• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Novel Logarithmic Non-Singular Terminal Sliding Mode and Its Application in Attitude Control of QTR

    2019-11-06 06:28:26HaiboLiuHepingWangandJunleiSun

    Haibo Liu,Heping Wang and Junlei Sun

    (1. College of Aeronautics,Northwestern Polytechnical University, Xi’an 710072, China;2.Shenzhen Research Institute of Northwestern Polytechnical University,Shenzhen 518057,Guangdong, China)

    Abstract: In this study, we mainly focus on the attitude control problem of a quad tilt rotor aircraft with respect to unknown external disturbance. We propose a class of control methods, based on a novel logarithmic fast non-singular terminal sliding surface, a new fast reaching law and extended state disturbance observer. A logarithmic non-singular terminal sliding surface is used owing to its convergence in finite time and significant robustness. A fast reaching law with two order characteristics of the sliding mode is designed. This reaching law can be used reduce the convergence time of traditional reaching law. In addition, the extended state disturbance observer is utilized for online estimation and to compensate for system disturbance. The simulation experiment results show that the control strategy proposed in this paper outperforms the traditional non-singular fast sliding mode control.

    Keywords: tilt rotor;nonsingular; sliding mode control; attitude control; reaching law; extended state; disturbance observer

    1 Introduction

    The exceptional structural design of the tilt rotor aids in the vertical take-off and landing capacity of the helicopter, and also facilitates characteristics such high cruise speed, long operational range, and heavy load of fixed wing aircraft[1]. Quad tilt rotor (QTR) is a class of controlled unmanned aerial vehicles with complex structure, the QTR's attitude control system exhibits characteristics such as strong coupling, multi input, multi output, and nonlinearity and the system possesses modeling error and external disturbance, which causes the design of the flight control system to be exceedingly demanding[2]. To solve these problems, many scholars have carried out extensive research, for instance, designing flight control system of the tilting rotor using nonlinear control strategy[3-5], design of a tilting rotor flight control system based on full mode flight strategy[6-7], unified velocity control of unmanned tilt-wing aircraft[8], the flight control system in a large attitude change[9], the optimal control theory[10-11], tilt rotorcraft flight control method based on switch controller initialization[12], four tilt rotor unmanned aerial vehicle control system with adaptive control[13]. Especially in the stage of vertical take-off and landing, it is exceedingly important that the attitude control of the aircraft, throughout the tilting of the Rotorcraft V-22 four major accidents occurred, these were all caused by out of control attitude during the vertical take-off and landing stages, therefore, this study focuses on the QTR's attitude control during the vertical takeoff and landing modes. As a nonlinear control method, because of its characteristic of significant robustness, the sliding mode variable structure control has been given considerable attention, it has been widely used in the design of motor control and aircraft control systems[14-15]. In the general sliding mode variable structure control, usually select a linear sliding surface , the state of the system can only asymptotically converging to the equilibrium point, and the convergence rate is slow, thus when the system state error is large, the control effect of linear sliding mode is not ideal. To solve this problem, Zak et al.[16]proposed terminal sliding mode (TSM), it is a finite time convergent sliding mode control strategy. Introducing nonlinear term in the sliding mode, the convergence characteristics of the system are improved, so that the system state is exhibits finite time convergence with respect to the desired trajectory. In Ref.[17], the final attractor in the neural network is introduced so that the state error converges to zero within a limited time. However, there is a problem of singularity and slow convergence rate in the traditional terminal sliding mode control when situated far from the sliding mode surface, this is owing to the introduction of nonlinear components the convergence speed with respect to the equilibrium state is improved, and the closer it is to the equilibrium state, the faster is the convergence rate, but, when the state of the system is away from the equilibrium point, the convergence rate of the nonlinear sliding mode is slower than that of the linear. To solve the singularity problem, scholars have studied several methods, such as switching between nonlinear and linear sliding mode surfaces[18]; the trajectory is transformed to the prescribed interval and the terminal sliding mode in this interval is non-singular[19]; however, these methods are incorporated to avoid the singularity problem indirectly. In Ref.[20], the redesigned terminal sliding mode directly avoids the singularity problems. In order to solve the shortcomings of convergence rate , the characteristics of a linear sliding surface is used in Ref.[21] to improve the convergence speed of the terminal sliding mode far away from the equilibrium point. In Refs.[22-23], an exponential and logarithmic type of sliding mode surface is designed, which improves the convergence speed away from the equilibrium point. However, the previous studies only consider one of the two problems, but do not consider the singular problem and the convergence speed problem simultaneously, therefore, this study is based on the aforementioned research a logarithmic form of the global fast nonsingular terminal sliding surface is designed, which avoids the singularity directly and improves the convergence speed of the sliding surface of the terminal away from the equilibrium point.

    To realize the sliding mode, Gao[24]proposed the concept of reaching law, but to reduce the chattering and convergence time, the traditional reaching law still possesses a scope for improvement. In Refs.[25-27], "double power reaching law", "variable exponent reaching law", and "an improved the power reaching law" were proposed, thereby improving the system state of convergence and suppressing the chattering of variable structure control. Based on the aforementioned research, a fast double power reaching law with variable coefficients is proposed in this study, which renders the motion quality in the process of system state approaching the sliding mode outstanding.

    Because of the existence of the modeling error and external disturbance term in the QTR attitude model, it is difficult to eliminate the chattering of the controller, managing the complex disturbance becomes the problem that should be considered when designing the controller. The appearance of the extended state observer(ESO) theory[28]provides a new method to solve the complex disturbance. The ESO is the principal component of the active disturbance rejection control (ADRC) technique. It can be used to estimate the complex disturbance and compensate it in the control system. Based on the comprehensive analysis of the above, in this study, a new logarithmic fast nonsingular terminal sliding mode controller with ESO is designed and the relevant stability proof is provided. The simulation results show that the scheme has good tracking control performance.

    2 Attitude Model of QTR Vertical Take-Off and Landing Model

    The attitude control of the QTR vertical take-off and landing mode is realized via differential adjustment of the lift force of the propellers or nacelle angle. The control of the pitching channel is achieved via differential adjustment of the two sets of front and rear propellers, the rolling channel is realized via differential adjustment of the rotation rate of the rotor on both sides of the fuselage, the yaw channel is achieved via the differential adjustment of the two groups of nacelle angles on both sides of the fuselage. The system structure is shown in Fig.1.

    Neglecting the impact of the QTR's elastic vibration, a new state variablexis defined as follows:

    The attitude model of the QTR vertical take-off and landing model can be expressed as follows with respect to the nonlinear system with uncertainties:

    (1)

    Fig.1 QTR structure schematic diagram

    wherek=1,2,3 ,fkis

    andgkis

    σdk=Δfk(x,t)+Δgkuk+dk

    where,Δfk,Δgkare the modeling error terms;σdkis composite disturbance;φ,θ,φare the roll angle, pitch angle, and yaw angle;Ixx,Iyy,Izzare the moment of inertia around thex,y,zaxis of the fuselage;Ixzis the inertial product;dkrefers to the external disturbances of each channel;u1,u2,u3are the control input of each channel, the specific expression is

    u3=Lφmgυ

    wherekTis the propeller thrust coefficient,wiis the corresponding propeller speed,mis the aircraft mass,υis the nacelle angle,Lφ,Lθ,Lφare the arms of each channel.

    3 Terminal Sliding Mode Control

    The common terminal sliding mode surface (TSM) is designed as[17]

    (2)

    where, sliding surface parametersβT>0,and 0

    The state of the system based on the sliding mode surface of Eq.(2) can be stable for a limited time, however, when the state is far from the equilibrium, the convergence rate is slow, thus the design described in Ref.[18] is as follows, fast terminal sliding mode surface (FTSM):

    (3)

    where,αF,βF>0;pF∈(0,1). The convergence time of the system isTs=max{Tsi} (i=1,2,…,N),where:

    (4)

    where,xsi∈Ris the state of the system when it reaches the sliding surface.

    However, the above two types of sliding surface designs will inevitably exhibit the singularity phenomenon, thus, in Ref.[18] a nonsingular terminal sliding mode surface (NTSM) is designed, in Refs. [29] and [30] a fast nonsingular terminal sliding mode surface (FNTSM) is designed; the FNTSM surface described in Ref.[30] is as follows:

    (5)

    where,αN,βN>0;pN∈(1,2);qN>pN. The convergence time of the system is

    (6)

    4 New Logarithmic Nonsingular Fast Terminal Sliding Mode

    Based on the aforementioned research, a new logarithmic fast nonsingular terminal sliding mode (LFNTSM) surface is designed in this study:

    sk=(Ik+|x|)pdiag(ln(1+|x|))sgn(x)+

    (7)

    where |x|=diag(xk)sgn(x).

    Lemma1For Gaussian hypergeometric functions[20]

    (8)

    Theorem1For the nonlinear system described in Eq.(1), if the sliding mode surface of Eq.(7) is used to design the controller, and the parameters satisfy the conditionα,β>0,p∈(1,2),q>p, then the state of the system will slide tox≡0 in the finite timeTskafter reaching the sliding surface, where:

    (9)

    ProofWhens=0, Eq. (7) is transformed as follows:

    Remark1Comparing the convergence time of FNTSM and LFNTSM, the term ln(1+|x|)is observed to be the only difference between Eq.(6) and Eq.(9),and whenxi≠0, the term ln(1+|x|)<|x| is always tenable. Therefore, under the same parameters, the terminal sliding mode based on Theorem 1 is faster than the existing fast nonsingular terminal sliding mode technique with regard to avoiding singularity.

    5 New Fast Reaching Law

    To realize the system state fast reaching sliding surface, Professor Gao[24]proposed the following exponential reaching law:

    (10)

    Based on the form of the exponential reaching law, it can be observed that the derivative of the sliding mode surface is not zero when the state of system converges tos=0, it slides the system state out of the sliding surface, and the reaching law does not possess the two order sliding mode characteristics, the chattering is relatively large, if the saturation function is used instead of the switching function, the robustness of the system will be eliminated. In this study, to realize the fast chattering free approach to sliding surface, a double power reaching law of variable coefficients with two order sliding mode characteristics is proposed:

    εk1>0,εk2>0,n>m>0,k=1,2,3

    (11)

    (12)

    6 Design of New Logarithmic Nonsingular Terminal Sliding Mode Control with ESO

    6.1 New Logarithmic Nonsingular Terminal Sliding Mode Controller

    Introducing the new logarithmic fast nonsingular fast terminal sliding surface:

    (13)

    where,

    |λk|=diag(λk)sgn(λk)

    λk=x(2k-1)-xd(2k-1),k=1,2,3

    The following is obtained via the derivation of Eq.(13):

    (14)

    where:

    Combined with the new fast approaching law proposed in the previous section of this paper, the corresponding control law is designed as follows:

    (15)

    where,εkj∈R+(k=1,2,3,j=1,2), andσdkis the compound disturbance to be estimated.

    6.2 Disturbance Observer Based on ESO

    For system (1), the effect of the modeling error and external disturbance is exceedingly serious. To ensure the control precision and robustness and to minimize the chattering as much as possible, this study incorporates the extended state observer (ESO) to conduct the estimation and compensation of the online real-time disturbance. In this study, a disturbance observer is designed using the ESO model proposed in Ref.[17],

    (16)

    (17)

    (18)

    Theorem2For the attitude control system of QTR,if the composite disturbanceσdksatisfies the condition of Assumption 1, using the new type of nonsingular terminal sliding mode controller with ESO disturbance observer as shown in Eq.(15), the system state trajectory will reach a neighborhoodΩkof the sliding surface in a finite time, and

    (19)

    (20)

    where,

    33.Change yourself into all sorts of creatures you have a mind to: Shapeshifting is a common motif in folklore and found in almost every culture around the world, often attributed to gods and mythical creatures, but sometimes practiced by humans.Return to place in story.

    Proof The selected Lyapunov function is

    (21)

    (22)

    wherek=1,2,3.

    The following formula can be obtained by substituting Eq.(17) into Eq.(22):

    [εk1diag{|sk|}sgn(sk)+

    k=1,2,3

    (23)

    where,

    (24)

    (25)

    where,k=1,2,3

    Using the same analysis method, we can obtain another description of the convergence domain:

    (26)

    It can be derived from Eqs. (24) and (26) that the region where the system state converges within a finite time is as described in Eq. (19).

    (27)

    When the state of the system enters the |sk|≤Δregion, there is the |τ|≤Ωk

    (1+|λk|)pln(1+|λk|)sgn(λk)+

    (28)

    Eq. (28) can be converted to

    (1+|λk|)pln(1+|λk|)sgn(λk)+

    (29)

    7 Simulation and Result Analysis

    7.1 Simulation Parameters

    The QTR's quality is 6.65 kg, the moment of inertia are

    Ixx=4.782 kg·m2

    Iyy=3.258 kg·m2

    Izz=2.837 kg·m2

    The product of inertia isIxz=0.032 kg·m2, the initial state isφ0=θ0=φ0=0°, the target instructions areφd=3°,θd=5°,φd=2°, the moment of inertia is applied to 12% uncertainty, assumptions from the beginning of the simulation, the attitude angle measurement exhibits a Gauss white noise with a magnitude of 0.05, and filters 50/(s+50) are used, the time-varying disturbance torque applied to the system is

    In order to verify the validity of the method proposed in this paper, the following two control schemes are compared.

    Control scheme1Applying the new logarithmic fast nonsingular terminal sliding mode (LFNTSM) controller proposed in this study, the reaching law uses a new fast reaching law with two order sliding mode characteristics.

    Control scheme2Using the traditional fast nonsingular terminal sliding mode (FNTSM) controller, the reaching law is selected based on the traditional exponential reaching law, the corresponding control law is as follows:

    In control schemes 1 and 2, the extended state disturbance observer is used to estimate and compensate the complex disturbances. For the two sliding mode control schemes, the selected controller parameters are as follows:

    In control scheme 1:

    p=diag[1.7,1.7,1.7],q=diag[3,3,3]

    α=diag[10,10,10],β=diag[40,40,40]

    εk1=diag[0.6,0.6,0.6],εk2=diag[1.8,1.8,1.8]

    n=4,m=3

    In control scheme 2:

    p=diag[1.7,1.7,1.7],q=diag[3,3,3]

    α=diag[10,10,10],β=diag[40,40,40]

    εk1=diag[0.8,0.8,0.8],εk2=diag[2,2,2]

    In the two control schemes, the extended state disturbance observer has the same parameter setting,ρk1=ρk2=ρk3=10,ξk=3.

    7.2 Simulation Result Analysis

    It can be observed from Fig. 2 that although the disturbance estimation curve with the extended disturbance observer exhibits a brief oscillation at the initial stage, the time-varying complex disturbance is tracked in a short time and it coincides with the actual time-varying perturbation curve. Thus, on-line continuous disturbance compensation can be provided in the execution of the controller, the effect of the complex disturbance on the system is effectively suppressed, and the control accuracy and robustness of the two kinds of control methods are improved.

    Fig.2 Disturbance and disturbance estimation of each channel in LFNTSM

    Fig.3 is the attitude angle response curve of the QTR under two control schemes. It can be observed from the diagram that the control scheme 1 tracks the control instructions, and exhibits no overshoot, with steady state accuracy, and a fast convergence speed, control scheme 2 does not track the instructions satisfactorily, and the UAV attitude angle around the control command fluctuates and the steady-state performance is poor. This is because the logarithmic nonsingular terminal sliding mode presented in this study compared with the traditional fast non-singular terminal sliding surface, the convergence rate becomes faster and in the control scheme 1, a double power reaching law of variable coefficients with two order sliding mode characteristics is applied, which softens the motion trajectory of the controlled system.

    As shown in Fig.4, in the process of arrival of the system from the initial state to the sliding surface, the convergence rate of the sliding surface in control scheme 1 is higher than that in control scheme 2, reducing the movement time of the system in the approaching stage. When the state of system is far away from the sliding surface, the system state in control scheme 1 can move to the sliding surface rapidly. But, when the motion is close to the sliding surface, the approaching speed is significantly reduced and the smooth transition of sliding mode surface is realized; the chattering is also effectively reduced.

    Fig.3 Attitude angle response curve

    Fig.4 Changing curve of each channel sliding surface

    Fig. 5 shows a change in the curve of each channel control quantity using the control scheme 1, it can be observed from the graph that the curve of each channel control moment is smooth and chattering free. This is because the new fast reaching law used in the control scheme 1 possesses two order sliding mode characteristics, thus when the system enters the sliding mode, no tendency exists to leave the sliding surface, which effectively suppresses the chattering of the system. In summary, the control strategy proposed in this study exhibits satisfactory control effect, and achieves the design purpose.

    Fig.5 Changing curve of each channel control moment

    8 Conclusions

    In this study, a new type of logarithmic fast non-singular terminal sliding mode surface is designed regarding the QTR attitude control problem, which significantly improves the convergence speed of the state of system, and a new fast reaching law with two order sliding mode characteristics is proposed, smooth and chattering free to increase the system convergence speed, the extended state observer is adopted to compensate the controller on-line, which effectively suppresses the effect of complex disturbance on the system. The simulation analysis indicates that the proposed method is effective and exhibits significant practical value.

    久久综合国产亚洲精品| 一级毛片 在线播放| 国产精品久久久人人做人人爽| 日本五十路高清| 午夜视频精品福利| 成人午夜精彩视频在线观看| 叶爱在线成人免费视频播放| 操出白浆在线播放| 国产成人av激情在线播放| 99国产精品一区二区三区| 性色av一级| 国产成人系列免费观看| 久久女婷五月综合色啪小说| 亚洲国产欧美一区二区综合| 亚洲精品国产一区二区精华液| 黄色怎么调成土黄色| 免费日韩欧美在线观看| 91成人精品电影| 赤兔流量卡办理| 男女之事视频高清在线观看 | 男女国产视频网站| 夜夜骑夜夜射夜夜干| 老司机靠b影院| 两个人免费观看高清视频| 精品国产一区二区三区久久久樱花| 免费观看a级毛片全部| 在线观看国产h片| 一本综合久久免费| 欧美+亚洲+日韩+国产| 久久久欧美国产精品| 久久精品国产亚洲av高清一级| 99热网站在线观看| 91九色精品人成在线观看| 飞空精品影院首页| 18禁国产床啪视频网站| 久久精品成人免费网站| 一级毛片电影观看| 一级黄片播放器| 美女中出高潮动态图| 99精国产麻豆久久婷婷| 久久久亚洲精品成人影院| 99国产精品一区二区蜜桃av | 可以免费在线观看a视频的电影网站| 亚洲人成77777在线视频| 成年动漫av网址| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产看品久久| 男女无遮挡免费网站观看| av天堂在线播放| 一本久久精品| 国产精品三级大全| 别揉我奶头~嗯~啊~动态视频 | 国产熟女午夜一区二区三区| 久久免费观看电影| 中文字幕另类日韩欧美亚洲嫩草| 狂野欧美激情性bbbbbb| 搡老乐熟女国产| 丝袜美足系列| 久久久国产一区二区| 色精品久久人妻99蜜桃| 一个人免费看片子| 欧美 日韩 精品 国产| 一级毛片我不卡| 大话2 男鬼变身卡| 大话2 男鬼变身卡| 久久鲁丝午夜福利片| 宅男免费午夜| 亚洲国产看品久久| 午夜免费男女啪啪视频观看| 在线观看免费视频网站a站| kizo精华| 涩涩av久久男人的天堂| av在线app专区| 女人高潮潮喷娇喘18禁视频| 三上悠亚av全集在线观看| 免费看av在线观看网站| 在线观看www视频免费| 狠狠精品人妻久久久久久综合| 欧美av亚洲av综合av国产av| 国产亚洲精品久久久久5区| 成人国产av品久久久| 肉色欧美久久久久久久蜜桃| 国产精品亚洲av一区麻豆| 一级毛片我不卡| 丝袜喷水一区| 美女大奶头黄色视频| 一边亲一边摸免费视频| 久久久久国产精品人妻一区二区| 免费看不卡的av| 亚洲精品自拍成人| 国产一区二区 视频在线| 在线观看www视频免费| 亚洲国产精品999| 又大又爽又粗| 啦啦啦中文免费视频观看日本| 悠悠久久av| www.av在线官网国产| av福利片在线| 又黄又粗又硬又大视频| 午夜福利乱码中文字幕| 婷婷色麻豆天堂久久| 伦理电影免费视频| 午夜视频精品福利| 少妇裸体淫交视频免费看高清 | 国产精品欧美亚洲77777| 欧美日韩av久久| 在线观看免费视频网站a站| 中国美女看黄片| 亚洲欧洲精品一区二区精品久久久| 九色亚洲精品在线播放| 人妻 亚洲 视频| 国产免费福利视频在线观看| 大码成人一级视频| 下体分泌物呈黄色| 精品人妻在线不人妻| 日韩一本色道免费dvd| 欧美少妇被猛烈插入视频| 一二三四在线观看免费中文在| 日韩欧美一区视频在线观看| 成人手机av| 精品一区二区三区av网在线观看 | 一级毛片女人18水好多 | 国产一区亚洲一区在线观看| 亚洲精品一卡2卡三卡4卡5卡 | 国产精品九九99| 国产成人av教育| 国产成人精品久久二区二区免费| 免费少妇av软件| 久久免费观看电影| 亚洲色图综合在线观看| 男女午夜视频在线观看| 美女大奶头黄色视频| 久久热在线av| 老司机靠b影院| 黄色一级大片看看| 老司机午夜十八禁免费视频| 夜夜骑夜夜射夜夜干| 男人添女人高潮全过程视频| 这个男人来自地球电影免费观看| 国产免费视频播放在线视频| av天堂在线播放| 免费女性裸体啪啪无遮挡网站| 免费久久久久久久精品成人欧美视频| 国产黄色视频一区二区在线观看| 亚洲男人天堂网一区| 最黄视频免费看| 午夜日韩欧美国产| 国产真人三级小视频在线观看| 欧美精品人与动牲交sv欧美| 久久精品久久精品一区二区三区| 久久久国产欧美日韩av| 1024视频免费在线观看| 国产视频首页在线观看| 国产在线一区二区三区精| 精品免费久久久久久久清纯 | 亚洲国产日韩一区二区| 婷婷丁香在线五月| 蜜桃国产av成人99| 久久人妻福利社区极品人妻图片 | 一二三四社区在线视频社区8| 别揉我奶头~嗯~啊~动态视频 | 国产精品久久久av美女十八| 1024视频免费在线观看| 丝袜美足系列| 亚洲精品久久成人aⅴ小说| 免费高清在线观看视频在线观看| 亚洲欧美一区二区三区久久| 男人添女人高潮全过程视频| 中文字幕人妻熟女乱码| 黄色视频在线播放观看不卡| 19禁男女啪啪无遮挡网站| 精品一区二区三区四区五区乱码 | 人人妻人人澡人人爽人人夜夜| 七月丁香在线播放| 99热全是精品| 成年动漫av网址| 久久人人爽av亚洲精品天堂| 欧美 日韩 精品 国产| 香蕉丝袜av| 日本av免费视频播放| 久久久久久久久免费视频了| 一个人免费看片子| 欧美日韩视频精品一区| 99国产精品一区二区三区| 黄片小视频在线播放| 国产成人av教育| www日本在线高清视频| 国产不卡av网站在线观看| 久9热在线精品视频| 无限看片的www在线观看| 久久精品aⅴ一区二区三区四区| 欧美亚洲 丝袜 人妻 在线| 亚洲 欧美一区二区三区| www.自偷自拍.com| 亚洲人成电影观看| 国产成人精品久久二区二区免费| 国产欧美日韩一区二区三 | 久久久久视频综合| 亚洲精品在线美女| 男女免费视频国产| 成人影院久久| 午夜福利视频在线观看免费| 国产精品偷伦视频观看了| 99国产精品99久久久久| 国产不卡av网站在线观看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧美中文字幕日韩二区| 在线精品无人区一区二区三| 老司机午夜十八禁免费视频| 久久精品久久久久久久性| 欧美日韩综合久久久久久| 熟女少妇亚洲综合色aaa.| 亚洲av综合色区一区| 国产av精品麻豆| av一本久久久久| 欧美+亚洲+日韩+国产| 一级片免费观看大全| 校园人妻丝袜中文字幕| 国产精品麻豆人妻色哟哟久久| 免费人妻精品一区二区三区视频| 国产精品熟女久久久久浪| www.999成人在线观看| 亚洲av男天堂| 少妇粗大呻吟视频| 亚洲一区二区三区欧美精品| 午夜福利影视在线免费观看| 美女高潮到喷水免费观看| 久久久国产一区二区| 亚洲国产欧美日韩在线播放| 日韩av不卡免费在线播放| 美女福利国产在线| 亚洲,欧美精品.| 亚洲免费av在线视频| 久久人人爽人人片av| 亚洲九九香蕉| 免费在线观看日本一区| 成人午夜精彩视频在线观看| 一本色道久久久久久精品综合| 国产无遮挡羞羞视频在线观看| 国产熟女欧美一区二区| 欧美日韩视频高清一区二区三区二| 国产亚洲精品第一综合不卡| 久9热在线精品视频| 老司机在亚洲福利影院| 视频区欧美日本亚洲| √禁漫天堂资源中文www| 嫩草影视91久久| 国产精品久久久久久人妻精品电影 | 亚洲国产精品国产精品| 一级,二级,三级黄色视频| 亚洲av片天天在线观看| 在线精品无人区一区二区三| 一级毛片电影观看| 男女无遮挡免费网站观看| 国产一区二区三区av在线| 日本欧美国产在线视频| 十八禁网站网址无遮挡| 欧美另类一区| 亚洲欧美色中文字幕在线| 欧美日韩视频精品一区| 亚洲欧美中文字幕日韩二区| 夫妻性生交免费视频一级片| 亚洲精品国产色婷婷电影| 欧美日韩亚洲高清精品| 一级,二级,三级黄色视频| 亚洲 欧美一区二区三区| 亚洲精品久久成人aⅴ小说| 少妇人妻久久综合中文| 国产精品久久久久久精品古装| 免费观看人在逋| 亚洲 欧美一区二区三区| 日韩欧美一区视频在线观看| 首页视频小说图片口味搜索 | 成人三级做爰电影| 91成人精品电影| av福利片在线| 国产无遮挡羞羞视频在线观看| 男女下面插进去视频免费观看| 大片免费播放器 马上看| 蜜桃在线观看..| 一本—道久久a久久精品蜜桃钙片| 妹子高潮喷水视频| 中国美女看黄片| 又黄又粗又硬又大视频| 夫妻性生交免费视频一级片| 男男h啪啪无遮挡| 热99久久久久精品小说推荐| 国产精品免费大片| 亚洲第一av免费看| 日韩大片免费观看网站| 丝瓜视频免费看黄片| 久久99精品国语久久久| a 毛片基地| 少妇裸体淫交视频免费看高清 | 亚洲av美国av| 成人黄色视频免费在线看| 欧美日韩国产mv在线观看视频| 女人高潮潮喷娇喘18禁视频| 成在线人永久免费视频| 99热网站在线观看| 免费一级毛片在线播放高清视频 | 亚洲一码二码三码区别大吗| 亚洲国产av影院在线观看| 女人爽到高潮嗷嗷叫在线视频| 国产高清视频在线播放一区 | 视频区欧美日本亚洲| 观看av在线不卡| 大片免费播放器 马上看| 18禁国产床啪视频网站| 国产精品三级大全| 欧美av亚洲av综合av国产av| 国产精品亚洲av一区麻豆| 三上悠亚av全集在线观看| 嫁个100分男人电影在线观看 | 麻豆国产av国片精品| www日本在线高清视频| 性高湖久久久久久久久免费观看| 久久久久国产一级毛片高清牌| 一级黄色大片毛片| 黑人欧美特级aaaaaa片| 国产精品久久久人人做人人爽| 中文字幕色久视频| 亚洲国产毛片av蜜桃av| 免费不卡黄色视频| 黑人巨大精品欧美一区二区蜜桃| 人人妻人人澡人人看| 侵犯人妻中文字幕一二三四区| 99精国产麻豆久久婷婷| 午夜福利视频精品| 国产亚洲欧美在线一区二区| 国产免费视频播放在线视频| 国产欧美亚洲国产| 脱女人内裤的视频| 日本黄色日本黄色录像| 久久久久久久久免费视频了| 久久av网站| √禁漫天堂资源中文www| 日韩制服丝袜自拍偷拍| 人人妻人人澡人人看| 国产一级毛片在线| 国产色视频综合| 一边摸一边抽搐一进一出视频| 国产男女超爽视频在线观看| 啦啦啦视频在线资源免费观看| 欧美老熟妇乱子伦牲交| 国产高清国产精品国产三级| 亚洲精品一二三| 国产精品三级大全| 一区二区日韩欧美中文字幕| 两人在一起打扑克的视频| 18禁观看日本| 精品国产乱码久久久久久小说| 激情视频va一区二区三区| 视频在线观看一区二区三区| 狂野欧美激情性bbbbbb| 亚洲激情五月婷婷啪啪| 亚洲欧美日韩另类电影网站| 精品福利永久在线观看| 2021少妇久久久久久久久久久| 黑丝袜美女国产一区| 9191精品国产免费久久| 成人免费观看视频高清| 在线观看免费高清a一片| 欧美黑人欧美精品刺激| 黄色怎么调成土黄色| 亚洲av美国av| 91老司机精品| 精品少妇黑人巨大在线播放| 人人澡人人妻人| 亚洲成人国产一区在线观看 | 看免费成人av毛片| 国精品久久久久久国模美| 亚洲男人天堂网一区| 制服人妻中文乱码| 宅男免费午夜| 久久综合国产亚洲精品| 99国产精品免费福利视频| 搡老乐熟女国产| 少妇被粗大的猛进出69影院| 成人影院久久| 亚洲男人天堂网一区| 久久人人爽av亚洲精品天堂| 亚洲精品美女久久久久99蜜臀 | 欧美激情高清一区二区三区| 婷婷色综合www| 黄频高清免费视频| 男人爽女人下面视频在线观看| 亚洲七黄色美女视频| 我要看黄色一级片免费的| 黑丝袜美女国产一区| 精品卡一卡二卡四卡免费| 成人亚洲精品一区在线观看| 国产成人精品久久二区二区免费| 性高湖久久久久久久久免费观看| 在线观看免费高清a一片| av有码第一页| 久久青草综合色| 在线精品无人区一区二区三| 制服人妻中文乱码| 91精品三级在线观看| 久久久久久久久免费视频了| 男女床上黄色一级片免费看| av国产精品久久久久影院| 在线精品无人区一区二区三| 日日摸夜夜添夜夜爱| 国产一区二区三区综合在线观看| 99国产精品99久久久久| 99国产综合亚洲精品| 咕卡用的链子| cao死你这个sao货| 精品少妇一区二区三区视频日本电影| 免费高清在线观看视频在线观看| 啦啦啦啦在线视频资源| 婷婷色综合大香蕉| 亚洲熟女毛片儿| 日韩大码丰满熟妇| 欧美日韩黄片免| 操出白浆在线播放| 国产日韩欧美亚洲二区| 少妇的丰满在线观看| 国产日韩欧美亚洲二区| 亚洲综合色网址| avwww免费| svipshipincom国产片| av视频免费观看在线观看| 国产人伦9x9x在线观看| 精品人妻熟女毛片av久久网站| 国产av国产精品国产| 国产欧美日韩精品亚洲av| av在线播放精品| 成年人免费黄色播放视频| 美女福利国产在线| 免费观看人在逋| 曰老女人黄片| 亚洲精品久久久久久婷婷小说| 亚洲熟女毛片儿| 欧美日韩视频精品一区| 国产深夜福利视频在线观看| 极品人妻少妇av视频| 天天影视国产精品| 国产精品一区二区在线不卡| 精品国产一区二区三区四区第35| 日韩大码丰满熟妇| 又紧又爽又黄一区二区| 欧美人与性动交α欧美软件| 中文乱码字字幕精品一区二区三区| 国产欧美日韩一区二区三 | 国产成人欧美在线观看 | 黄色怎么调成土黄色| 久久久国产精品麻豆| 无限看片的www在线观看| 欧美精品一区二区大全| 超碰97精品在线观看| 亚洲欧洲国产日韩| 午夜福利视频在线观看免费| 久久久精品94久久精品| 19禁男女啪啪无遮挡网站| 91九色精品人成在线观看| 国产福利在线免费观看视频| 麻豆乱淫一区二区| 操出白浆在线播放| 日本欧美视频一区| 国产日韩一区二区三区精品不卡| 90打野战视频偷拍视频| 国产精品熟女久久久久浪| 久久精品成人免费网站| 在线亚洲精品国产二区图片欧美| 久久久久久亚洲精品国产蜜桃av| 国产av一区二区精品久久| 黄色怎么调成土黄色| 国产男女超爽视频在线观看| 97人妻天天添夜夜摸| 国产黄频视频在线观看| 丝瓜视频免费看黄片| 中文精品一卡2卡3卡4更新| 18禁国产床啪视频网站| 午夜日韩欧美国产| 老鸭窝网址在线观看| 性色av一级| 日韩制服骚丝袜av| 一区二区日韩欧美中文字幕| 一区二区三区四区激情视频| 国产成人精品久久久久久| 久热爱精品视频在线9| 嫁个100分男人电影在线观看 | 亚洲精品国产一区二区精华液| 国产伦理片在线播放av一区| 99九九在线精品视频| 伊人亚洲综合成人网| 超碰97精品在线观看| 99久久精品国产亚洲精品| h视频一区二区三区| 免费在线观看日本一区| 天堂中文最新版在线下载| 麻豆乱淫一区二区| 日本vs欧美在线观看视频| 日韩欧美一区视频在线观看| 高清不卡的av网站| 国产免费福利视频在线观看| 另类精品久久| 国产成人欧美在线观看 | 两个人看的免费小视频| 波野结衣二区三区在线| a 毛片基地| 最黄视频免费看| 亚洲国产精品国产精品| av网站在线播放免费| 亚洲,欧美,日韩| 精品国产国语对白av| 亚洲av日韩在线播放| 真人做人爱边吃奶动态| 国产精品一区二区在线观看99| 亚洲精品日本国产第一区| 男女午夜视频在线观看| 日韩一卡2卡3卡4卡2021年| 真人做人爱边吃奶动态| 涩涩av久久男人的天堂| 爱豆传媒免费全集在线观看| 两个人免费观看高清视频| 菩萨蛮人人尽说江南好唐韦庄| 搡老岳熟女国产| 91老司机精品| 精品免费久久久久久久清纯 | 极品少妇高潮喷水抽搐| 日韩大片免费观看网站| 亚洲,欧美精品.| 精品一区在线观看国产| 亚洲精品第二区| 国产精品亚洲av一区麻豆| 亚洲 欧美一区二区三区| av国产精品久久久久影院| 一区二区三区乱码不卡18| 97在线人人人人妻| 青草久久国产| 校园人妻丝袜中文字幕| 一级黄色大片毛片| 一本一本久久a久久精品综合妖精| av又黄又爽大尺度在线免费看| 亚洲欧美精品综合一区二区三区| 美女脱内裤让男人舔精品视频| av又黄又爽大尺度在线免费看| 亚洲精品第二区| 男女国产视频网站| 亚洲专区国产一区二区| 亚洲中文av在线| 欧美成狂野欧美在线观看| 中国国产av一级| 日韩中文字幕欧美一区二区 | 91精品国产国语对白视频| 丰满饥渴人妻一区二区三| 日韩欧美一区视频在线观看| 欧美精品人与动牲交sv欧美| 亚洲av电影在线观看一区二区三区| 欧美成人精品欧美一级黄| 精品国产一区二区三区久久久樱花| 多毛熟女@视频| 美女午夜性视频免费| 亚洲精品久久久久久婷婷小说| 免费日韩欧美在线观看| 成年动漫av网址| 成人国语在线视频| 亚洲精品在线美女| 最新的欧美精品一区二区| 色视频在线一区二区三区| 成人午夜精彩视频在线观看| 国产熟女午夜一区二区三区| 一级毛片我不卡| 波野结衣二区三区在线| 搡老乐熟女国产| av视频免费观看在线观看| 波多野结衣一区麻豆| 黄网站色视频无遮挡免费观看| 天堂中文最新版在线下载| 免费在线观看影片大全网站 | 不卡av一区二区三区| 国产精品偷伦视频观看了| 国产在线观看jvid| 国产精品人妻久久久影院| 欧美激情极品国产一区二区三区| a 毛片基地| 亚洲精品久久久久久婷婷小说| 久久久国产欧美日韩av| xxxhd国产人妻xxx| 女性生殖器流出的白浆| 色婷婷久久久亚洲欧美| 日本一区二区免费在线视频| 蜜桃在线观看..| 人人妻人人添人人爽欧美一区卜| 国产亚洲精品久久久久5区| 欧美成人精品欧美一级黄| 国产精品成人在线| 欧美成人精品欧美一级黄| √禁漫天堂资源中文www| 90打野战视频偷拍视频| 免费在线观看视频国产中文字幕亚洲 | 国产真人三级小视频在线观看| av国产精品久久久久影院| 黄色一级大片看看| 亚洲午夜精品一区,二区,三区| 国产麻豆69| 亚洲第一青青草原| 一级毛片女人18水好多 | 国产精品国产三级国产专区5o| 免费人妻精品一区二区三区视频| 巨乳人妻的诱惑在线观看| 少妇猛男粗大的猛烈进出视频| 日韩av在线免费看完整版不卡| 亚洲精品日本国产第一区| 亚洲黑人精品在线| 黑人欧美特级aaaaaa片| 美女高潮到喷水免费观看| 国产免费一区二区三区四区乱码| 国产成人一区二区在线| 精品少妇久久久久久888优播| 丝袜喷水一区|