频| 高清在线视频一区二区三区| 国产一区二区三区综合在线观看| 免费高清在线观看视频在线观看| 啦啦啦在线观看免费高清www| 国产免费视频播放在线视频| 9热在线视频观看99| 天天影视国产精品| 成人亚洲欧美一区二区av| 观看av在线不卡| 两个人看的免费小视频| 久久久久国产精品人妻一区二区| 精品亚洲成a人片在线观看| av有码第一页| 香蕉国产在线看| 黑人欧美特级aaaaaa片| 99久国产av精品国产电影| 亚洲av在线观看美女高潮| 九草在线视频观看| 欧美人与性动交α欧美精品济南到 | 精品视频人人做人人爽| 在线天堂最新版资源| 一区二区av电影网| 久久97久久精品| 如何舔出高潮| 人妻一区二区av| 两性夫妻黄色片| 国产精品免费大片| 一级毛片我不卡| av线在线观看网站| 90打野战视频偷拍视频| 精品国产乱码久久久久久小说| 午夜福利视频精品| 亚洲美女搞黄在线观看| 欧美日本中文国产一区发布| 只有这里有精品99| 高清av免费在线| 老司机亚洲免费影院| 精品亚洲成a人片在线观看| 欧美激情极品国产一区二区三区| 国产熟女午夜一区二区三区| 9色porny在线观看| 亚洲三区欧美一区| 国产一区二区三区综合在线观看| 亚洲熟女精品中文字幕| 久久99热这里只频精品6学生| 国产无遮挡羞羞视频在线观看| 考比视频在线观看| 精品国产露脸久久av麻豆| 日韩中字成人| 啦啦啦视频在线资源免费观看| 999精品在线视频| 久久精品国产亚洲av涩爱| 欧美精品一区二区免费开放| 久久久久久伊人网av| 黄色怎么调成土黄色| 久久久久国产精品人妻一区二区| 国产又爽黄色视频| 永久网站在线| 国产一区亚洲一区在线观看| 天天躁日日躁夜夜躁夜夜| 精品99又大又爽又粗少妇毛片| 精品少妇黑人巨大在线播放| 如日韩欧美国产精品一区二区三区| 多毛熟女@视频| a级毛片黄视频| 亚洲第一av免费看| 夫妻性生交免费视频一级片| 久久久久精品久久久久真实原创| 天堂8中文在线网| 亚洲精品成人av观看孕妇| 熟女av电影| 亚洲一区二区三区欧美精品| 在线观看国产h片| 久久人人97超碰香蕉20202| 精品福利永久在线观看| 亚洲精品国产色婷婷电影| 欧美日韩av久久| 亚洲第一青青草原| av免费观看日本| 国产精品久久久久成人av| 日韩一区二区视频免费看| 天天操日日干夜夜撸| 伦理电影免费视频| 另类精品久久| 女性生殖器流出的白浆| 国产精品亚洲av一区麻豆 | 男女啪啪激烈高潮av片| 搡老乐熟女国产| 在线观看www视频免费| 黄片小视频在线播放| 亚洲国产av新网站| 欧美精品亚洲一区二区| 人人妻人人爽人人添夜夜欢视频| 国产精品秋霞免费鲁丝片| 亚洲精品日本国产第一区| 亚洲精品aⅴ在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 三上悠亚av全集在线观看| 亚洲激情五月婷婷啪啪| 久久国内精品自在自线图片| 精品少妇黑人巨大在线播放| 欧美中文综合在线视频| 精品视频人人做人人爽| 色婷婷av一区二区三区视频| 欧美成人午夜精品| 国产成人精品无人区| 国产在视频线精品| 免费女性裸体啪啪无遮挡网站| 亚洲欧美清纯卡通| 99精国产麻豆久久婷婷| 91在线精品国自产拍蜜月| 久久精品国产亚洲av涩爱| www.熟女人妻精品国产| 久热这里只有精品99| 一级毛片电影观看| 少妇被粗大的猛进出69影院| √禁漫天堂资源中文www| 午夜福利视频在线观看免费| 国产熟女午夜一区二区三区| 97人妻天天添夜夜摸| 精品国产乱码久久久久久男人| 丰满迷人的少妇在线观看| 日韩在线高清观看一区二区三区| 大片电影免费在线观看免费| 成年av动漫网址| 国产精品偷伦视频观看了| 久久精品夜色国产| 亚洲国产精品一区二区三区在线| 久久国产亚洲av麻豆专区| 99国产精品免费福利视频| 天堂8中文在线网| 亚洲,欧美精品.| 伦理电影免费视频| 一区福利在线观看| 日韩一卡2卡3卡4卡2021年| 亚洲国产成人一精品久久久| 欧美日韩精品成人综合77777| 欧美亚洲日本最大视频资源| 久久99蜜桃精品久久| 飞空精品影院首页| 亚洲欧洲国产日韩| 九九爱精品视频在线观看| 日韩中字成人| 国产精品久久久久久精品古装| 汤姆久久久久久久影院中文字幕| 久久人人爽人人片av| 制服诱惑二区| 久久久久久免费高清国产稀缺| 精品人妻偷拍中文字幕| 欧美日韩av久久| 男女下面插进去视频免费观看| 最近手机中文字幕大全| 亚洲经典国产精华液单| 国产av国产精品国产| 免费在线观看完整版高清| √禁漫天堂资源中文www| tube8黄色片| 99热网站在线观看| 免费黄网站久久成人精品| 亚洲天堂av无毛| 丰满饥渴人妻一区二区三| 国产精品国产三级专区第一集| 黄色视频在线播放观看不卡| 在线看a的网站| 欧美国产精品va在线观看不卡| 欧美日韩一区二区视频在线观看视频在线| 男男h啪啪无遮挡| 美女高潮到喷水免费观看| 精品少妇内射三级| 亚洲经典国产精华液单| 午夜91福利影院| 国产熟女欧美一区二区| 久久国产亚洲av麻豆专区| 久久久久国产网址| av天堂久久9| 久久久久国产网址| 午夜福利视频精品| 最近中文字幕2019免费版| 亚洲婷婷狠狠爱综合网| 久久国产精品大桥未久av| 免费在线观看视频国产中文字幕亚洲 | 久久精品国产亚洲av天美| 久久久久精品久久久久真实原创| 18禁动态无遮挡网站| 久久久久久伊人网av| 亚洲国产看品久久| 欧美日韩亚洲国产一区二区在线观看 | 国产1区2区3区精品| 日本黄色日本黄色录像| 日日摸夜夜添夜夜爱| 女性生殖器流出的白浆| 色播在线永久视频| 久久国产精品大桥未久av| 精品国产国语对白av| 丝瓜视频免费看黄片| 久久精品久久久久久噜噜老黄| 晚上一个人看的免费电影| 欧美bdsm另类| 久久精品国产a三级三级三级| 国产成人免费观看mmmm| 久久精品国产亚洲av天美| 日韩一卡2卡3卡4卡2021年| av在线app专区| 国产男人的电影天堂91| 午夜福利一区二区在线看| 中国国产av一级| 国产成人精品福利久久| 日韩欧美精品免费久久| 狠狠婷婷综合久久久久久88av| 美女国产高潮福利片在线看| 天天躁夜夜躁狠狠久久av| 超碰97精品在线观看| 免费播放大片免费观看视频在线观看| 乱人伦中国视频| 成人国产av品久久久| 搡女人真爽免费视频火全软件| 自线自在国产av| 成人国语在线视频| 久久久国产欧美日韩av| 亚洲内射少妇av| 18禁国产床啪视频网站|