孫嬌嬌
摘 要 運用FeynmanKac公式和偏微分方程法得到Vasicek隨機利率模型下的零息債券價格公式.利用△-對沖方法建立該模型下歐式期權(quán)價值滿足的偏微分方程模型,并用Mellin變換法求解該偏微分方程,最終得到歐式期權(quán)定價公式.從數(shù)值算例的結(jié)果可以看出Mellin變換法的有效性以及不同參數(shù)對期權(quán)價值的影響.
關(guān)鍵詞 金融數(shù)學;Mellin變換法;Vasicek隨機利率;偏微分方程
中圖分類號 O211;F830文獻標識碼 A
Abstract The formula of zero coupon bond price with Vasicek stochastic interest rate is obtained by using FeynmanKac formula and partial differential equation method. Based on Δhedging method,a partial differential equation model satisfied by European option value is established. Then the Mellin transform techniques are used to solve the partial differential equation. Finally, a closed form solution for the European option is obtained. The numerical results show the effectiveness of Mellin transform and the influence of different parameters on the value of option.
Key words Financial Mathematics; Mellin Transform Method; Vasicek Stochastic Interest Rate;Partial Differential Equation
1 引 言
近幾十年來,多數(shù)學者在研究期權(quán)定價時都是假定利率在短期內(nèi)保持不變的,如劉文倩(2018)[1]等研究了固定利率時股票價格服從混合分數(shù)布朗運動模型下不同類型障礙期權(quán)的定價公式.而在長期內(nèi)利率會隨著時間發(fā)生變動,因此,眾多研究者們提出隨機利率模型.毛志娟和梁治安(2013)[2]利用測度變換的鞅方法推導出歐式期權(quán)的解析解并用
Monte Carlo方法模擬出期權(quán)數(shù)值解;Fang(2012)[3]運用鞅方法研究了Vasicek隨機利率模型下歐式期權(quán)定價問題,并得到相應的定價公式;郭志東(2017)[4]利用偏微分方程的方法研究了Merton隨機利率模型下的歐式期權(quán)定價問題.運用Mellin變換法研究Vasicek隨機利率模型下的歐式期權(quán)定價問題也有價值.
從圖1可以看出,隨著相關(guān)系數(shù)ρ∈-1,1的增加,歐式看漲期權(quán)價值呈上升的趨勢.圖2表明隨著敲定價格的上升,歐式看漲期權(quán)價值下降,這主要是由歐式看漲期權(quán)定價特點決定的.
5 結(jié) 論
運用Mellin變換方法求解Vasicek隨機利率模型下的歐式期權(quán)價值滿足的偏微分方程,得到了形式簡單且較易求解的積分表達式.根據(jù)Mellin變換的卷積公式以及相應的一些性質(zhì),最終得到該模型下的歐式期權(quán)定價公式.該方法主要是將復雜的求解期權(quán)價值過程簡單化,因此可以應用到隨機利率模型下的其他奇異期權(quán)定價過程中.
參考文獻
[1] 劉文倩,韋才敏,卜祥智.混合分數(shù)布朗運動環(huán)境下歐式障礙期權(quán)定價[J].經(jīng)濟數(shù)學,2018, 35(4),16-20.
[2] 毛志娟, 梁治安. 基于CIR隨機利率模型下期權(quán)定價的實證研究[J]. 內(nèi)蒙古大學學報:自然科學版, 2013,44(3):266-272.
[3] FANG H. European option pricing formula under stochastic interest rate[J],progress in Applied Mathematics, 2012,4(1):14-21.
[4] 郭志東. Merton隨機利率模型下的歐式期權(quán)定價[J]. 邵陽學院學報:自然科學版, 2017, 14(3):23-27.
[5] PANINI R, SRIVASTAV R P. Option pricing with Mellin transnforms[J]. Mathematical and Computer Modelling,2004,40(1):43-56.
[6] PANINI R, SRIVASTAV R P. Pricing perpetual options using Mellin transforms[J]. Applied Mathematics Letters, 2005(18):471-474.
[7] FRONTCZAK R. Valuing Options in Hestons Stochastic Volatility Model: Another Analytical Approach[J]. Journal of Applied Mathematics, 2011 (2011): 1-18.
[8] FRONTCZAK R. Pricing Options in Jump Diffusion Models Using Mellin Transforms[J]. Journal of Mathematical Finance, 2013(3):366-373.
[9]YOON J H. Mellin Transform Method for European Option Pricing with HullWhite Stochastic Interest Rate[J]. Journal of Applied Mathematics, 2014(2014):1-7.