• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Similarity measurement of Chinese medicine ingredients for cold-hot nature identificatio n

    2019-11-01 03:01:10GuoHuiWeiXianJunFuZhenGuoWang
    TMR Modern Herbal Medicine 2019年4期

    Guo-Hui Wei,Xian-Jun Fu,Zhen-Guo Wang*

    1Key Laboratory of Theory of TCM,Ministry of Education of China,Shandong University of Traditional Chinese Medicine,Jinan,China.

    Abstract

    Keywords:Traditional Chinese medicine,Chinese Medicine ingredients,Ultraviolet spectrum,Similarity measurement,Cold-hot nature

    Background

    As one of the core elements of Traditional Chinese Medicine(TCM),nature theory of TCM has attracted the attention of scholars and research institutions for many years.The nature of Chinese medicine(CM)contain four types i.e.cool,cold,hot,and warm,in which cold and hot nature is an important part of TCM nature theory[1,2].”Treating the hot syndrome with cold nature medicine and treating cold syndrome with hot nature medicine”indicates that cold or hot property of medicine nature theory is an important basis for TCM treatment in regulating the balance between Yin and Yang of human body,and the application of cold-hot medicine nature leads to effective treatment in TCM clinical medicine[3].

    Numerous specialists maintain different views on the TCM cold-hotnature.Jinetal.[4]proposed a‘three-element’mathematical analysis model to research biological character of TCM in the basis of cold-hot medicine nature.Zhaoet al.[5]explored a cold/hot plate method to differentiating cold-hot nature of Mahuang and Maxingshigan decoctions.Wanet al.[6]studied the effect of TCM with different properties on thermoregulation and temperature-sensitive transient receptor potentialion channelprotein ofrats with yeast-induced fever.Lianget al.[7]analyzed the cold and hot properties of Chinese medicinal herbs with molecular network and chemical fragment methods.Wanget al.[8]identified 59 CHMs with typical cold/hot properties by self-organizing map.Fuet al.[9,10]investigated the presence of anticancer activity displayed by cold-hot nature of traditional Chinese marine medicine with phylogenetic tree analysis and explored in Silico Mode-of-Action method to explain the cold,hot,and neutral nature of CMs.

    Generally,the discrimination of cold-hot nature of CMs contains two parts:feature representation and nature classification.Feature representation uses original effects of CM,fingerprint technology or metabolomics method to extract the characteristics of CM.Nature classification needsuse classical machine learning classifiersor constructed classifiers to discriminate the cold-hot nature of CMs.Original effects of Chinese medicine is an effective characteristic expression.Xue research group[11-13]explored original efficacy features of CMs in“Chinese Herbal Medicine(CHM)”and used classical classifiers(such as artificial neural network)to classify the unknown nature of CMs.Metabolomics method is also used to represent the CMs.Nieet al.[14]studied Metabono mic features of CMs and constructed a random forest model to discriminate the unknown nature of CMs.Chemicaltechnology isan important method for analyzing the cold-hot nature.Longet al.[15]analyzed the chemicalco mponents of 284C Ms with clear medicine nature,and explored a combination system for predicting cold-hot nature of other CMs.Other methods,such as nuclear magnetic resonance spectroscopy of proton(1H-NMR),are used to investigate the feature of CMs.Liet al.[16]studied the characteristics of CMs with 1H-NMR and applied pattern recognition techniques to analyze the unknown nature of CMs.

    Except classical classifiers,retrieval scheme is one of the popular and effective classification schemes,which has been applied widely in identifying benign and malignant of Mammography and pulmonary nodules[17-20].Compared with traditional classifiers,retrieval scheme can provide most similar cases for analysis and reference.Therefore,similarity measure plays an important role in retrieval scheme for classification.Our group has done a lot of research work on similarity measurement of pulmonary nodules images[20,21].We quantify the similarity of pulmonary nodules images to distance metric.Although similarity measurement has been widely studied in medical images,it is rarely used in the nature identification of CMs.

    The current research of medicine nature focused on revealtheconnection ofCM natureand material composition within CMs.Forexample,chemical fingerprinting technique and CM nature discriminant models are applied to analyze CM material composition.The chemical fingerprint data of CM can reflect the whole composition of CM ingredients.Bioactivity is determined by material composition,and the bioactivities of CMs are the core of identifying medicine nature[2].Thus,material composition indirectly determines the nature of CMs.Studies have found that CM ingredients are the material basis for the production of medicine natures[10].Therefore,it is speculated that CMs with similar composition of substances should have similar medicinal nature.

    To verify the hypothesis proposed above,in this work,we explore relationship between the CM ingredients and cold-hot medicinal nature.Firstly,we construct a CM ingredient database by using ultraviolet(UV)spectrum technology to represent 61 CMs,which have clear cold-hot nature(including 30 ‘cold’CMs and 31 ‘hot’CMs).Secondly,we study quantifying the similarity of CM ingredient to a distance metric.Mahalanobis distance is learned to measure the similarity of UV fingerprints of CMs.Finally,a retrieval scheme is proposed to build a predictive identification model to predict the cold-hot nature of CMs.

    Materials and Methods

    TCM Dataset

    61 representative CMs are analyzed in this study,in which 30 CMs are ‘cold’medicines and others are ‘hot’medicines.All the 61 CMs have been marked in the classical ‘Chinese Materia Medica’and ‘Shen Nong’s Herbal Classic’.Table 1 shows the 61 representative CMs and their natures(characteristics in brackets).

    The UV fingerprint technology is used to test the 61 CMs.The main instrument is UV-3010 UV Spectrophotometer(Hitachi,Japan).Our group recorded the absorbance of total 61 CMs in the ultraviolet wavelength of 190-400nm with four different solvents(chloroform,distilled water,absolute ethanol,petroleum ether).Detailed method for obtaining UV fingerprint can refer to the manuscript[25].As a ‘hot’medicine,Mustard Seeds has been marked in the classical‘Chinese Materia Medica’and ‘Shen Nong’s Herbal Classic’.Figure 1 shows the UV absorption curve of Jiezhi(Mustard Seeds)and GeGen(Puerariae Lobatae Radix)with petroleum ether solvent.

    Figure 1.UV absorption curve of Mustard Seeds(A)and Puerariae Lobatae Radix(B)with petroleum ether solvent

    Table 1.The experimental 61 representative CMs

    UV Fingerprint Similarity

    In this study,we investigate the relationship between cold-hot nature and material composition of CMs.To verify the hypothesis,CMs with similar composition of substances should have similar medicinal nature,we want to quantify the similarity of CM ingredients and explore the method for identifying CM nature.A UV fingerprint reflects the material composition of a CM.Therefore,we want to reveal cold-hot nature based on UV fingerprints.If the ingredients of CMs are similar,we can think that their medicinal properties are similar.Hence,CMs with similar UV fingerprints should have the same medicinal nature.

    Similarity measure is defined as semantic relevance,which has been used to measure the similarity of lung nodule images in our study[21].If two CMs are both‘cold’medicine,they are semantically similar.The Mahalanobis distance is used to measure the similarity of UV fingerprints of CMs.The smaller the Mahalanobis distance,the higher the similarity of UV fingerprints.

    Distance metric learning

    Denote the sample dataset aswithbeing theith sample in the input space andnbeing the totalnu mber of samples.Forbetter presentation,we also denote a distance metricas a Mahalanobis distance between,which is defined as:

    In Eq.(1),Tdenotes the transpose of a vector or a matrix,Mis a positive semi-definite matrix.IfM=I,corresponds to Euclidean distance.IfMis restricted to be a diagonal matrix,represents a distance metric in which the different axes are given different weights.More generally,Mrepresents a set of Mahalanobis distance.BecauseMis a positive semi-definite matrix,it can be decomposed intoM=AAT.Hence,Eq.(1)can be rewritten as:

    Therefore,learning such distance metric is actually equivalent to finding a transformation of Euclidean distance between samples in the original high-dimensional space.During recent years,a variety of techniques[22]have been proposed to learn such an optimal Mahalanobis distance metricfrom training datathataregiven in the form of side information.We want to obtainAfrom the semantic relevance.

    Similarity Metric

    We define similarity measurement as semantic relevance.Semantic relevance can be presented by side information,which means that if two CMs have same nature(cold or hot),they are semantic relevance.Therefore,we study transformation matrixAaccording to semantic relevance.

    For semantic relevance,it describes the class separability,which requires the separability measure increase when the size of the between-class scatter matrix increases or the size of the within-class scatter matrix is smaller.This can be described by the Differential Scatter Discriminant Criterion(DSDC)model[23],it is defined as:

    The variation is defined as:

    In(4),WSis the within-class scatter matrix,BSis the between-class scatter matrix.ρis a nonnegative tuning parameter,which balances the relative merits of minimizing the within-class scatter to the maximization of the between-class scatter.The learned matrixAis the transformation matrix.With matrixA,we can calculate Mahalanobis distance between nodule images.

    At last,the learning of optimal projections *Aof the optimization problem in(4)can be solved by applying the eigenvalue decomposition on matrixS=SW-ρSB,and the projection matrix *Acan be constructed by applying the eigenvectors ofScorresponding to theksmallest eigenvalues.

    The Retrieval Algorithm

    1.Compute(4)with eigenvalue decomposition and obtain the transformation matrixA* withkeigenvectors corresponding tokminimum eigenvalues.

    2.Calculate the Mahalanobis distancebetween samplesxiandxjbased on(2).

    3.With the Mahalanobis distance,sort the distances we obtained,the retrieval inclusion are the smallest ones.

    ARetrieval Scheme for Identification.

    With the learned Mahalanobisdistance,a retrieval scheme based on the similarity metric is proposed to predict cold-hot medicine nature.For a TCM with unknown nature,we firstly measure the absorption degree of UV spectrum,and then compute the similarity of the UV spectrum between this TCM and the TCMs with known nature in the dataset.The calculated Mahalanobis distances are ranked based on increasing Mahalanobis distance metricsto retrieve for the ‘mostsimilar’reference TCMs.The K ‘most similar’TCMs are the reference TCMs with largest Mahalanobis distances to the query TCM.Each retrieved TCM is given a weight value as the similarity factor.The weighting factor is defined as

    dkis the Mahalanobis distances between query TCM andkth retrieved TCM.Finally,acold nature probability is computed to indicate the degree of coldness of this TCM,which is the quotient of the sum of the Mahalanobis distances of retrieved cold nature medicines and the sum of the Mahalanobis distances of the K‘most similar’TCMs.The formula is defined as(C is the number of‘cold’nature medicines and H is the number of‘hot’nature medicines):

    Given a threshold ofPT=0.5,ifpis abovePT,we believe that this queried TCM is ‘cold’,otherwise,it is ‘hot’.

    Performance Assessment

    In this subsection,to verify the feasibility of the proposed retrieval scheme for identification of cold-hot nature,extensive experiments are constructed to assess the performance of the retrieval scheme.We compare the performance of our scheme with that of the state-of-the-art classification models,including extreme learning machine(ELM)[24],artificial neural network(ANN)and supportvector machine (SVM).All experiments evaluations are on the basis of existing TCM dataset.The application assists to test unknown nature of a CM by retrieving similar UV spectra of CMs with clear cold-hot nature.In this study,we firstly compared nature identification performance of UV spectra with different solvents,and selected the solvent corresponding to the optimal identification performance.Secondly,we designed experiments to evaluate the proposed scheme performance,called stability evaluation.Thirdly,we illustrated the retrieval scheme with examples.Finally,an independent dataset is used to test the robustness of the proposed algorithm.

    In our experiments,stability evaluation is used to analyze the performance of the proposed prediction model.Stability evaluation is calculated with leave-one-CM-out method[20]in the whole dataset.Each time,one CM was selected as the query CM and the remaining 60 CMs as the reference database.Because every TCM was selected as the query CM,this process was performed 61times.In this retrieval scheme,we retrieved K ‘most similar’CMs and then obtained a ‘cold’nature probability.Atlast,61 probabilities were calculated.With varying the threshold of the ‘cold’nature probability,a Receiver Operating Characteristic(ROC)curve is generated.The area under the ROC curve(AUC)and prediction accuracy(ACC)are used to evaluate the performance of our scheme.The larger the area,the more stable the model is.ACC value is the probability of correct classification of cold-hot nature of CMs.The formula ofACC is as follows:

    The AUC and ACC value were applied for the stability evaluation.

    Results

    Performance Evaluation with Different Solvents.

    The chemical fingerprints of CMs reflect the material composition of CMs.UV spectra is one fingerprint of CMs,which can be applied to discriminate cold-hot nature of CMs.In this study,we construct experiments to quantitatively analyze the relationship between material composition and the nature of CMs by means of ultraviolet spectroscopy.

    In this work,the classification performance of the UV spectra with different solvents (distilled water,chloroform,petroleum ether,absolute ethanol)was analyzed to select UV data under solvent for optimal recognition performance.Leave-one-CM-out method is used to evaluate the parameters of our scheme.Figure 2 displays the ACC value curves for the medicine nature classification of the UV spectra with different solvents.The ACC value is computed as a function of the number of referenced CMs(K)retrieved to obtain a more comprehensive curve for predicting the performance of the model.In Figure 2,the curve of ACC value under petroleum ether solvent is better than that under other solvents,which means that the UV spectra of petroleum ether solvent have the best discriminant performance of cold-hot nature.When K is set as 7,the curve of ACC value under petroleum ether solvent has a peak.The identification performance reaches the maximal value 0.803.From the curve of ACC value under absolute ethanol,UV fingerprint with absolute ethanol has the lowest predicting performance.The CM nature identification with distilled water and chloroform is inferior to that with petroleum ether,but outperforms that with absolute ethanol solvent.According to the figure,the maximum ACC values of distilled water and chloroform are both 0.656.Therefore,these two solvents are poor for predicting medicine nature.

    Figure 2.The curves of ACC value for the medicine nature classification.K is the number of retrieved reference CMs

    In this study,the effect of parameter ρ in Eq.(4)under petroleum ether solvent is investigated to evaluate the predicting performance of cold-hot nature.The value of para meterρisset with intherange[10-3,10-2,10-1,1,5,10,102,103].Figure 3A displays the ACC value curve with different ρ.It can be concluded that the performance curve has small fluctuations and the ACC value reaches the maximum,when parameter ρ is set as 5.

    The number of eigenvectorskin the proposed retrieval algorithm is analyzed within the range[50 100 150 200 210].From Figure 3B,higher ACC value can be achieved with an increasing numberk.Maximum classification performance(ACC value)corresponds to the maximum number of eigenvectors=210k.

    Figure 3.The curve ofACC value under petroleum ether solvent with different ρ andk

    Model Performance Assessment

    To demonstrate the feasibility and stability of our proposed retrieval scheme for identifying cold-hot nature of CMs,this study compares the classification performance of our scheme(the retrieval scheme,denoted as"RS")with that of some classical classifiers(i.e.,ANN,SVM,ELM)orclassifiersusedin CM nature identification.All comparative algorithms use the optimal parameters from the dataset.According to the results of the previous section,the UV spectra data under petroleum ether solvent are used to study the cold-hold nature prediction.Table 2 shows the performance comparison of stability assessment between RS and other algorithms.Pearson correlation coefficient(PCC)is used as a comparative reference to measure the similarity of UV spectra.According to the prediction results of cold-hot nature,we can conclude as follows.Firstly,our scheme RS performs best in identification of cold-hot nature.Especially,RS and PCC havebetteri dentification accuracy than other comparison classical algorithms.This illustrates that Chinese medicines with similar ultraviolet spectrum have similar medicine nature.Secondly,ANN and ELM with UV spectral data are poor in identifying medicine nature.

    Thirdly,identification accuracy of SVM is better than that of ANN and ELM.However,it is poor than our scheme.Finally,stability assessment of our scheme is the best.

    Table 2.Comparison of stability evaluation

    Prediction Examples

    Leave-one-out method is used to obtain prediction examples.Two retrieval CM cases returned by RS are listed in Table 3.The query Chinese medicine(first row)and its top k=7 retrieved reference CMs are showed in the table.The retrieved reference CMs are computed by RS and ranked with monotonically incremental Mahalanobis distance.Cold medicine(DiFuZhi(Kochiae Fructus))and hot medicine(BiBa(Piperis Longi Fructus))are served as the examples to illustrate the principle of cold-hot medicine identification.In the first column,the query medicine isPiperis Longi Fructus.Its retrieved reference medicines are all hot nature.The calculated cold nature probability is 0,which indicates that the query medicine maybe is hot nature.In the second column,the query medicine isKochiae Fructus.The retrieved results have six cold nature medicines and one hot nature medicine.Its cold nature probability is 0.9464,indicating the query medicine is more likely to be cold nature.The prediction examples demonstrate thatsimilar UV fingerprints can characterize the same medicine nature.

    Table 3.Prediction examples based on the proposed RS

    Overall Prediction Performance.

    In this study,we perform a holistic assessment of the proposed RS method.Table 4 shows the prediction confusion matrix of 61 CMs.The total prediction accuracy is 80.3%(49/61).The identification accuracy of cold nature medicine is86.7% (26/30),whilethe prediction accuracy of hot nature medicine is 74.2(23/31).It can be seen that this scheme has a good prediction rate for medicines with cold nature.The recall,precision and F-score of 61 CM identification are listed in Table 5.Generally,our scheme has good identification rate.

    Table 4.Confusion matrix of 61 CM identification

    Table 5.The recall,precision and F-score of 61 CM identification

    Robustness of the proposed method

    An independent dataset is used to test the robustness of the proposed algorithm.In thisdataset,molecular descriptors are calculated to represent the CMs,including Molweight,H.Acceptors,H.Donors,Polar.Surface.Area,Rotatable.Bonds,Sp3.Atoms,Symmetric.atoms and Amines.The detailed process has been described in the manuscript[10].In the dataset,there are 534 hot medicines and 724 cold medicines.Table 6 shows the identification confusion matrix of 1258 CMs(534+724 medicines).The total identification accuracy is 81.1%(1020/1258).The prediction accuracy of cold nature medicines is 83.0%(443/534),while the identification accuracy of hot nature medicines is 79.7%(577/724).The experimentalresults demonstrate thatthe proposed method has better robustness.Generally,our scheme has good prediction rate.

    Table 6.Confusion matrix of 61 CM identification

    Discussion

    In this study,we have explored the feasibility of classifying CM nature with a retrieval scheme on the basis of the similarity of UV spectral data.Experiment results have demonstrated that it is an effective method for identifying the unknown CM nature by calculating the similarity of the UV spectrum.Meanwhile,the experimental results verify the proposed hypothesis that CMs with similar composition of substances should have similar medicinal nature.

    In summary,the advantages of our research are as follows.First,to realize CM nature identification,a dataset of 61 reference CM UV spectrum is assembled in which each CM has clearly cold or hot nature.Thus,it is effective and feasible for CM nature determination.

    Second,cold-hot nature plays a critical role in TCM nature theory.In this study,we investigate the interrelationship between material composition within CM and cold-hotnature.Materialco mposition is represented by UV spectra.Experiment evaluations have illustrated that there is a correlation between material composition and cold-hot medicine nature,which can be applied for cold-hot nature classification.Furthermore,we demonstrate that material composition determines the CM cold-hot nature.

    Third,in the light of UV spectral characteristics of CM,we investigate a retrieval scheme to identify CM nature.The distance metric is studied to measure the similarity of UV spectra.Experiment results display that our scheme performs best.The potential explanation is that our scheme sufficiently explores the relationship between material composition and CM cold-hot nature.

    Fourth,another performance that has been thoroughly demonstrated in this study is the robustness of the proposed retrievalscheme for the future clinical applications.For an intelligent discriminant model,our goal is to assist researchers in reading ultraviolet spectra and identifying cold-hot nature.The model is not feasible if the robustness is too low for an independent TCM dataset.We have demonstrated that our model has a high robustness in the experiments.More CM fingerprint data will be extracted to confirm the robustness of our model in the future.

    However,our research still has some limitations.First,this study only used UV spectra to represent the CMs.Other fingerprint techniques are not analyzed in this study.The CMs are complex mixtures of compounds.It is impossible to reflect the whole composition of CM compounds by only one fingerprint technique.In the future,we want to use multiple fingerprints to analyze CM cold-hot nature.Second,we investigate the similarity of UV spectra with a distance metric.The fingerprint data have the characteristics of high dimension and small sample.Based on such characteristics,the design of forecasting model is the focus in the future.Third,our study focuses on exploring retrieval scheme for cold-hot nature classification.UV spectrum features have not been thoroughly analyzed.Subsequently,we will integrate more effective fingerprint data to improve medicine nature classification performance.

    Ourstudy givesnot only a method for nature identification,but a new scheme for nature marker of Chinese medicines.Nature marker is a novel concept,indicating the ingredients of Chinese medicines closely related to medicine natures.With our nature identification scheme,we want to look for Chinese medicines with the similar ingredients under the same nature restriction conditions.Such several Chinese medicines have the same ingredients,which can be considered as the nature markers of these several Chinese medicines.

    Conclusion

    In this study,a retrieval scheme is proposed to predict cold-hot medicine nature.Based on the characteristics of CM,this scheme has better classification performance than classical classifiers.Effective experiments demonstrate that cold-hot medicine nature and UV spectral fingerprint data are relevant.

    黄片wwwwww| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 22中文网久久字幕| 国产久久久一区二区三区| 国产成人福利小说| 日日摸夜夜添夜夜添av毛片| 欧美xxxx黑人xx丫x性爽| 亚洲精品亚洲一区二区| 日本一本二区三区精品| av国产久精品久网站免费入址| 精品久久久久久久久av| 亚洲经典国产精华液单| 精品国产露脸久久av麻豆 | 欧美xxⅹ黑人| 看免费成人av毛片| 老师上课跳d突然被开到最大视频| 亚洲四区av| 国产黄色视频一区二区在线观看| 麻豆乱淫一区二区| 精品人妻一区二区三区麻豆| 看黄色毛片网站| 亚洲在线观看片| 午夜视频国产福利| 人妻一区二区av| 久久久久免费精品人妻一区二区| 欧美潮喷喷水| 大又大粗又爽又黄少妇毛片口| 精品久久久久久久人妻蜜臀av| 国产伦理片在线播放av一区| 白带黄色成豆腐渣| 欧美日韩一区二区视频在线观看视频在线 | 日韩欧美三级三区| 2018国产大陆天天弄谢| 深爱激情五月婷婷| 最后的刺客免费高清国语| 国产成人aa在线观看| 中文字幕制服av| 黄色欧美视频在线观看| 永久免费av网站大全| 久久久久久久久久黄片| 国产淫片久久久久久久久| 亚洲美女搞黄在线观看| 天堂影院成人在线观看| 精品一区二区三卡| 亚洲精品456在线播放app| 18禁裸乳无遮挡免费网站照片| 国产淫片久久久久久久久| 亚洲熟妇中文字幕五十中出| 欧美精品一区二区大全| 日韩精品青青久久久久久| 在线天堂最新版资源| 人人妻人人澡人人爽人人夜夜 | 欧美精品一区二区大全| 亚洲精品视频女| 国产精品av视频在线免费观看| 有码 亚洲区| 久久97久久精品| 国产精品嫩草影院av在线观看| 国产69精品久久久久777片| 国产综合懂色| 中国美白少妇内射xxxbb| 99久久九九国产精品国产免费| 精品人妻视频免费看| av在线天堂中文字幕| 99热这里只有是精品在线观看| 国产又色又爽无遮挡免| 亚洲av中文av极速乱| 国产视频首页在线观看| 亚洲精品456在线播放app| 十八禁国产超污无遮挡网站| 亚洲av电影不卡..在线观看| 国产精品一区二区三区四区久久| 亚洲伊人久久精品综合| 色吧在线观看| 亚洲高清免费不卡视频| 国产麻豆成人av免费视频| 国产精品嫩草影院av在线观看| 一本久久精品| 国产老妇伦熟女老妇高清| 又爽又黄无遮挡网站| 男女那种视频在线观看| 国内精品一区二区在线观看| av在线蜜桃| 在线观看一区二区三区| 丰满乱子伦码专区| 能在线免费看毛片的网站| 久久99热6这里只有精品| 夜夜爽夜夜爽视频| 成人高潮视频无遮挡免费网站| 中文天堂在线官网| 久久久久久伊人网av| 69人妻影院| 午夜激情福利司机影院| 高清毛片免费看| 秋霞伦理黄片| 插阴视频在线观看视频| 最后的刺客免费高清国语| 国产乱人偷精品视频| 国产激情偷乱视频一区二区| 亚洲人成网站高清观看| 免费无遮挡裸体视频| 午夜免费男女啪啪视频观看| 成人高潮视频无遮挡免费网站| 日韩欧美 国产精品| 国产极品天堂在线| 亚洲av免费高清在线观看| 特级一级黄色大片| 日本黄大片高清| 成年女人看的毛片在线观看| 成人毛片60女人毛片免费| 国产午夜精品久久久久久一区二区三区| 又大又黄又爽视频免费| 日本猛色少妇xxxxx猛交久久| 久久韩国三级中文字幕| 日韩一区二区三区影片| 国产 一区 欧美 日韩| 中文资源天堂在线| 午夜亚洲福利在线播放| 日本av手机在线免费观看| 91久久精品国产一区二区成人| 亚洲欧美日韩卡通动漫| 激情 狠狠 欧美| 国产伦精品一区二区三区视频9| 亚洲精品自拍成人| 91av网一区二区| 日韩av免费高清视频| 六月丁香七月| 国产乱来视频区| 免费少妇av软件| 免费无遮挡裸体视频| 汤姆久久久久久久影院中文字幕 | 色综合站精品国产| 在现免费观看毛片| 精品亚洲乱码少妇综合久久| 不卡视频在线观看欧美| 日韩av在线免费看完整版不卡| 亚洲av.av天堂| 卡戴珊不雅视频在线播放| 国产人妻一区二区三区在| 久久久久久久久中文| 国产精品无大码| 一个人观看的视频www高清免费观看| 别揉我奶头 嗯啊视频| 在线天堂最新版资源| 麻豆国产97在线/欧美| 久久久久性生活片| 最近中文字幕2019免费版| xxx大片免费视频| 久久久久网色| 成人亚洲精品av一区二区| 久久久久久久亚洲中文字幕| 亚洲av国产av综合av卡| 国产精品无大码| 丰满人妻一区二区三区视频av| 色播亚洲综合网| 国产一级毛片在线| 欧美日本视频| 久久久亚洲精品成人影院| 美女黄网站色视频| 亚洲国产精品成人综合色| 啦啦啦啦在线视频资源| 久久精品熟女亚洲av麻豆精品 | 成人毛片60女人毛片免费| 亚洲av.av天堂| 国产精品久久久久久av不卡| 女的被弄到高潮叫床怎么办| 亚洲最大成人中文| 两个人的视频大全免费| 欧美日韩视频高清一区二区三区二| 欧美极品一区二区三区四区| 日韩av不卡免费在线播放| 在线观看美女被高潮喷水网站| 亚洲不卡免费看| 日本黄大片高清| 18禁在线播放成人免费| 亚洲人与动物交配视频| 亚洲人成网站在线播| 国产在视频线在精品| av在线播放精品| 2021少妇久久久久久久久久久| 丝袜喷水一区| 免费观看av网站的网址| 看非洲黑人一级黄片| 一级二级三级毛片免费看| 午夜免费激情av| 少妇熟女欧美另类| 日日啪夜夜爽| 午夜免费男女啪啪视频观看| 91狼人影院| 三级男女做爰猛烈吃奶摸视频| 美女脱内裤让男人舔精品视频| 中文字幕av成人在线电影| 午夜福利高清视频| 久久鲁丝午夜福利片| 成人毛片a级毛片在线播放| 日韩欧美精品v在线| 日韩欧美精品v在线| 国产一区亚洲一区在线观看| 嫩草影院精品99| 在线观看免费高清a一片| 99热全是精品| 中文字幕亚洲精品专区| 婷婷色av中文字幕| 极品少妇高潮喷水抽搐| 高清视频免费观看一区二区 | 亚洲av日韩在线播放| 国产精品一区二区三区四区免费观看| 日本一本二区三区精品| 国产乱人偷精品视频| 五月天丁香电影| 亚洲aⅴ乱码一区二区在线播放| 久久久久久国产a免费观看| 黄片wwwwww| 国产亚洲5aaaaa淫片| 久久久久久久久久成人| 特级一级黄色大片| 欧美日本视频| www.av在线官网国产| 伦理电影大哥的女人| 午夜福利高清视频| 精品久久久久久电影网| 青青草视频在线视频观看| 国产片特级美女逼逼视频| 久久久久久久国产电影| 欧美日本视频| 人人妻人人澡欧美一区二区| 亚洲最大成人av| 少妇人妻精品综合一区二区| 亚洲人成网站在线观看播放| 亚洲精品亚洲一区二区| 搡老乐熟女国产| 一级黄片播放器| 国产精品不卡视频一区二区| 只有这里有精品99| 国产综合精华液| 一级av片app| 国产一区二区三区综合在线观看 | 一级黄片播放器| 青青草视频在线视频观看| 少妇的逼好多水| 少妇猛男粗大的猛烈进出视频 | 午夜爱爱视频在线播放| 美女被艹到高潮喷水动态| 91久久精品电影网| 男女边吃奶边做爰视频| 午夜激情福利司机影院| 亚洲精品一二三| 亚洲国产精品sss在线观看| 最近中文字幕高清免费大全6| 99久国产av精品| 少妇高潮的动态图| 菩萨蛮人人尽说江南好唐韦庄| 久久久久九九精品影院| 国产探花在线观看一区二区| 久久精品人妻少妇| 免费av毛片视频| 欧美日韩一区二区视频在线观看视频在线 | 69av精品久久久久久| 熟妇人妻不卡中文字幕| 久久久久久久久久成人| 国产有黄有色有爽视频| 99久久精品热视频| 亚洲国产精品成人综合色| 成年免费大片在线观看| 久久精品国产亚洲av天美| 十八禁国产超污无遮挡网站| 国产一区二区三区综合在线观看 | 欧美丝袜亚洲另类| 大片免费播放器 马上看| 五月天丁香电影| 别揉我奶头 嗯啊视频| 青春草视频在线免费观看| 欧美潮喷喷水| 尾随美女入室| 精品酒店卫生间| 久久久久久久久久人人人人人人| 内射极品少妇av片p| 一个人看的www免费观看视频| 亚洲国产高清在线一区二区三| 日韩一本色道免费dvd| 97人妻精品一区二区三区麻豆| 看非洲黑人一级黄片| 国产 亚洲一区二区三区 | 亚洲精品成人久久久久久| 99热网站在线观看| 色综合站精品国产| 在线观看免费高清a一片| 亚洲精品,欧美精品| 免费看美女性在线毛片视频| 日本一二三区视频观看| 国产在线一区二区三区精| 久久久久久久久久人人人人人人| 免费不卡的大黄色大毛片视频在线观看 | 亚洲四区av| 国产单亲对白刺激| 欧美高清成人免费视频www| 老司机影院毛片| 97超视频在线观看视频| 国产成人aa在线观看| 欧美激情国产日韩精品一区| 亚洲欧美成人综合另类久久久| 最后的刺客免费高清国语| 青春草视频在线免费观看| 国产精品国产三级专区第一集| 午夜亚洲福利在线播放| 99热这里只有精品一区| 欧美日韩一区二区视频在线观看视频在线 | 成人综合一区亚洲| 午夜福利高清视频| 最近中文字幕高清免费大全6| 乱码一卡2卡4卡精品| 精品熟女少妇av免费看| 91在线精品国自产拍蜜月| 在线播放无遮挡| 亚洲内射少妇av| 日本一本二区三区精品| 亚洲av免费在线观看| 亚洲人成网站在线播| 欧美日韩在线观看h| 在线免费观看不下载黄p国产| 我的老师免费观看完整版| 99九九线精品视频在线观看视频| 中文字幕免费在线视频6| 国产av在哪里看| 亚洲人与动物交配视频| 午夜日本视频在线| 成人性生交大片免费视频hd| 人妻夜夜爽99麻豆av| 午夜福利视频1000在线观看| 日本-黄色视频高清免费观看| 能在线免费看毛片的网站| 黄色一级大片看看| 女人十人毛片免费观看3o分钟| 亚洲,欧美,日韩| 亚洲最大成人av| 波多野结衣巨乳人妻| 亚洲内射少妇av| 欧美97在线视频| 国产成年人精品一区二区| 国产亚洲av片在线观看秒播厂 | 免费看日本二区| 国产精品福利在线免费观看| 亚洲精品中文字幕在线视频 | 日韩亚洲欧美综合| 寂寞人妻少妇视频99o| 午夜老司机福利剧场| 欧美最新免费一区二区三区| 午夜老司机福利剧场| 老司机影院毛片| 毛片一级片免费看久久久久| 少妇高潮的动态图| 美女内射精品一级片tv| 精品国产一区二区三区久久久樱花 | 国产av码专区亚洲av| 欧美成人一区二区免费高清观看| 大陆偷拍与自拍| 精品久久久久久久末码| 一级毛片黄色毛片免费观看视频| 午夜精品在线福利| 亚洲精品aⅴ在线观看| 好男人在线观看高清免费视频| 免费观看在线日韩| 五月天丁香电影| 三级国产精品欧美在线观看| 亚洲精品日本国产第一区| 亚洲av日韩在线播放| 男人和女人高潮做爰伦理| 国产一级毛片七仙女欲春2| 亚洲综合精品二区| 亚洲第一区二区三区不卡| 国产亚洲av嫩草精品影院| 夜夜看夜夜爽夜夜摸| 午夜福利视频1000在线观看| 精品一区二区三区人妻视频| 最近2019中文字幕mv第一页| 国产亚洲5aaaaa淫片| 三级国产精品片| 国产精品福利在线免费观看| 特大巨黑吊av在线直播| 99久久精品热视频| 十八禁国产超污无遮挡网站| 日韩av免费高清视频| 国产欧美日韩精品一区二区| 国产高清国产精品国产三级 | 中文字幕久久专区| 国产黄a三级三级三级人| 午夜免费观看性视频| 久久久久久久午夜电影| 免费av观看视频| 亚洲av电影在线观看一区二区三区 | 又黄又爽又刺激的免费视频.| 七月丁香在线播放| 街头女战士在线观看网站| 国产视频内射| 日韩中字成人| 久久精品国产鲁丝片午夜精品| 日日撸夜夜添| 免费观看精品视频网站| 日韩强制内射视频| 不卡视频在线观看欧美| 一二三四中文在线观看免费高清| 人妻制服诱惑在线中文字幕| 国产高清有码在线观看视频| av天堂中文字幕网| 老司机影院成人| 成人毛片60女人毛片免费| 国产精品久久久久久精品电影小说 | 联通29元200g的流量卡| 亚洲最大成人av| 国产成人一区二区在线| 在线观看免费高清a一片| 在线a可以看的网站| 婷婷色综合www| 大陆偷拍与自拍| av国产久精品久网站免费入址| 全区人妻精品视频| 国产老妇伦熟女老妇高清| 日韩人妻高清精品专区| 免费看av在线观看网站| 亚洲国产av新网站| 夜夜爽夜夜爽视频| 听说在线观看完整版免费高清| 18+在线观看网站| 2018国产大陆天天弄谢| 国产在视频线在精品| 成人毛片a级毛片在线播放| 熟女电影av网| 久久99热这里只频精品6学生| 天堂av国产一区二区熟女人妻| 亚洲18禁久久av| 99久久人妻综合| 日本色播在线视频| 乱系列少妇在线播放| 欧美区成人在线视频| 国产黄片视频在线免费观看| av专区在线播放| 免费电影在线观看免费观看| 如何舔出高潮| 亚洲精品乱码久久久久久按摩| 99久久精品国产国产毛片| 成年版毛片免费区| 免费观看性生交大片5| 久久久欧美国产精品| 国产成年人精品一区二区| 国产乱人偷精品视频| 看非洲黑人一级黄片| 亚洲成人一二三区av| 午夜日本视频在线| 亚洲国产精品成人久久小说| 亚洲av二区三区四区| 在线观看美女被高潮喷水网站| 伦理电影大哥的女人| 亚洲欧美清纯卡通| 午夜日本视频在线| 欧美极品一区二区三区四区| 亚州av有码| 赤兔流量卡办理| 一夜夜www| 久久久久久久久久人人人人人人| 在线免费十八禁| 亚洲真实伦在线观看| 中文字幕免费在线视频6| 国产精品国产三级国产av玫瑰| 久久这里有精品视频免费| 在线观看美女被高潮喷水网站| 亚洲成色77777| 好男人在线观看高清免费视频| 日产精品乱码卡一卡2卡三| 午夜精品国产一区二区电影 | 精品国产三级普通话版| 黄色欧美视频在线观看| 欧美一区二区亚洲| 国产老妇女一区| 99久国产av精品国产电影| 亚洲精品视频女| 中文字幕亚洲精品专区| 777米奇影视久久| 亚洲国产日韩欧美精品在线观看| 亚洲aⅴ乱码一区二区在线播放| 精品国产露脸久久av麻豆 | 日本一本二区三区精品| 国产高清国产精品国产三级 | 日本黄色片子视频| 亚洲综合色惰| 国产又色又爽无遮挡免| 国产成人a∨麻豆精品| 麻豆久久精品国产亚洲av| 国产视频内射| 久久久久久久久大av| 成人午夜精彩视频在线观看| 日日摸夜夜添夜夜爱| 国产成人精品久久久久久| 天堂俺去俺来也www色官网 | 久热久热在线精品观看| 亚洲av男天堂| 国产在线男女| 午夜福利视频精品| 91久久精品电影网| 久久久久久久大尺度免费视频| 色综合亚洲欧美另类图片| 成人午夜精彩视频在线观看| 午夜福利视频精品| 22中文网久久字幕| 熟妇人妻不卡中文字幕| 亚洲欧洲日产国产| 女人久久www免费人成看片| 日韩亚洲欧美综合| 哪个播放器可以免费观看大片| 国产亚洲av片在线观看秒播厂 | 成人综合一区亚洲| 国产黄片视频在线免费观看| 欧美三级亚洲精品| 婷婷色av中文字幕| 丰满人妻一区二区三区视频av| kizo精华| 亚洲婷婷狠狠爱综合网| 午夜日本视频在线| 直男gayav资源| 激情五月婷婷亚洲| 三级经典国产精品| 午夜激情欧美在线| 精品一区二区免费观看| 小蜜桃在线观看免费完整版高清| 卡戴珊不雅视频在线播放| 成人毛片a级毛片在线播放| 特大巨黑吊av在线直播| 亚洲内射少妇av| 大香蕉久久网| 水蜜桃什么品种好| 国产伦精品一区二区三区视频9| 天堂av国产一区二区熟女人妻| 色播亚洲综合网| 22中文网久久字幕| 别揉我奶头 嗯啊视频| 精品一区在线观看国产| 在线a可以看的网站| 秋霞在线观看毛片| 一级毛片 在线播放| 中文资源天堂在线| 婷婷色综合www| 黄片无遮挡物在线观看| 一级爰片在线观看| 91在线精品国自产拍蜜月| 1000部很黄的大片| 精品久久久久久成人av| 一级a做视频免费观看| www.av在线官网国产| 国产人妻一区二区三区在| 精品国产三级普通话版| 久久久欧美国产精品| 日韩欧美精品免费久久| 2021天堂中文幕一二区在线观| 国产高清三级在线| 搡老妇女老女人老熟妇| 91久久精品电影网| 亚洲图色成人| 国产亚洲最大av| 精品不卡国产一区二区三区| 啦啦啦啦在线视频资源| 亚洲av成人av| 内射极品少妇av片p| 久久久久网色| 日韩不卡一区二区三区视频在线| 人人妻人人看人人澡| 18禁裸乳无遮挡免费网站照片| 街头女战士在线观看网站| 国产日韩欧美在线精品| 69人妻影院| 久久热精品热| 极品少妇高潮喷水抽搐| 少妇裸体淫交视频免费看高清| 国产精品一区二区性色av| 精品久久久久久成人av| 狂野欧美激情性xxxx在线观看| 美女脱内裤让男人舔精品视频| 亚洲成人一二三区av| 国产av不卡久久| 一个人看的www免费观看视频| 99热全是精品| 黑人高潮一二区| 大香蕉久久网| 免费在线观看成人毛片| 亚洲精品乱久久久久久| 国产探花极品一区二区| 精品人妻熟女av久视频| 久久久成人免费电影| 亚洲,欧美,日韩| 久久久久精品性色| 国产精品久久久久久精品电影| 欧美+日韩+精品| av女优亚洲男人天堂| 精品久久久久久电影网| 高清视频免费观看一区二区 | 日韩av不卡免费在线播放| 午夜久久久久精精品| 嫩草影院新地址| 22中文网久久字幕| videos熟女内射| 国产综合精华液| 国内少妇人妻偷人精品xxx网站| 国产在视频线在精品| 国产黄片视频在线免费观看| 日韩欧美 国产精品| 极品少妇高潮喷水抽搐| 免费观看性生交大片5| 亚洲精品视频女| 久久久久久久亚洲中文字幕| 少妇猛男粗大的猛烈进出视频 | 欧美日韩视频高清一区二区三区二| 两个人的视频大全免费| 尤物成人国产欧美一区二区三区| 日本av手机在线免费观看| 男女啪啪激烈高潮av片| 中文在线观看免费www的网站| av在线播放精品|