• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Exact solutions of a(2+1)-dimensional extended shallow water wave equation?

    2019-11-06 00:42:50FengYuan袁豐JingSongHe賀勁松andYiCheng程藝
    Chinese Physics B 2019年10期

    Feng Yuan(袁豐),Jing-Song He(賀勁松),and Yi Cheng(程藝)

    1School of Mathematical Sciences,University of Science and Technology of China,Hefei 230026,China

    2Institute for Advanced Study,Shenzhen University,Shenzhen 518060,China

    Keywords:(2+1)-dimensional extended shallow water wave equation,Hirota bilinear method,dormion-type solution

    1.Introduction

    Nonlinear phenomena are ubiquitous in fields of engineering,physics,and even in social sciences. A wide variety of processes in physics can be described by nonlinear partial differential equations(PDEs).In recent decades,nonlinear science has been highly developed and applied in many areas. Integrable nonlinear systems have been interested in many mathematicians and physicists.One important task is to look for exact wave solutions of nonlinear evolution equations.These exact solutions are conducive for us to understand the physical mechanism of nature,such as solitons propagating with finite speed. Thus,in recent years,various approaches have been established to construct the exact solutions in closed form of the nonlinear PDEs,including Lie group method,[1,2]inverse scattering method,[3]Hirota bilinear method,[4–7]the tanh-function method,[8]Darboux transformation,[9–12]the Jacobi elliptic function expansion method,[13]extended Jacobi elliptic function expansion method,[14–16]and so on.Among these famous methods,the Hirota bilinear method is a direct approach to solve nonlinear PDEs.Its advantage is that if we obtain the corresponding bilinear form of the equation,the multi-soliton solutions can be constructed in a simple and algebraic way.

    The shallow water wave(SWW)equation is applied to study the surface wave in shallow water.The SWW equations are well known as a flow of shallow water at the free surface under gravity,or below the surface of horizontal pressure in a fluid.[17–19]Stokes,a pioneers of hydrodynamics,derived the equation of motion of an incompressible inviscid fluid under constant vertical gravity.[19]From these basic equations,various shallow water wave models can be obtained by further simplifying assumptions.These shallow water models are widely applied in oceanography and atmospheric science.

    The(1+1)-dimensional SWW equation[20,21]arises from the Boussinesq approximation is in the form

    where α and β are arbitrary nonzero constants. By taking ux=v,equation(1)can be written as

    In the case α=2β,equation(2)becomes SWW–Ablowitz–Kaup–Newell–Segur(SWW–AKNS)equation,[21]while in the case α=β it becomes SWW–Hirota–Satsuma(SWW–HS)equation.[20]Both these two equations are completely integrable and exist Lax pair.[21,22]The(2+1)-D SWW equation which is a(2+l)-D generalization of the shallow water wave equation[23]has the form

    This is formulated as a nonlocal Riemann–Hilbert problem.A set of studies about Eq.(3)has been done in Refs.[24]–[26].In addition,several generalized equations about the(2+1)-D SWW equation have been studied,such as the generalized(2+1)-D SWW equation.[27]

    In this paper,inspired the above results of shallow water wave equations,we study a new integrable nonlinear equation,namely a(2+1)-D extended shallow water wave(eSWW)equation,[28]and further discover new patterns of nonlinear waves due to the appearance of an arbitrary function. This newly introduced eSWW equation[28]is given by a form as

    If setting x=y,v=r,and α=0,equation(4)can be reduced to KdV equation.[29]In Ref.[28],exact periodic wave solution of eSWW equation was constructed by using the generalized D-operator[30]and Riemann theta function[31]in terms of the Hirota bilinear method.In Ref.[32]Wronskian,Pfaffian,and periodic wave solutions of Eq.(4)has been given.Letting

    then the eSWW equation is written as

    which will be studied in the following context to get four kinds of solutions including soliton,breather,hybrid,and Jacobitype solutions.

    This paper is organized as follows: In Section 2,we give the bilinear form and n-soliton of eSWW equation,i.e.,Eq.(6),and analyze the amplitudes and extreme values of bright soliton and dark soliton. In addition,we obtain the breathers and hybrid solutions by the complexification method.[33–36]In Section 3,we get new periodic solution and three kinds of dormion-type solution by setting an arbitrary function φ(y)as a Jacobi elliptic function.Note that φ(y)is appeared in the f for the bilinear form of the eSWW equation.Finally,we conclude this paper in Section 4.

    2.Bilinear form and n-soliton solution

    As we know,the Hirota bilinear D-operator plays a very important role in Hirota bilinear method which is defined as[4]

    Through the dependent variable transformation equation(4)is transformed into a bilinear form

    Here f is a real function of x,y,and t.The N-soliton solution of Eq.(8)is expressed as

    where

    2.1.Soliton solutions

    In order to obtain one-soliton solutions,we gain f[1]=by substituting N=1 into Eq.(9).Then we gain the solution from Eq.(11)as follows:

    It can be seen from this formula that v[1]and r[1]have the same extreme linebut different amplitudes. The amplitude of v[1]is(3/2)k1p1,but the amplitude ofThus v[1]is a dark soliton when k1p1>0(Fig.1(a))and a bright soliton when k1p1<0(Fig.1(b)). However,r[1]generates only a dark soliton as shown in Fig.1(c). In addition, v[1]and r[1]have the same velocity on(x,y)-plane,which is given by

    Fig.1.One-soliton equation(12)with α=1,=0,t=0.(a)Bright soliton v[1]:k1=?3/4,p1=1;(b)Dark soliton v[1]:k1=3/4,p1=1;(c)Dark soliton r[1]:k1=3/4,p1=1.

    In the same way,we obtain two-soliton solution by setting N=2 in Eqs.(9)and(11).Two formulas of the solutions are given by

    where η1,η2,and α12are given in Eq.(10).

    The profiles of two-soliton given by Eq.(13)are shown in Fig.2.In this case,r[2]is always a dark soliton(Fig.2(d)),but v[2]is not.If k1p1>0 and k2p2>0,v[2]is a dark soliton(see Fig.2(a));If k1p1/k2p2<0,v[2]becomes a mixed-soliton(dark–bright form)(see Fig.2(b));and if k1p1<0 and k2p2<0,v[2]turns into a bright soliton as shown in Fig.2(c).

    Fig.2.Two-soliton with α=?1/2,t=0,p1=1/2,=?5,p2=2/3,=10.(a)Dark soliton:v[2]with k1=3/4,k2=4/5;(b)Mixed soliton:v[2]with k1=?3/4,k2=4/5;(c)Bright soliton:v[2]with k1=?3/4,k2=?4/5;(d)Dark soliton:r[2]with k1=3/4,k2=4/5.

    Similarly,we can obtain the N-dark-soliton r[N]or Nbright-soliton r[N]or N-mixed-soliton which consists of dark and bright solitons.Two examples of three-soliton are shown in Fig.3.

    Fig.3.Three-soliton with α=1,t=0,k1=?3/4,k2=?1/2,k3=1/3,p1=2/3,p2=3/5,p3=1/2,=10,=?8,=0.(a)Mixed soliton v[3];(b)Dark soliton r[3].

    2.2.Breather solutions

    The real and imaginary parts of ηigiven in Eq.(10)are

    In the case N=2,the one-breather of the eSWW equation can be generated with the function f as follows:

    Substituting Eq.(16)into Eq.(11),we have the following expressions:

    Their proflies are plotted in Fig.4.The trajectory ofandis R1=0.And through computing,we get that their period is T[x]=|2c1π/a1d1?b1c1|,T[y]=|2a1π/a1d1?b1c1|,and then the distance between two adjacent peaks is

    It implies that the breather moves parallelly on the(x,y)-plane as t changing,while its shape keeps unchanged.andhave the same velocityon(x,y)-plane.

    Fig.4.One-breather Eq.(12)with t=0,α=?1/2,a1=?1,b1=1/2,

    In the case N=4,two-breathersandare generated by the following function through Eq.(11),namely,

    Here,

    The profiles of the above two-breather solutions are plotted in Fig.5.

    Fig.5. Two-breather solutions with t=0,α=?1/2,a1=?1/2,b1=1/3,c1=1/5,d1=1/3,a2=?1,b2=1/2,c2=1/5,d2=2/3,

    2.3.Hybrid solutions

    Fig.6. Hybrid solution v[3]with α=?1/2,t=0,k1=?1/2+i/3,p1=1/5+i/3,=i/4,k2=?1/2 ?i/3,p2=1/5 ?i/3,=?i/4.(a)One breather and one dark soliton with parameters k3=?1,p3=3/2,=0;(b)One breather and one bright soliton with parameters k3=1,

    3.Jacobi-type solutio n

    In this section,we shall give another kind of new solution.One crucial observation is that v[N]and r[N]are also solutions of the eSWW equation if we setin Eq.(10)by inserting a continuous arbitrary real function of y,i.e.,φ=φ(y).This fact is also mentioned in Ref.[37].According to this fact and setting φ be a Jacobi elliptic function,then equation(11)yieldsandwhich are hereinafter called Jacobi-type solution.We mainly discussin this section,which will provide a periodic solution and three kinds of dormion-type solutions.

    3.1.Case 1:N=1

    Using above modified η1with φ,the first order Jacobitype solution of Eq.(6)is in the form of

    The character of the solution depends on the specific choice of φ.The velocity ofon(x,y)-plane isbecause of the termand the periodicity of φ with respect to y.That means the first order Jacobi-type solution parallelly travels along the x axis.

    If we choose φ(y)=sn(y,3/10),the corresponding solution is given by

    This is a periodic solution because of the appearance of elliptic functions,and its extreme value is±(3/2)k1p1,which is confirmed by Fig.7(a).The contour lines on different hights are plotted in Fig.7(a),where h is the hight and ?|(3/2)k1p1|

    Fig.7.with α=1,=0,t=0.(a)Periodic solution(22):φ(y)=sn(y,3/10),k1=?3/4,p1=1;(b)Dormion-type-I soliton(23):φ(y)=cn(y,1),k1=?3/4,p1=1;(c)Bright dormion-type-II soliton(26):φ(y)=sn(y,1),k1=?3/4,p1=1;(d)Dark dormion-type-II soliton(26):φ(y)=sn(y,1),k1=3/4,p1=1;(e)Bright dormion-type-III soliton(21):φ(y)=sn(y,1/2)/(1+y2),k1=?3/4,p1=1;(f)Dark dormion-type-III soliton(21):φ(y)=sn(y,1/2)/(1+y2),k1=3/4,p1=1.

    If we choose φ(y)=cn(y,1),and then we obtain a doubly localized solution on(x,y)plane which is called a dormion-type-I solution and is shown in Fig.7(b).The expression of this solution is given by

    which is traveling along y=0 with a velocityon(x,y)plane. It is interesting to note thathas one maximumlocated atarccoshand minimum ?(3/4)k1p1located atThe contour lines on different hights are plotted in Fig.8(b),where ?|(3/4)k1p1|

    Taking the derivative of x in Eq.(24),and making dy/dx=0,we can get two endpoints

    on(x,y)-plane.In addition,we obtain two tangent lines perpendicular to the y axis,

    Fig.8.Parameters:α=1,=0,k1=?3/4,p1=1,t=0.(a)The contour line with h=(27/20)k1p1(solid,red),h=(3/4)k1p1(solid,blue),h=(1/4)k1p1(solid,purple),h=?(27/20)k1p1(dash,red),h=?(3/4)k1p1(dash,blue),h=?(1/4)k1p1(dash,purple);(b)The contour linewith h=(27/40)k1p1(solid,red),h=(3/8)k1p1(solid,blue),h=(3/20)k1p1(solid,purple),h=?(27/40)k1p1(dash,red),h=?(3/8)k1p1(dash,blue),h=?(3/20)k1p1(dash,purple);(c)The contour linewith h=?(27/20)k1p1(red),h=?(3/4)k1p1(blue),h=?(1/6)k1p1(purple);(d)The contour line with h=?(27/20)k1p1(solid,red),h=?(3/4)k1p1(solid,blue),h=?(1/4)k1p1(solid,purple),h=(1/6)k1p1(dash,red),h=(1/4)k1p1(dash,blue),h=(1/3)k1p1(dash,purple).

    If we choose φ(y)=sn(y,1),and then we obtain a doubly localized solution on(x,y)plane which is called a dormion-type-II solution and is shown in Fig.7(c).The formula of this solution is given by

    This solution is different from dormion-type-I becausejust has one extreme value ?(3/2)k1p1located atof(x,y)plane.We can see from formula ofthat it is also a traveling wave along y=0 with the same velocity asIn addition,generates a bright dromion when k1p1<0(Fig.7(c)),and a dark dromion when k1p1>0(Fig.7(d)).The contour lines on different hights are plotted in Fig.8(c),where h is between 0 and ?(3/2)k1p1.The contour line of Eq.(26)on the hight h=?(3/4)k1p1(the half amplitude)is

    Using the same method as Eqs.(24)and(25),we can obtain two endpointsandon(x,y)-plane. The tangent lines perpendicular to the y axis are

    If we choose φ(y)=sn(y,1/2)/(1+y2),equation(21)yields a dormion-type-III solutionwhich shows very strong doubly localized feature(Figs.7(e)and 7(f))on(x,y)plane,and the profile of this solution is invariant during the propagation along y=0,although there exist Jacobi elliptic functions in the representation of solution. In other words,the periodicity ofis disappeared remarkably such that it shows behavior as a dormion,because the(1+y2)in denominator of φ(y)completely depresses the amplitude when y>10.A simple calculation shows thathas a significant extreme value ?(3/2)k1p1at centeral pointof(x,y)plane and other two small extreme values located in two sides.It is too long to write out the formulas of the above two small extreme values,but it can give approximately as 0.3568320478k1p1.Furthermore,the centeral point is a maximum if k1p1<0 which implies that this solution is a bright dromion(Fig.7(e)),however it is a minimum if k1p1>0 so that this solution is a dark dormion(Fig.7(f)).The contour lineis plotted in Fig.8(d),where h is between the peak value and valley value.Because it is too complicated to write,we do not give the figure and expressions of the end points,the tangent lines perpendicular to the y axis,and the width of the contour lines.

    Fig.9.The curve line is the contour line on the height of half amplitude.The two black points are the end points,and the two red lines are the tangent lines perpendicular to the y axis.Parameters:α=1,=0,k1=?3/4,p1=1,t=0.(a)The contour line is Eq.(24),and the tangent lines are Eq.(25);(b)The contour line is Eq.(27),and the tangent lines are Eq.(28).

    3.2.Case 2:N=2

    We can obtain the second order Jacobi-type solution as follows:

    If we choose φ(y)=sn(y,3/10),it shows obviously a periodic structure in Fig.10(a).If we choose φ(y)=cn(y,1),it is dormion-type-I solution as shown in Fig.10(b).It has two maximum values and two minimum values on(x,y)plane.If we choose φ(y)=sn(y,1),it is a dormion-type-II solution.Its extreme values have three scenarios:letting k1p1>0 and k2p2>0 it is a dark form as shown in Fig.10(c),which has only two minimum values;letting k1p1/k2p2<0 it is a mixed form as shown in Fig.10(d),which has a minimum value and a maximum value;letting k1p1<0 and k2p2<0 we can get a bright solution as shown in Fig.10(e),which has only two maximum values.

    Fig.11. with α=1,t=0,p1=2/3,p2=3/5,p3=1/2. (a)Periodic solution:φ(y)=sn(y,3/10),k1=3/4,k2=1/2,k3=1/3,=?10,(b)Dormion-type-I soliton:φ(y)=cn(y,1),k1=3/4,k2=1/2,k3=1/3,;(c)Dark dormion-type-II soliton:φ(y)=sn(y,1),k1=3/4,k2=1/2,k3=1/3,;(d)Mixed dormion-type-III soliton:φ(y)=sn(y,1/2)/(y2+1),k1=3/4,k2=?1/2,k3=?1/3,

    3.3.Case 3:N=3

    By setting

    in Eqs.(9),(10),and(11),we can obtain the third-order Jacobi-type solutionand,where

    By the same way used above,we obtain more kinds of solutions through choosing different function φ(y)and ηi.Part of the situation is shown in Fig.11.

    4.Summary

    In this paper,we obtained the bilinear form and the nsoliton solution of an eSWW equation by using Hirota method.The solution v[1]is dark when k1p1>0 while it is bright when k1p1<0.The solution r[1]is always a dark soliton.By using complexification method,breathers and hybrid solutions are constructed which are all travelling waves.

    More importantly,we obtained Jacobi-type solution associated with a certain given φ(y)which is an arbitrary real continuous function appeared in f of bilinear form.It is selected by using Jacobi elliptic functions,and the character of the solutions depends on its specific choice.We stress on the case N=1.The first-order Jacobi-type solutionparallelly travels along the x axis with the velocityon(x,y)-plane.

    (i)When φ(y)=sn(y,3/10),equation(22)is a periodic solution and the period depends on φ(y).

    (ii)When φ(y)=cn(y,1),we obtained a dormion-type-I solutions. Equation(23)has one maximum(3/4)k1p1located atarccoshand one minimum ?(3/4)k1p1located at?arccosh2). The width of the contour line on the hight h=(3/8)k1p1(the half amplitude)is

    (iii)When φ(y)=sn(y,1),we obtained a dormion-type-II solution equation(26)which has only one extreme value?(3/2)k1p1located atof(x,y)plane.The width of the contour line on the hight h=?(3/4)k1p1(the half amplitude)is

    (iv)When φ(y)=sn(y,1/2)/(1+y2),we obtained a dormion-type-III solution(21)which shows very strong doubly localized feature on(x,y)plane,and the profile of this solution is invariant during the propagation along y=0.

    Moreover,we gave several figures of the mixture of periodic and localized solutions.

    e午夜精品久久久久久久| 亚洲七黄色美女视频| 亚洲成av人片免费观看| 亚洲国产中文字幕在线视频| 曰老女人黄片| 亚洲成人中文字幕在线播放| 18禁美女被吸乳视频| 国产av又大| 欧洲精品卡2卡3卡4卡5卡区| 国语自产精品视频在线第100页| 18禁观看日本| 亚洲中文av在线| 毛片女人毛片| www.熟女人妻精品国产| 麻豆成人av在线观看| 国产一区二区在线观看日韩 | 久久精品国产综合久久久| 国产一区二区三区视频了| 宅男免费午夜| 精品久久久久久久末码| 国产久久久一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 日韩欧美国产一区二区入口| 亚洲无线在线观看| 亚洲人成伊人成综合网2020| 在线观看舔阴道视频| 国内少妇人妻偷人精品xxx网站 | 99精品久久久久人妻精品| 日韩欧美国产在线观看| 欧美 亚洲 国产 日韩一| av天堂在线播放| 19禁男女啪啪无遮挡网站| 亚洲五月天丁香| 精品日产1卡2卡| 好看av亚洲va欧美ⅴa在| 久久精品人妻少妇| 一个人免费在线观看的高清视频| 国产麻豆成人av免费视频| 精品国产乱子伦一区二区三区| 久久国产精品影院| 国产主播在线观看一区二区| 日韩大码丰满熟妇| 夜夜躁狠狠躁天天躁| 午夜两性在线视频| 亚洲熟妇中文字幕五十中出| 在线观看免费午夜福利视频| 亚洲中文日韩欧美视频| 亚洲乱码一区二区免费版| 91成年电影在线观看| 欧美日韩福利视频一区二区| 久久久久久久久中文| 午夜福利高清视频| 国产亚洲欧美在线一区二区| 国产视频内射| 久久久久免费精品人妻一区二区| 丁香欧美五月| 母亲3免费完整高清在线观看| 人妻久久中文字幕网| 搞女人的毛片| 中文字幕人成人乱码亚洲影| 麻豆av在线久日| 亚洲国产中文字幕在线视频| 成人特级黄色片久久久久久久| 1024香蕉在线观看| 中国美女看黄片| 国产精品永久免费网站| 国语自产精品视频在线第100页| 亚洲精品久久成人aⅴ小说| 69av精品久久久久久| 欧美成人免费av一区二区三区| 又黄又粗又硬又大视频| 美女午夜性视频免费| 制服丝袜大香蕉在线| 国产精品亚洲av一区麻豆| 91九色精品人成在线观看| 久久久久亚洲av毛片大全| 久久精品综合一区二区三区| 国产麻豆成人av免费视频| 久久久久久久久中文| 午夜免费成人在线视频| 两个人视频免费观看高清| 国产单亲对白刺激| 一二三四在线观看免费中文在| videosex国产| 久久草成人影院| 不卡av一区二区三区| 成人三级黄色视频| 1024视频免费在线观看| 看免费av毛片| 欧美又色又爽又黄视频| 欧美成人性av电影在线观看| 校园春色视频在线观看| 国产亚洲av高清不卡| 1024香蕉在线观看| 成人av在线播放网站| 日日夜夜操网爽| ponron亚洲| 琪琪午夜伦伦电影理论片6080| 黄色片一级片一级黄色片| 久久久久久久久中文| 亚洲精品一区av在线观看| 丝袜美腿诱惑在线| 午夜成年电影在线免费观看| 妹子高潮喷水视频| 19禁男女啪啪无遮挡网站| 国产麻豆成人av免费视频| 在线观看舔阴道视频| 美女大奶头视频| 欧美zozozo另类| www.精华液| 三级男女做爰猛烈吃奶摸视频| 国产精品久久久人人做人人爽| 一边摸一边抽搐一进一小说| 黄色毛片三级朝国网站| 搡老岳熟女国产| 日韩av在线大香蕉| 日韩大尺度精品在线看网址| 久久人人精品亚洲av| 男女之事视频高清在线观看| 欧美大码av| 日本黄色视频三级网站网址| 九九热线精品视视频播放| 欧美丝袜亚洲另类 | 亚洲成人中文字幕在线播放| 真人一进一出gif抽搐免费| 99精品在免费线老司机午夜| 亚洲国产精品999在线| 两个人视频免费观看高清| 在线播放国产精品三级| 久久精品人妻少妇| 国产亚洲精品久久久久5区| 成年女人毛片免费观看观看9| 久久久久国产精品人妻aⅴ院| 搡老岳熟女国产| 欧美日韩亚洲综合一区二区三区_| 青草久久国产| 精品久久久久久久久久久久久| 亚洲午夜精品一区,二区,三区| 日韩免费av在线播放| 国产91精品成人一区二区三区| 欧美黑人巨大hd| 18禁黄网站禁片午夜丰满| 国产片内射在线| 亚洲成av人片在线播放无| 国内少妇人妻偷人精品xxx网站 | 长腿黑丝高跟| 国产av又大| 日韩欧美在线二视频| netflix在线观看网站| 日韩精品青青久久久久久| 国产一区二区三区在线臀色熟女| 真人一进一出gif抽搐免费| 久久人妻av系列| 亚洲中文字幕日韩| 成人三级黄色视频| 成人午夜高清在线视频| 美女扒开内裤让男人捅视频| 欧美日韩国产亚洲二区| 每晚都被弄得嗷嗷叫到高潮| 久久99热这里只有精品18| 成人午夜高清在线视频| 午夜成年电影在线免费观看| 一二三四在线观看免费中文在| 丁香欧美五月| 免费看美女性在线毛片视频| 精品无人区乱码1区二区| 91大片在线观看| 免费无遮挡裸体视频| 久久人人精品亚洲av| 国产精品自产拍在线观看55亚洲| bbb黄色大片| 久久热在线av| 在线观看免费视频日本深夜| 亚洲无线在线观看| 国产高清videossex| 亚洲一区二区三区色噜噜| 久久久久久国产a免费观看| 性欧美人与动物交配| 一二三四在线观看免费中文在| 黄色视频不卡| 精品日产1卡2卡| 国产午夜福利久久久久久| a级毛片a级免费在线| 亚洲国产中文字幕在线视频| 国产三级中文精品| 91国产中文字幕| 男男h啪啪无遮挡| 99re在线观看精品视频| 午夜激情福利司机影院| 久热爱精品视频在线9| 波多野结衣高清作品| 亚洲成a人片在线一区二区| 777久久人妻少妇嫩草av网站| 99在线人妻在线中文字幕| 可以免费在线观看a视频的电影网站| 亚洲熟女毛片儿| 久久久国产精品麻豆| 蜜桃久久精品国产亚洲av| 午夜视频精品福利| 色精品久久人妻99蜜桃| 搡老熟女国产l中国老女人| 午夜免费观看网址| 桃色一区二区三区在线观看| 精品国产亚洲在线| 狠狠狠狠99中文字幕| 99热这里只有是精品50| 亚洲国产精品sss在线观看| a在线观看视频网站| 午夜日韩欧美国产| 国产男靠女视频免费网站| 制服丝袜大香蕉在线| 一卡2卡三卡四卡精品乱码亚洲| www国产在线视频色| 国产精品久久久av美女十八| 搡老妇女老女人老熟妇| 午夜福利成人在线免费观看| 国产乱人伦免费视频| 一区福利在线观看| 久久久久久久午夜电影| 免费搜索国产男女视频| 女警被强在线播放| 香蕉久久夜色| 欧美av亚洲av综合av国产av| 国产精品 国内视频| 精品久久久久久成人av| 久久久久久久久中文| 一进一出抽搐gif免费好疼| 波多野结衣高清作品| 最近在线观看免费完整版| 亚洲欧美日韩高清在线视频| 变态另类成人亚洲欧美熟女| 搡老岳熟女国产| а√天堂www在线а√下载| 国产97色在线日韩免费| 中文字幕av在线有码专区| 亚洲 国产 在线| 99精品欧美一区二区三区四区| 久久天躁狠狠躁夜夜2o2o| 级片在线观看| 色哟哟哟哟哟哟| 制服丝袜大香蕉在线| 色尼玛亚洲综合影院| 999精品在线视频| 久久精品影院6| 身体一侧抽搐| 久久久久久大精品| 色综合欧美亚洲国产小说| 欧美日韩瑟瑟在线播放| 亚洲国产精品999在线| 欧美黑人巨大hd| 成人18禁高潮啪啪吃奶动态图| 亚洲精品在线美女| 90打野战视频偷拍视频| 精品欧美一区二区三区在线| 91在线观看av| 少妇被粗大的猛进出69影院| 精品久久久久久久末码| 特大巨黑吊av在线直播| 不卡av一区二区三区| 国产三级在线视频| 99久久无色码亚洲精品果冻| 精品午夜福利视频在线观看一区| 色老头精品视频在线观看| 男女做爰动态图高潮gif福利片| 一个人观看的视频www高清免费观看 | 1024手机看黄色片| 中文资源天堂在线| 精华霜和精华液先用哪个| 中文字幕熟女人妻在线| 日本撒尿小便嘘嘘汇集6| 国语自产精品视频在线第100页| 两个人免费观看高清视频| 欧美乱妇无乱码| 久久久久久久久中文| 免费看a级黄色片| 日本免费a在线| 亚洲天堂国产精品一区在线| 国产爱豆传媒在线观看 | 国产亚洲精品一区二区www| avwww免费| 日韩大码丰满熟妇| 99久久99久久久精品蜜桃| www日本黄色视频网| 在线观看午夜福利视频| 日韩欧美在线二视频| 亚洲精品在线美女| 久久人人精品亚洲av| 国产精品久久视频播放| 一级毛片高清免费大全| 日韩精品免费视频一区二区三区| 在线观看美女被高潮喷水网站 | www.熟女人妻精品国产| 伊人久久大香线蕉亚洲五| 黄频高清免费视频| 99热这里只有精品一区 | 久久热在线av| 国内少妇人妻偷人精品xxx网站 | 午夜亚洲福利在线播放| 别揉我奶头~嗯~啊~动态视频| 免费观看精品视频网站| 午夜福利高清视频| 亚洲av电影在线进入| 亚洲免费av在线视频| 亚洲国产精品合色在线| 国产不卡一卡二| 免费人成视频x8x8入口观看| 熟女少妇亚洲综合色aaa.| 精品福利观看| 五月玫瑰六月丁香| 国产成人aa在线观看| 国产成+人综合+亚洲专区| 久久亚洲精品不卡| tocl精华| 国产亚洲精品一区二区www| 国产精品久久久久久亚洲av鲁大| 亚洲av日韩精品久久久久久密| xxxwww97欧美| 少妇熟女aⅴ在线视频| 国产又色又爽无遮挡免费看| 日韩高清综合在线| 久久 成人 亚洲| 丁香欧美五月| 精品欧美国产一区二区三| 丁香六月欧美| 午夜免费成人在线视频| 人成视频在线观看免费观看| 精品日产1卡2卡| 亚洲电影在线观看av| 国产av不卡久久| 午夜激情福利司机影院| 国产免费男女视频| 色综合亚洲欧美另类图片| 国产av又大| 国产成+人综合+亚洲专区| 精华霜和精华液先用哪个| 嫁个100分男人电影在线观看| 一区二区三区国产精品乱码| 国产精品香港三级国产av潘金莲| a级毛片在线看网站| 制服人妻中文乱码| 国产亚洲av高清不卡| 男女下面进入的视频免费午夜| 狠狠狠狠99中文字幕| 亚洲欧美激情综合另类| 成人高潮视频无遮挡免费网站| 一二三四社区在线视频社区8| 欧美丝袜亚洲另类 | 黄色视频不卡| 久久久久久亚洲精品国产蜜桃av| 久热爱精品视频在线9| 国产精品爽爽va在线观看网站| 欧美一级毛片孕妇| 日本黄大片高清| 露出奶头的视频| 特大巨黑吊av在线直播| 日本黄大片高清| 黄色视频不卡| 亚洲第一欧美日韩一区二区三区| 女同久久另类99精品国产91| 亚洲九九香蕉| 91老司机精品| 在线永久观看黄色视频| 首页视频小说图片口味搜索| 国产精品亚洲一级av第二区| 欧美性猛交╳xxx乱大交人| 制服人妻中文乱码| 成人三级黄色视频| 欧美日韩福利视频一区二区| 在线a可以看的网站| 长腿黑丝高跟| 午夜福利成人在线免费观看| 嫩草影视91久久| 1024视频免费在线观看| 人人妻人人看人人澡| 他把我摸到了高潮在线观看| aaaaa片日本免费| 人妻夜夜爽99麻豆av| 亚洲国产精品成人综合色| 亚洲 欧美一区二区三区| 国产一区二区在线观看日韩 | 国产伦在线观看视频一区| 精品国产美女av久久久久小说| 两人在一起打扑克的视频| 精品少妇一区二区三区视频日本电影| 国产一区二区在线av高清观看| 亚洲男人的天堂狠狠| 亚洲专区中文字幕在线| 亚洲性夜色夜夜综合| 日本三级黄在线观看| 久久久久亚洲av毛片大全| 亚洲欧美日韩高清专用| 香蕉久久夜色| 亚洲国产欧美人成| 怎么达到女性高潮| 国产免费av片在线观看野外av| 亚洲欧美日韩高清专用| 亚洲一区二区三区不卡视频| 中文字幕人成人乱码亚洲影| 嫁个100分男人电影在线观看| 久久久精品大字幕| 亚洲国产精品sss在线观看| 91av网站免费观看| 精品久久久久久久久久免费视频| 欧美日本亚洲视频在线播放| 欧美日韩一级在线毛片| 亚洲午夜精品一区,二区,三区| 嫩草影院精品99| 成人18禁在线播放| 一级黄色大片毛片| 亚洲精品中文字幕一二三四区| 亚洲国产欧美网| 免费在线观看完整版高清| 两人在一起打扑克的视频| 全区人妻精品视频| 亚洲aⅴ乱码一区二区在线播放 | 国产亚洲精品第一综合不卡| 成年人黄色毛片网站| 日韩国内少妇激情av| 99精品欧美一区二区三区四区| 一卡2卡三卡四卡精品乱码亚洲| 日韩成人在线观看一区二区三区| 国产精品美女特级片免费视频播放器 | 欧美成人免费av一区二区三区| 免费看a级黄色片| 久久午夜亚洲精品久久| 亚洲午夜精品一区,二区,三区| 变态另类丝袜制服| 日韩欧美在线二视频| 精品电影一区二区在线| 久久精品成人免费网站| 熟妇人妻久久中文字幕3abv| АⅤ资源中文在线天堂| 久久久久久亚洲精品国产蜜桃av| 欧美三级亚洲精品| 国产三级黄色录像| 精品日产1卡2卡| 91字幕亚洲| 国产精华一区二区三区| 老司机在亚洲福利影院| av在线天堂中文字幕| 国产探花在线观看一区二区| 一区福利在线观看| e午夜精品久久久久久久| 亚洲全国av大片| 亚洲五月婷婷丁香| 国产精品一区二区三区四区免费观看 | 听说在线观看完整版免费高清| 成人一区二区视频在线观看| 一区二区三区国产精品乱码| 亚洲成人久久性| 嫩草影院精品99| 国产亚洲精品av在线| 久久精品国产亚洲av香蕉五月| 久久久久性生活片| 悠悠久久av| www.www免费av| 不卡av一区二区三区| 女生性感内裤真人,穿戴方法视频| √禁漫天堂资源中文www| 12—13女人毛片做爰片一| 嫁个100分男人电影在线观看| 757午夜福利合集在线观看| 两个人视频免费观看高清| 国产亚洲精品综合一区在线观看 | 无人区码免费观看不卡| 每晚都被弄得嗷嗷叫到高潮| a在线观看视频网站| 欧美 亚洲 国产 日韩一| 国产欧美日韩精品亚洲av| 日本在线视频免费播放| 久久久国产欧美日韩av| 国产麻豆成人av免费视频| 日韩欧美 国产精品| 精品欧美国产一区二区三| 精品少妇一区二区三区视频日本电影| 99国产精品一区二区蜜桃av| 中文资源天堂在线| 国产一区二区三区在线臀色熟女| 日日摸夜夜添夜夜添小说| 久久精品综合一区二区三区| 成人精品一区二区免费| 欧美黄色片欧美黄色片| 精品久久久久久久久久久久久| 丁香欧美五月| 一级a爱片免费观看的视频| 国产97色在线日韩免费| 村上凉子中文字幕在线| 黄色片一级片一级黄色片| 欧美一区二区精品小视频在线| 俺也久久电影网| 女同久久另类99精品国产91| 国产精品久久视频播放| 婷婷精品国产亚洲av| 久久精品国产亚洲av高清一级| 特级一级黄色大片| 99国产综合亚洲精品| 看黄色毛片网站| 久久香蕉国产精品| 精品国产乱子伦一区二区三区| 88av欧美| 淫妇啪啪啪对白视频| 久久久久久久久久黄片| 精品一区二区三区av网在线观看| 亚洲男人天堂网一区| 中文字幕最新亚洲高清| 亚洲精品久久成人aⅴ小说| 久久久久精品国产欧美久久久| 国产三级黄色录像| 亚洲国产精品合色在线| 1024手机看黄色片| 18禁黄网站禁片免费观看直播| 日韩欧美国产在线观看| 天天添夜夜摸| 女同久久另类99精品国产91| 精品一区二区三区四区五区乱码| 一区福利在线观看| 国产1区2区3区精品| 亚洲av熟女| 999久久久精品免费观看国产| 久久久久久亚洲精品国产蜜桃av| 亚洲,欧美精品.| 国产亚洲精品一区二区www| 一边摸一边抽搐一进一小说| 国产精品久久久久久亚洲av鲁大| 高清在线国产一区| 久久精品综合一区二区三区| 欧美日韩精品网址| 三级毛片av免费| 婷婷六月久久综合丁香| 亚洲精品av麻豆狂野| 亚洲欧美一区二区三区黑人| 我的老师免费观看完整版| 免费看日本二区| 亚洲国产欧洲综合997久久,| 国产成+人综合+亚洲专区| 成人手机av| 亚洲欧美日韩无卡精品| 欧美久久黑人一区二区| 俄罗斯特黄特色一大片| 亚洲 欧美 日韩 在线 免费| 国产97色在线日韩免费| 久久中文看片网| 久久精品国产综合久久久| 久久天躁狠狠躁夜夜2o2o| 亚洲av成人不卡在线观看播放网| 久久久久精品国产欧美久久久| 久久久精品欧美日韩精品| 欧美精品亚洲一区二区| 亚洲人成伊人成综合网2020| 色综合亚洲欧美另类图片| 脱女人内裤的视频| 琪琪午夜伦伦电影理论片6080| 国产亚洲精品综合一区在线观看 | 久久婷婷成人综合色麻豆| 中国美女看黄片| 少妇熟女aⅴ在线视频| 狠狠狠狠99中文字幕| 亚洲国产精品合色在线| 在线观看免费午夜福利视频| 国产av一区二区精品久久| 成人精品一区二区免费| 丝袜人妻中文字幕| 欧美av亚洲av综合av国产av| 精品国内亚洲2022精品成人| 亚洲av熟女| 久久精品人妻少妇| 日韩欧美国产在线观看| 少妇裸体淫交视频免费看高清 | 99国产精品一区二区蜜桃av| 亚洲 国产 在线| 高清在线国产一区| 国内毛片毛片毛片毛片毛片| 亚洲精品在线美女| 一卡2卡三卡四卡精品乱码亚洲| 久久久久久国产a免费观看| 三级男女做爰猛烈吃奶摸视频| e午夜精品久久久久久久| 亚洲18禁久久av| 亚洲欧美日韩东京热| 可以在线观看的亚洲视频| 久久亚洲精品不卡| 91九色精品人成在线观看| 一本一本综合久久| av欧美777| 中文资源天堂在线| 真人一进一出gif抽搐免费| av欧美777| 91九色精品人成在线观看| 制服诱惑二区| 国产精品久久久av美女十八| 天堂av国产一区二区熟女人妻 | 成人国产综合亚洲| 国产成人一区二区三区免费视频网站| 国产蜜桃级精品一区二区三区| 国产伦在线观看视频一区| 亚洲一卡2卡3卡4卡5卡精品中文| 婷婷六月久久综合丁香| 国产伦在线观看视频一区| 麻豆成人午夜福利视频| 在线永久观看黄色视频| 老司机深夜福利视频在线观看| 给我免费播放毛片高清在线观看| 日韩精品青青久久久久久| 首页视频小说图片口味搜索| 全区人妻精品视频| 久久精品aⅴ一区二区三区四区| 欧美日韩福利视频一区二区| 国产精品久久久av美女十八| bbb黄色大片| 国产高清激情床上av| 免费观看精品视频网站| 国产精品精品国产色婷婷| 免费在线观看视频国产中文字幕亚洲| a级毛片在线看网站| 日韩中文字幕欧美一区二区|