張錕,曲戈,劉衛(wèi)東,孫周通
工業(yè)酶結(jié)構(gòu)與功能的構(gòu)效關(guān)系
張錕*,曲戈*,劉衛(wèi)東,孫周通
中國科學院天津工業(yè)生物技術(shù)研究所,天津 300308
工業(yè)酶是綠色生物制造的“芯片”,支撐著下游數(shù)十倍甚至百倍的產(chǎn)業(yè)。解析工業(yè)酶結(jié)構(gòu)與功能關(guān)系是對其設(shè)計改造并應(yīng)用于工業(yè)生產(chǎn)的基礎(chǔ)。近年來隨著蛋白結(jié)構(gòu)解析技術(shù)和計算模擬技術(shù)的發(fā)展,酶結(jié)構(gòu)與功能的構(gòu)效關(guān)系得到更加深刻的認識,使得酶理性設(shè)計,甚至是從頭設(shè)計成為可能。文中圍繞酶結(jié)構(gòu)的可塑性及其催化功能的多樣性,綜述工業(yè)酶結(jié)構(gòu)與功能構(gòu)效關(guān)系的研究進展及應(yīng)用,并展望該領(lǐng)域的未來發(fā)展前景。
工業(yè)酶,結(jié)構(gòu)與功能,結(jié)構(gòu)可塑性,生物催化
作為生物催化劑,酶催化具有反應(yīng)條件溫和、專一性高及環(huán)境友好等優(yōu)勢。天然酶已形成無數(shù)錯綜復雜的結(jié)構(gòu),來行使類型多樣的催化反應(yīng)[1]。酶的結(jié)構(gòu)決定其功能,對絕大多數(shù)酶來說,其催化功能 (如底物特異性、催化效率) 通常依賴于酶催化口袋中的一小部分氨基酸殘基[2],但其他特性如熱穩(wěn)定性等可能涉及遠端氨基酸殘基[3]。隨著越來越多的晶體結(jié)構(gòu)得到解析,以及通過隨機突變、(半)理性設(shè)計[4]等定向進化技術(shù)獲得大量的催化特性優(yōu)化的工業(yè)酶[5],人們可以更好地理解酶結(jié)構(gòu)與功能之間的關(guān)系。近年來基于晶體結(jié)構(gòu)解析與計算分析,科學家們可以更加深入地了解酶的催化機制及對應(yīng)的結(jié)構(gòu)特征,為促進其工業(yè)應(yīng)用奠定了基礎(chǔ)。基于該領(lǐng)域的最新進展,本文首先著重介紹酶結(jié)構(gòu)的可塑性及相應(yīng)催化特性的多樣性,之后介紹酶結(jié)構(gòu)對催化特性的影響和構(gòu)效關(guān)系研究方法,最后探討展望該領(lǐng)域的發(fā)展前景。
酶能夠在溫和條件下催化特異化學反應(yīng),能否與底物選擇性結(jié)合是酶執(zhí)行催化功能的主要決定因素。酶結(jié)構(gòu)的特定空間排列,是形成酶-底物過渡態(tài)復合物的前提條件。氨基酸彼此之間通過酰胺鍵連接在一起形成多肽鏈骨架,并卷曲折疊成有規(guī)則的二級結(jié)構(gòu),包括α-螺旋、β-折疊、β-轉(zhuǎn)角及無規(guī)卷曲等。多個二級結(jié)構(gòu)借助非共價力,如疏水相互作用、氫鍵、離子鍵和范德華力,進一步折疊組裝形成有功能的三級結(jié)構(gòu)(圖1)。由于非共價鍵相對較弱,三級結(jié)構(gòu)容易受到外界環(huán)境的影響(如溫度、pH、底物誘導等) 發(fā)生構(gòu)象變化,因此酶結(jié)構(gòu)具有可塑性,進而影響其催化功能和分子特性。
圖1 蛋白質(zhì)結(jié)構(gòu)組裝:從左到右分別為一級序列、二級結(jié)構(gòu)和三維結(jié)構(gòu)
酶骨架的構(gòu)象不是剛性、靜止的,而是柔性、動態(tài)的。酶與底物分子相互作用時酶構(gòu)象有時發(fā)生輕微改變,有時則發(fā)生劇烈變構(gòu),酶骨架的可塑性保障了功能的有效實施。以羧酸還原酶為例,它能催化羧酸到醛的還原反應(yīng),來源于賽格尼氏桿菌的羧酸還原酶SrCAR的晶體結(jié)構(gòu)表明,腺苷化結(jié)構(gòu)域和硫酯化結(jié)構(gòu)域存在大尺度的變構(gòu)效應(yīng),以實現(xiàn)利用同一個催化口袋先后催化腺苷化及硫酯化反應(yīng)[6-7]。曲戈等的進一步研究表明,SrCAR的K629和K528分別在腺苷化和硫酯化階段扮演著重要角色:在腺苷化階段,K629位于腺苷化結(jié)構(gòu)域催化口袋中心;而硫酯化階段發(fā)生了變構(gòu),K629移出催化口袋,K528取而代之并負責催化硫酯化反應(yīng) (圖2A)。將這兩個位點突變?yōu)楸彼岷螅蛔凅wK629A和K528A均喪失了對模式底物的催化能力[8]。此外,結(jié)構(gòu)域或拓撲結(jié)構(gòu)發(fā)生大尺度變構(gòu)在酶催化功能演變中發(fā)揮重要作用[9]。例如鹵代鏈烷酸脫鹵素酶 (Haloalkanoicaciddehalogenase,HAD) 超家族根據(jù)功能不同分為磷酸酯酶、ATP酶、脫鹵素酶和糖磷酸酶,其不同成員之間Cap結(jié)構(gòu)域 (Cap domain) 的差異造成了功能和底物的特異性(圖2B)[10]。
圖2 酶骨架可塑性對其催化功能的影響.(A)SrCAR從腺苷化階段變構(gòu)到硫酯化階段. 虛線箭頭表示腺苷結(jié)構(gòu)域(A domain)與硫酯結(jié)構(gòu)域(T domain) 的變構(gòu)方向,源自文獻[8]. (B) 經(jīng)典HAD結(jié)構(gòu)域示意圖:黃色,含有催化殘基Asp的鏈;藍色,在所有HAD超家族成員中保守的核心鏈;灰色,在祖先酶結(jié)構(gòu)中可能沒有發(fā)生的結(jié)構(gòu)元素;綠線,C1 Cap域的插入點;橙色線,C2 Cap域插入點。虛線,表示不完全存在于HAD超家族所有成員中的二級結(jié)構(gòu)元素。源自文獻[10]. (C) TmCel12A E134C突變體和底物纖維二糖的晶體結(jié)構(gòu),其A鏈與其他已知的GH12-家族酶疊加,紅色顯示,表明TmCel12A具有獨特loop (A3-B3)源自文獻[11].
酶骨架的可塑性同時賦予了催化功能的混雜性(Promiscuity)。來自南極假絲酵母的脂肪酶B (lipase B, CALB) 同時具有甘油三酯水解和催化Aza-Michael加成反應(yīng)功能[12]。同時,骨架可塑性也會影響酶的熱穩(wěn)定性,通過對來源于海棲熱袍菌的纖維素酶TmCel12A與同家族其他糖苷水解酶的晶體結(jié)構(gòu)比較可以發(fā)現(xiàn),該酶含有兩個較長且高度扭轉(zhuǎn)的β-鏈B8和B9,以及特有的環(huán)結(jié)構(gòu)A3-B3 (圖2C)。該環(huán)包含R60和Y61,這兩個氨基酸通過氫鍵和堆疊作用力穩(wěn)定底物,這些結(jié)構(gòu)特征影響了該酶的高熱穩(wěn)定性[13]。
相對于整個蛋白骨架,酶催化口袋大多包含loop結(jié)構(gòu),因此口袋的可塑性更強,方便我們利用 (半) 理性設(shè)計技術(shù),通過重塑催化口袋來調(diào)控酶的催化功能。
檸檬烯環(huán)氧水解酶LEH可不對稱催化1,2-環(huán)氧己烷合成手性1,2-環(huán)己二醇。野生型 (Wild type, WT) LEH的立體選擇性較差,傾向于 (,) 選擇性。孫周通等經(jīng)定向進化重塑酶催化口袋,獲得的立體選擇性提高及反轉(zhuǎn)的最優(yōu)突變體SZ348和SZ529,值分別達到99% (,) 和97% (,);晶體結(jié)構(gòu)解析顯示W(wǎng)T和兩個突變體之間的整體結(jié)構(gòu)差異非常小,但突變體SZ529和SZ348相對于WT的催化口袋構(gòu)型發(fā)生了明顯變化,尤其是手性反轉(zhuǎn)的口袋構(gòu)型變化比較明顯(圖3A)[14-15],并通過計算解析闡明了催化口袋的形狀變化對其底物特異性和立體選擇性的控制機制,并為LEH及相關(guān)工業(yè)用酶針對特異底物和不對稱催化的定向設(shè)計改造提供了重要的理論基礎(chǔ)[16]。
酶催化口袋氨基酸殘基變構(gòu)可影響催化活性。以嗜熱厭氧菌來源的醇脫氫酶TbSADH為例,基于其晶體結(jié)構(gòu),分別在30 ℃和60 ℃下對該酶進行分子動力學 (Molecular dynamics, MD) 模擬,結(jié)果表明催化口袋內(nèi)的A85、I86、L294及C295位點的運動自由度較差[17]。經(jīng)虛擬突變分析,鎖定85及86位點為重點改造對象,通過在這兩個位點引入合適突變,最優(yōu)突變體 (A85G/I86L) 相應(yīng)loop區(qū)域柔性增強,相較WT,突變體催化口袋明顯變大(圖3B),進而實現(xiàn)了非天然前手性酮 (如重要醫(yī)藥中間體 (4-氯苯基) 吡啶-2-甲酮) 的不對稱還原[17-18]。
圖3 酶催化口袋的可塑性. (A)重塑LEH突變體催化口袋,源自文獻[15].(B) TbSADH WT (灰色)和突變體T15 (青色) 催化小口袋的快照,源自文獻[17].
另外,酶催化口袋loop區(qū)域的可塑性影響酶催化功能的混雜性。里氏木霉可分泌纖維二糖水解酶TrCel7A和內(nèi)切葡聚糖酶TrCel7B,盡管這兩個酶具有大約50%的氨基酸序列一致性且三維結(jié)構(gòu)高度相似,然而兩者功能相差很大,主要由覆蓋其底物結(jié)合區(qū)域的loop環(huán)結(jié)構(gòu)不同所造成[19]。
酶的穩(wěn)定性包括熱穩(wěn)定性、抗氧化穩(wěn)定性、pH穩(wěn)定性和非水相溶劑耐受性等[20]。其中,二硫鍵、離子相互作用、氫鍵網(wǎng)絡(luò)、極性相互作用等對酶的穩(wěn)定性有重要影響 (圖4)。
二硫鍵對酶的穩(wěn)定性具有重要影響。來源于瘤胃厭氧真菌新美絲桿菌GH11家族的木聚糖酶,其整體結(jié)構(gòu)為典型的GH11 β-jelly-roll折疊。催化區(qū)域N端的11個氨基酸為該酶特有結(jié)構(gòu),此片段通過氫鍵、芳香環(huán)堆疊作用及一個二硫鍵 (C4/C172) 固定在催化口袋。截短實驗證明這11個氨基酸的存在與該酶的活性及熱穩(wěn)定性直接相關(guān),并且C4和C172位點之間的二硫鍵是維持此片段結(jié)構(gòu)的關(guān)鍵因素 (圖4A)[21]。
離子相互作用對酶結(jié)構(gòu)穩(wěn)定性也有重要作用??莶菅挎邨U菌酯酶esterase突變體BSE V4在30 ℃的半衰期較WT提高了5.6倍,同源建模和分子對接發(fā)現(xiàn),突變體相較于WT形成了新的氫鍵和離子鍵(紅色虛線,圖4B),有利于提高突變體的熱穩(wěn)定性[22]。酶結(jié)構(gòu)中的氫鍵網(wǎng)絡(luò)是維持結(jié)構(gòu)穩(wěn)定的重要因素。芽孢桿菌脂肪酶lipase R153H突變體的熱穩(wěn)定性較WT提高了72倍,結(jié)構(gòu)分析表明H153和R106形成了額外氫鍵 (圖4C)[23]。來源于長野芽孢桿菌的普魯蘭酶,在其穩(wěn)定性改造實驗中,突變體D787C能夠在pH 4.0下保持90%活性。進一步分析發(fā)現(xiàn)D787C的氫鍵網(wǎng)絡(luò)相對于WT發(fā)生了重組,導致相近的α-螺旋和loop區(qū)變構(gòu),影響底物分子與酶催化口袋的相互作用。同時D787C所在的loop區(qū)變得更加剛性,增加了突變體在酸性條件下的穩(wěn)定性[25]。
圖4 酶結(jié)構(gòu)對其穩(wěn)定性的影響. (A)源于Neocallimastix patriciarum GH11家族的木聚糖酶及底物的復合體晶體結(jié)構(gòu),兩個二硫鍵分別用DS1, DS2表示,源自文獻[21]. (B)BSE V4突變體模型及突變位點形成的氫鍵和離子鍵,源自文獻[22]. (C) 突變體R153H中形成的額外氫鍵,His153/O (粉紅色)與Arg106/NE和Arg106/NH 2 (青色),源自文獻[23]. (D) 枯草芽孢桿菌脂肪酶A晶體結(jié)構(gòu)展示。催化活性位點S77用綠色表示,其他氨基酸殘基用從疏水 (橙色)到親水 (藍色)著色,源自文獻[24].
酶特定位點氨基酸殘基的極性/非極性對其在非水相溶劑中的穩(wěn)定性具有重要調(diào)節(jié)作用。基于分子動力學模擬枯草芽孢桿菌脂肪酶A (lipase A) 離子液體耐受性機制研究,發(fā)現(xiàn)在底物結(jié)合口袋處引入帶正電荷的氨基酸有利于提高其對15 vol%[Bmim] [TfO]離子液體的抗性,可能原因是帶正電的氨基酸阻礙了[Bmin]+離子在催化口袋的聚集。同時,將該酶蛋白表面的氨基酸突變?yōu)闃O性氨基酸可更好地穩(wěn)定表面水分子網(wǎng)絡(luò),進而提高其離子液體耐受性 (圖4D)[24]。
酶結(jié)構(gòu)剛?cè)嵝詫ζ浠盍头€(wěn)定性具有重要影響。B因子 (又稱為Debye-Waller因子,溫度因子或原子位移參數(shù)) 是描述由熱運動引起的X射線散射或相關(guān)中子散射的衰減的參數(shù),能提供蛋白質(zhì)分子局部的運動信息,反映蛋白質(zhì)分子由于熱振動和構(gòu)象變化而引起的振動程度,可用于鑒定原子、側(cè)鏈甚至整個區(qū)域的柔性[26]。借助B因子可研究生物大分子的內(nèi)部運動和熱力學穩(wěn)定性,近期研究表明,降低酶結(jié)構(gòu)柔性,有利于提高其穩(wěn)定性[27];而增加催化口袋柔性可在一定程度上提高酶活 性[28]。近年來基于B因子開發(fā)的B-FIT定向進化策略,成功應(yīng)用于熱穩(wěn)定性等酶性能改造[29]。
酶的立體/區(qū)域/化學選擇性是其相較于化學催化劑的突出優(yōu)勢之一,酶的催化選擇性受酶的結(jié)構(gòu),尤其是其催化口袋幾何構(gòu)象影響。
酶催化口袋的柔性對其立體選擇性具有重要的調(diào)節(jié)作用。來源于克非爾乳桿菌的短鏈醇脫氫酶A94F和Y190F突變體,通過誘導催化口袋的構(gòu)象變化,擴大結(jié)合口袋,促進在該區(qū)域容納較大的硫原子并增強其催化3-硫代環(huán)戊酮還原的選擇性 (圖5A)[30]。
酶催化口袋氨基酸的位阻效應(yīng)是決定其催化口袋形狀的重要因素,同樣可影響催化選擇性。通過引入小體積氨基酸,可以降低來源于谷氨酸棒桿菌蘇氨酸脫氨酶 (threonine deaminase,CgTD) 底物進入通道入口處氨基酸的位阻效應(yīng)[31]。并且其突變體F114A/R229T催化3-苯基-L-絲氨酸脫氨活力相較于WT提高了18倍(圖5B)。與之相反,通過引入大位阻氨基酸,理性設(shè)計CALB的醇基結(jié)合口袋的A281和A282位點,能縮小CALB的醇基結(jié)合口袋體積,使得雙醇底物能夠進入,但不接受單酯底物,達到選擇性合成單酯的目的[32]。
酶催化的選擇性也受其底物進入通道的影響,底物進入通道的形狀往往決定其催化選擇性[33]。例如,人胰脂肪酶的底物結(jié)合口袋在酶表面較淺的凹陷處,僅可容納鏈長約8個碳原子的脂肪酸[34];而褶皺假絲酵母脂肪酶的底物結(jié)合口袋是22 ?長的隧道,能容納鏈長達17個碳原子的脂肪酸 (圖5C)[35],這些延伸結(jié)合位點的大小差異與底物特異性有關(guān),特別是與它們水解的脂肪酸鏈長相關(guān)。
酶催化口袋的氨基酸殘基與底物之間的相互作用也是影響催化選擇性的重要因素。通過拉伸分子動力學模擬計算解析腈水合酶立體選擇性,結(jié)果表明 ()-甘露腈必須打破和βHis37殘基之間的氫鍵才能進入腈水合酶的催化口袋,提高腈水合酶的 ()-選擇性[36]。通過分子動力學模擬TbSADH突變體I86A結(jié)構(gòu)與功能的關(guān)系,發(fā)現(xiàn)該位點突變后,酶催化口袋的形狀發(fā)生明顯變化,底物與口袋非共價鍵相互作用增強 (綠色膜狀,圖5D),從而反轉(zhuǎn)了TbSADH的立體選擇性[37]。
圖5 酶結(jié)構(gòu)對催化選擇性的影響. (A)構(gòu)象動力學解析醇脫氫酶催化3-硫代環(huán)戊酮還原的立體選擇性,源自文獻[30]. (B)CgTD WT和F114A/R229T突變體的底物進入通道,源自文獻[31]. (C) 人胰脂肪酶的底物結(jié)合口袋,源自文獻[3]. (D)底物與突變體TbSADH I86A結(jié)合口袋非共價鍵相互作用 (綠色膜狀),源自文獻[37].
酶的催化活性由其三維結(jié)構(gòu)決定。來源于瘤胃厭氧真菌新美絲桿菌GH11家族的木聚糖酶具有高活性,有較好工業(yè)應(yīng)用潛力?;诰w結(jié)構(gòu)解析,對該酶催化口袋關(guān)鍵位點進行突變,篩選獲得雙突變體W125F/F163W,其活力比WT提高了20%;此外,該酶在畢赤酵母系統(tǒng)中表達會比大腸桿菌中表達表現(xiàn)出更高的耐熱性和活性,研究發(fā)現(xiàn)N端的糖基化是造成這一差異的主要原因[38]。
酶結(jié)構(gòu)同樣決定底物專一性。來自海棲熱袍菌的超嗜熱內(nèi)切葡聚糖酶Cel5A,能催化以葡萄糖和甘露糖為主鏈的不同底物的多糖水解,被應(yīng)用于木質(zhì)纖維素生物燃料的合成。為研究該酶多重底物專一性,對其進行晶體結(jié)構(gòu)解析,發(fā)現(xiàn)了Cel5A催化β-葡萄糖苷和β-甘露糖苷的高度保守的氨基酸殘基E253和E136,同時還發(fā)現(xiàn)了一個特殊的開放式活性區(qū),該區(qū)域可容納具有支鏈的多糖底物,在這個開放活性區(qū)域中,底物葡萄糖或甘露糖的第2個碳上的氫氧基團不和活性區(qū)周圍的氨基酸產(chǎn)生空間位阻,因而使其對不同的底物均具有較好活力[39]。表1總結(jié)了近年來通過酶結(jié)構(gòu)改造優(yōu)化其催化性能的部分報道。
表1 酶結(jié)構(gòu)改造優(yōu)化催化性能部分實例
此外,酶結(jié)構(gòu)改造還能夠使其具有天然酶所不具備的催化功能 (表2)。例如,定向進化來源于巨大芽孢桿菌的P450-BM3使其具有羥化苯酚生成對羥基苯酚活力,且產(chǎn)物區(qū)域選擇性>93%[60];γ-內(nèi)酰胺酶Sspg可定向進化為對苯基縮水甘油酸底物具有高立體選擇性的酯酶 (E值>300)[61]。
表2 酶結(jié)構(gòu)改造賦予新功能部分實例
常用的研究蛋白結(jié)構(gòu)方法有X射線晶體衍射 (X-ray crystallography)、核磁共振 (Nuclear magnetic resonance,NMR) 以及冷凍電鏡 (Cyro-electron microscope,Cyro-EM) 3種[66]。X-射線晶體衍射技術(shù)通過研究蛋白質(zhì)晶體的衍射圖譜,獲得相應(yīng)的結(jié)構(gòu)信息,是目前最常用的解析蛋白結(jié)構(gòu)的技術(shù)手段。截止2019年5月,蛋白質(zhì)結(jié)構(gòu)數(shù)據(jù)庫PDB (Protein data bank) 共收錄了152 151個生物大分子晶體結(jié)構(gòu),其中有13.5萬個結(jié)構(gòu)是通過X-射線衍射獲得,1.2萬個結(jié)構(gòu)通過核磁共振獲得,另外0.3萬個結(jié)構(gòu)則由冷凍電鏡技術(shù)獲得,這些海量晶體結(jié)構(gòu)數(shù)據(jù)為研究酶的構(gòu)效關(guān)系提供了很好的研究基礎(chǔ)。
保守性分析是研究蛋白質(zhì)構(gòu)效關(guān)系的有效方法。超蛋白家族中同源蛋白的比較分析能夠為酶結(jié)構(gòu)與功能關(guān)系研究提供有價值信息。Mustguseal網(wǎng)絡(luò)服務(wù)器可根據(jù)公共數(shù)據(jù)庫中結(jié)構(gòu)與序列的可用信息,自動構(gòu)建功能多樣性酶家族的大量晶體結(jié)構(gòu)[67]。通過結(jié)構(gòu)比對分析,可分析進化上的遠親、保守性氨基酸殘基、亞家族特異性氨基酸殘基及共同進化的氨基酸殘基。以磷脂酶A2超蛋白家族為例,通過保守分析和氨基酸共進化網(wǎng)絡(luò)分析鑒定其重要氨基酸殘基,揭示了14個高度保守的位點和3組共進化的氨基酸殘基[68]。
分子動力學模擬是一種經(jīng)典動力學模擬分子運動的方法,是研究構(gòu)效關(guān)系的有利工具。它的最大優(yōu)勢在于能揭示酶數(shù)據(jù)庫中存儲的靜態(tài)結(jié)構(gòu)之外的信息,還可通過提供分子動態(tài)相互作用直接指導酶設(shè)計。借助于近似攻擊 (Near attach conformation, NAC) 理論,MD還可對突變體文庫進行虛擬篩選,通過評估NAC構(gòu)象的出現(xiàn)頻率,對設(shè)計的突變體進行排名、選擇、識別和評估[69]。
此外,量子力學(Quantum mechanics,QM) 及量子力學/分子力學 (QM/MM) 組合方法通過計算分子鍵能、幾何構(gòu)型、標準生成焓、偶極矩及電荷分布等性質(zhì),對酶的催化機制和反應(yīng)過程進行計算解析,也是研究酶構(gòu)效關(guān)系的主要應(yīng)用方法[70-71]。
在自然界中經(jīng)過數(shù)億年進化,酶分子形成了復雜的結(jié)構(gòu)以行使功能。1965年,David Phillips首次解析了溶菌酶的晶體結(jié)構(gòu)[72],使科學家們能夠從結(jié)構(gòu)的角度去理解酶的功能。1977年,McCammon首次將分子動力學模擬應(yīng)用于生物大分子[73],為酶結(jié)構(gòu)內(nèi)部運動對功能的影響研究提供信息。隨后,通過Frances H. Arnold、Manfred T. Reetz等定向進化領(lǐng)域先驅(qū)開發(fā)的一系列酶設(shè)計改造技術(shù)[74-79],獲得了大量催化功能和特性優(yōu)化的突變酶,為酶結(jié)構(gòu)與功能關(guān)系研究提供了素材。近年來,依賴計算模擬技術(shù)的進步,以David Baker為代表的科學家們開始從頭設(shè)計蛋白質(zhì)并賦予其新功能,已經(jīng)取得了卓有成效的進展[80-81]。此外,基于酶的晶體結(jié)構(gòu)解析,在計算機模擬技術(shù)協(xié)助下,開發(fā)高效進化策略,例如FRISM (Focused rational iterative site-specific mutagenesis) 技術(shù)[82]和機器學習[83-84]等,都是探究酶構(gòu)效關(guān)系及設(shè)計改造的有利工具。
可以預見,隨著人們對酶結(jié)構(gòu)與功能關(guān)系認識的不斷深入,設(shè)計滿足工業(yè)生產(chǎn)需求的工具酶將變得更為普遍(關(guān)于工業(yè)酶設(shè)計改造方面的相關(guān)進展,筆者已在他文進行過評述[85-87])。同時當今人工智能技術(shù)正蓬勃發(fā)展,如何把握這一歷史發(fā)展機遇,促使酶構(gòu)效關(guān)系研究更加智能化、精準化,是未來本領(lǐng)域的一個重要研究方向。
[1] Ouzounis CA, Coulson RMR, Enright AJ, et al. Classification schemes for protein structure and function. Nat Rev Genet, 2003, 4(7): 508–519.
[2] Bartlett GJ, Porter CT, Borkakoti N, et al. Analysis of catalytic residues in enzyme active sites. J Mol Biol, 2002, 324(1): 105–121.
[3] Kingsley LJ, Lill MA. Substrate tunnels in enzymes: structure-function relationships and computational methodology. Proteins, 2015, 83(4): 599–611.
[4] Reetz MT, Carballeira JD. Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nat Protoc, 2007, 2(4): 891–903.
[5] Jimenez-Rosales A, Flores-Merino MV. Tailoring proteins to re-evolve nature: a shortreview. Mol Biotechnol, 2018, 60(12): 946–974.
[6] Gahloth D, Dunstan MS, Quaglia D, et al. Structures of carboxylic acid reductase reveal domain dynamics underlying catalysis. Nat Chem Biol, 2017, 13(9): 975–981.
[7] Qu G, Guo JG, Yang DM, et al. Biocatalysis of carboxylic acid reductases: phylogenesis, catalytic mechanism and potential applications. Green Chem, 2018, 20(4): 777–792.
[8] Qu G, Fu MX, Zhao LL, et al. Computational insights into the catalytic mechanism of bacterial carboxylic acid reductase. J Chem Inf Model, 2019, 59(2): 832–841.
[9] Bashton M, Chothia C. The generation of new protein functions by the combination of domains. Structure, 2007, 15(1): 85–99.
[10] Burroughs AM, Allen KN, Dunaway-Mariano D, et al. Evolutionary genomics of the had superfamily: understanding the structural adaptations and catalytic diversity in a superfamily of phosphoesterases and allied enzymes. J Mol Biol, 2006, 361(5): 1003–1034.
[11] Cheng YS, Ko TP, Wu TH, et al. Crystal structure and substrate-binding mode of cellulase 12A from. Proteins, 2011, 79(4): 1193–1204.
[12] Gupta RD. Recent advances in enzyme promiscuity. Sustain Chem Proc, 2016, 4(1): 2.
[13] Cheng YS, Ko TP, Huang JW, et al. Enhanced activity ofcellulase 12A by mutating a unique surface loop. Appl Microbiol Biotechnol, 2012, 95(3): 661–669.
[14] Sun ZT, Lonsdale R, Kong XD, et al. Reshaping an enzyme binding pocket for enhanced and inverted stereoselectivity: use of smallest amino acid alphabets in directed evolution. Angew Chem Int Ed, 2015, 54(42): 12410–12415.
[15] Sun ZT, Lonsdale R, Wu L, et al. Structure-guided triple-code saturation mutagenesis: efficient tuning of the stereoselectivity of an epoxide hydrolase. ACS Catal, 2016, 6(3): 1590–1597.
[16] Sun ZT, Wu L, Bocola M, et al. Structural and computational insight into the catalytic mechanism of limonene epoxide hydrolase mutants in stereoselective transformations. J Am Chem Soc, 2018, 140(1): 310–318.
[17] Liu BB, Qu G, Li JK, et al. Conformational dynamics-guided loop engineering of an alcohol dehydrogenase: capture, turnover and enantioselective transformation of difficult-to-reduce ketones. Adv Synth Catal, 2019, 361(13): 3182–3190.
[18] Qu G, Liu BB, Jiang YY, et al. Laboratory evolution of an alcohol dehydrogenase towards enantioselective reduction of difficult-to-reduce ketones. Bioresour Bioprocess, 2019, 6(1): 18.
[19] Schiano-di-Cola C, Rojel N, Jensen K, et al. Systematic deletions in the cellobiohydrolase (CBH) Cel7A from the fungusreveal flexible loops critical for CBH activity. J Biol Chem, 2019, 294(6): 1807–1815.
[20] Balc?o VM, Vila M. Structural and functional stabilization of protein entities:---. Adv Drug Deliv Rev, 2015, 93: 25–41.
[21] Cheng YS, Chen CC, Huang CH, et al. Structural analysis of a glycoside hydrolase family 11 xylanase from: insights into the molecular basis of a thermophilic enzyme. J Biol Chem, 2014, 289(16): 11020–11028.
[22] Gong Y, Xu GC, Zheng GW, et al. A thermostable variant ofesterase: characterization and application for resolving dl-menthyl acetate. J Mol Catal B-Enzym, 2014, 109: 1–8.
[23] Chopra N, Kaur J. Point mutation Arg153-His at surface oflipase contributing towards increased thermostability and ester synthesis: insight into molecular network. Mol Cell Biochem, 2018, 443(1/2): 159–168.
[24] Zhao J, Frauenkron-Machedjou VJ, Fulton A, et al. Unraveling the effects of amino acid substitutions enhancing lipase resistance to an ionic liquid: a molecular dynamics study. Phys Chem Chem Phys, 2018, 20(14): 9600–9609.
[25] Wang XY, Nie Y, Xu Y. Improvement of the activity and stability of starch-debranching pullulanase fromvia tailoring of the active sites lining the catalytic pocket. J Agric Food Chem, 2018, 66(50): 13236–13242.
[26] Zhang H, Zhang T, Chen K, et al. On the relation between residue flexibility and local solvent accessibility in proteins. Proteins, 2009, 76(3): 617–636.
[27] Kim HS, Le QAT, Kim YH. Development of thermostable lipase B from(CalB) throughdesign employing B-factor and RosettaDesign. Enzyme Microb Technol, 2010, 47(1/2): 1–5.
[28] Hong SY, Yoo YJ. Activity enhancement oflipase b by flexibility modulation in helix region surrounding the active site. Appl Biochem Biotechnol, 2013, 170(4): 925–933.
[29] Sun ZT, Liu Q, Qu G, et al. Utility of B-factors in protein science: interpreting rigidity, flexibility, and internal motion and engineering thermostability. Chem Rev, 2019, 119(3): 1626–1665.
[30] Noey EL, Tibrewal N, Jiménez-Osés G, et al. Origins of stereoselectivity in evolved ketoreductases. Proc Natl Acad Sci USA, 2015, 112(51): E7065–E7072.
[31] Song W, Wang JH, Wu J, et al. Asymmetric assembly of high-value α-functionalized organic acids using a biocatalytic chiral-group-resetting process. Nat Commun, 2018, 9(1): 3818.
[32] Hamberg A, Maurer S, Hult K. Rational engineering oflipase B for selective monoacylation of diols. Chem Commun, 2012, 48(80): 10013–10015.
[33] Kre? N, Halder JM, Rapp LR, et al. Unlocked potential of dynamic elements in protein structures: channels and loops. Curr Opin Chem Biol, 2018, 47: 109–116.
[34] Pleiss J, Fischer M, Schmid RD. Anatomy of lipase binding sites: the scissile fatty acid binding site. Chem Phys Lipids, 1998, 93(1/2): 67–80.
[35] Grochulski P, Bouthillier F, Kazlauskas RJ, et al. Analogs of reaction intermediates identify a unique substratebinding site inlipase. Biochemistry, 1994, 33(12): 3494–3500.
[36] Cheng ZY, Peplowski L, Cui WJ, et al. Identification of key residues modulating the stereoselectivity of nitrile hydratase toward rac-mandelonitrile by semi-rational engineering. Biotechnol Bioeng, 2018, 115(3): 524–535.
[37] Maria-Solano MA, Romero-Rivera A, Osuna S. Exploring the reversal of enantioselectivity on a zinc-dependent alcohol dehydrogenase. Org Biomol Chem, 2017, 15(19): 4122–4129.
[38] Cheng YS, Chen CC, Huang JW, et al. Improving the catalytic performance of a GH11 xylanase by rational protein engineering. Appl Microbiol Biotechnol, 2015, 99(22): 9503–9510.
[39] Wu TH, Huang CH, Ko TP, et al. Diverse substrate recognition mechanism revealed byCel5A structures in complex with cellotetraose, cellobiose and mannotriose. Biochim Biophys Acta, 2011, 1814(12): 1832–1840.
[40] Chen C, Su LQ, Xu F, et al. Improved thermostability of maltooligosyltrehalose synthase fromby directed evolution and site-directed mutagenesis. J Agric Food Chem, 2019, 67(19): 5587–5595.
[41] Bashirova A, Pramanik S, Volkov P, et al. Disulfide bond engineering of an endoglucanase fromto improve its thermostability. Int J Mol Sci, 2019, 20(7): 1602.
[42] Zheng F, Vermaas JV, Zheng J, et al. Activity and thermostability of gh5 endoglucanase chimeras from mesophilic and thermophilic parents. Appl Environ Microbiol, 2019, 85(5): e02079-18.
[43] Gong XM, Qin Z, Li FL, et al. Development of an engineered ketoreductase with simultaneously improved thermostability and activity for making a bulky atorvastatin precursor. ACS Catal, 2019, 9(1): 147–153.
[44] Surmeli Y, ?lgüH, ?anl?-Mohamed G. Improved activity of α-L-arabinofuranosidase fromGS90 by directed evolution: investigation on thermal and alkaline stability. Biotechnol Appl Biochem, 2019, 66(1): 101–107.
[45] Chen JJ, Liang X, Chen TJ, et al. Site-directed mutagenesis of a β-glycoside hydrolase from. Molecules, 2019, 24(1): 59.
[46] Sun XB, Cao JW, Wang JK, et al. SpyTag/SpyCatcher molecular cyclization confers protein stability and resilience to aggregation. New Biotechnol, 2019, 49: 28–36.
[47] Sonnendecker C, Zimmermann W. Change of the product specificity of a cyclodextrin glucanotransferase by semi-rational mutagenesis to synthesize large-ring cyclodextrins. Catalysts, 2019, 9(3): 242.
[48] Gumulya Y, Huang WL, D’Cunha SA, et al. Engineering thermostable CYP2D enzymes for biocatalysis using combinatorial libraries of ancestors for directed evolution (CLADE). ChemCatChem, 2019, 11(2): 841–850.
[49] Chen A, Xu TT, Ge Y, et al. Hydrogen-bond-based protein engineering for the acidic adaptation ofpullulanase. Enzyme Microb Technol, 2019, 124: 79–83.
[50] Zhou TT, Wang XC, Yan J, et al. Gene analysis and structure prediction for the cold-adaption mechanism of trypsin from the krill(Dana, 1852). J Sci Food Agric, 2018, 98(8): 3049–3056.
[51] Zhou JP, Wang YL, Chen JJ, et al. Rational engineering ofleucine dehydrogenase towards α-keto acid reduction for improving unnatural amino acid production. Biotechnol J, 2019, 14(3): 1800253.
[52] Han BJ, Hou YH, Jiang T, et al. Computation-aided rational deletion of c-terminal region improved the stability, activity, and expression level of GH2 β-glucuronidase. J Agric Food Chem, 2018, 66(43): 11380–11389.
[53] Musa MM, Ziegelmann-Fjeld KI, Vieile C, et al. Asymmetric reduction and oxidation of aromatic ketones and alcohols using W110A secondary alcohol dehydrogenase from. J Org Chem, 2007, 72(1): 30–34.
[54] Cen YX, Li DY, Xu J, et al. Highly focused library-based engineering oflipase b with ()-selectivity towards-alcohols. Adv Synth Catal, 2019, 361(1): 126–134.
[55] Li RJ, Li AT, Zhao J, et al. Engineering P450LaMOstereospecificity and product selectivity for selective C-H oxidation of tetralin-like alkylbenzenes. Catal Sci Technol, 2018, 8(18): 4638–4644.
[56] Dennig A, Weingartner AM, Kardashliev T, et al. An enzymatic route to α-tocopherol synthons: aromatic hydroxylation of pseudocumene and mesitylene with P450 BM3. Chemistry, 2017, 23(71): 17981–17991.
[57] Wang JB, Ilie A, Reetz MT. Chemo- and stereoselective cytochrome P450-BM3-catalyzed sulfoxidation of 1-thiochroman-4-ones enabled by directed evolution. Adv Synth Catal, 2017, 359(12): 2056–2060.
[58] Quaglia D, Alejaldre L, Ouadhi S, et al. Holistic engineering of Cal-A lipase chain-length selectivity identifies triglyceride binding hot-spot. PLoS ONE, 2019, 14(1): e0210100.
[59] Cho I, Prier CK, Jia ZJ, et al. Enantioselective aminohydroxylation of styrenyl olefins catalyzed by an engineered hemoprotein. Angew Chem Int Ed Engl, 2019, 58(10): 3138–3142.
[60] Zhou HY, Wang BJ, Wang F, et al. Chemo- and regioselective dihydroxylation of benzene to hydroquinone enabled by engineered cytochrome P450 monooxygenase. Angew Chem Int Ed Engl, 2019, 58(3): 764–768.
[61] Wang JJ, Zhao HT, Zhao GG, et al. Enhancing the atypical esterase promiscuity of the γ-lactamase Sspg fromby substrate screening. Appl Microbiol Biotechnol, 2019, 103(10): 4077–4087.
[62] Zhang Y, An J, Yang GY, et al. Active site loop conformation regulates promiscuous activity in a lactonase fromHTA426. PLoS ONE, 2015, 10(2): e0115130.
[63] Rahimi M, van der Meer JY, Geertsema EM, et al. Engineering a promiscuous tautomerase into a more efficient aldolase for self-condensations of linear aliphatic aldehydes. ChemBioChem, 2017, 18(14): 1435–1441.
[64] Tseliou V, Masman MF, B?hmer W, et al. Mechanistic insight into the catalytic promiscuity of amine dehydrogenases: asymmetric synthesis of secondary and primary amines. ChemBioChem, 2019, 20(6): 800–812.
[65] Gu B, Hu ZE, Yang ZJ, et al. Probing the mechanism of CAL-B-catalyzed aza-michael addition of aniline compounds with acrylates using mutation and molecular docking simulations. Chemistryselect, 2019, 4(13): 3848–3854.
[66] Jaskolski M, Dauter Z, Wlodawer A. A brief history of macromolecular crystallography, illustrated by a family tree and its Nobel fruits. FEBS J, 2014, 281(18): 3985–4009.
[67] Suplatov DA, Kopylov KE, Popova NN, et al. Mustguseal: a server for multiple structure-guided sequence alignment of protein families. Bioinformatics, 2018, 34(9): 1583–1585.
[68] Oliveira A, Bleicher L, Schrago CG, et al. Conservation analysis and decomposition of residue correlation networks in the phospholipase A2 superfamily (PLA2s): insights into the structure-function relationships of snake venom toxins. Toxicon, 2018, 146: 50–60.
[69] Childers MC, Daggett V. Insights from molecular dynamics simulations for computational protein design. Mol Syst Des Eng, 2017, 2(1): 9–33.
[70] Senn HM, Thiel W. QM/MM studies of enzymes. Curr Opin Chem Biol, 2007, 11(2): 182–187.
[71] Kulik HJ. Large-scale QM/MM free energy simulations of enzyme catalysis reveal the influence of charge transfer. Phys Chem Chem Phys, 2018, 20(31): 20650–20660.
[72] Blake CCF, Koenig DF, Mair GA, et al. Structure of hen egg-white lysozyme: a three-dimensional Fourier synthesis at 2 ? resolution. Nature, 1965, 206(4986): 757–761.
[73] McCammon JA, Gelin BR, Karplus M. Dynamics of folded proteins. Nature, 1977, 267(5612): 585–590.
[74] Chen K, Arnold FH. Tuning the activity of an enzyme for unusual environments: sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide. Proc Natl Acad Sci USA, 1993, 90(12): 5618–5622.
[75] Reetz MT, Bocola M, Carballeira JD, et al. Expanding the range of substrate acceptance of enzymes: combinatorial active-site saturation test. Angew Chem Int Ed Engl, 2005, 44(27): 4192–4196.
[76] Qu G, Li AT, Acevedo-Rocha CG, et al. The crucial role of methodology development in directed evolution of selective enzymes. Angew Chem Int Ed Engl, 2019, doi: 10.1002/anie.201901491.
[77] Li AT, Qu G, Sun ZT, et al. Statistical analysis of the benefits of focused saturation mutagenesis in directed evolution based on reduced amino acid alphabets. ACS Catal, 2019, 9(9): 7769–7778.
[78] Acevedo-Rocha CG, Sun ZT, Reetz MT. Clarifying the difference between iterative saturation mutagenesis as a rational guide in directed evolution and OmniChange as a gene mutagenesis technique. ChemBioChem, 2018, 19 (24): 2542–2544.
[79] Sun ZT, Wikmark Y, B?ckvall J-E, et al. New concepts for increasing the efficiency in directed evolution of stereoselective enzymes. Chem Eur J, 2016, 22(15): 5046–5054.
[80] Jiang L, Althoff EA, Clemente FR, et al. De novo computational design of retro-aldol enzymes. Science, 2008, 319(5868): 1387–1391.
[81] Chen ZB, Boyken SE, Jia MX, et al. Programmable design of orthogonal protein heterodimers. Nature, 2019, 565(7737): 106–111.
[82] Xu J, Cen YX, Singh W, et al. Stereodivergent protein engineering of a lipase to access all possible stereoisomers of chiral esters with two stereocenters. J Am Chem Soc, 2019, 141(19): 7934–7945.
[83] Wu Z, Kan SBJ, Lewis RD, et al. Machine learning-assisted directed protein evolution with combinatorial libraries. Proc Natl Acad Sci USA, 2019, 11(6): 8852–8858.
[84] Li GY, Dong YJ, Reetz MT. Can machine learning revolutionize directed evolution of selective enzymes? Adv Synth Catal, 2019, 361(11): 2377–2386.
[85] Qu G, Zhao J, Zheng P, et al. Recent advances in directed evolution. Chin J Biotech, 2018, 34(1): 1–11 (in Chinese).曲戈, 趙晶, 鄭平, 等. 定向進化技術(shù)的最新進展. 生物工程學報, 2018, 34(1): 1–11.
[86] Qu G, Zhang K, Jiang YY, et al. The Nobel Prize in chemistry 2018: the directed evolution of enzymes and the phage display technologies. J Biol, 2019, 36(1): 1–6 (in Chinese).曲戈, 張錕, 蔣迎迎, 等. 2018諾貝爾化學獎:酶定向進化與噬菌體展示技術(shù). 生物學雜志, 2019, 36(1): 1–6.
[87] Qu G, Zhu T, Jiang YY, et al. Protein engineering: from directed evolution to computational design. Chin J Biotech, 2019, 35(10): 1843–1856. DOI: 10.13345/j.cjb.190221 (in Chinese).曲戈, 朱彤, 蔣迎迎, 等. 蛋白質(zhì)工程:從定向進化到計算設(shè)計. 生物工程學報, 2019, 35(10): 1843–1856. DOI: 10.13345/j.cjb.190221.
Structure-function relationships of industrial enzymes
Kun Zhang*, Ge Qu*, Weidong Liu, and Zhoutong Sun
,,300308,
Industrial enzymes are the “chip” of modern bio-industries, supporting tens- and hundreds-fold of downstream industries development. Elucidating the relationships between enzyme structures and functions is fundamental for industrial applications. Recently, with the advanced developments of protein crystallization and computational simulation technologies, the structure-function relationships have been extensively studied, making the rational design anddesign become possible. This paper reviews the progress of structure-function relationships of industrial enzymes and applications, and address future developments.
industrial enzymes, structure-function, structural flexibility, biocatalysis
10.13345/j.cjb.190222
劉衛(wèi)東 博士,中國科學院天津工業(yè)生物技術(shù)研究所副研究員,主要從事酶類催化劑的機理研究及性能改造工作。利用X射線晶體學手段,對有潛在應(yīng)用價值的酶類催化劑進行催化機制研究;在此基礎(chǔ)上,通過理性、半理性設(shè)計以改進酶的效能,如拓展底物譜、提高酶活、耐溫性能等,以增強工業(yè)應(yīng)用潛能。在、等SCI期刊上發(fā)表研究論文20余篇。
張錕, 曲戈, 劉衛(wèi)東, 等. 工業(yè)酶結(jié)構(gòu)與功能的構(gòu)效關(guān)系. 生物工程學報, 2019, 35(10): 1806–1818.
Zhang K, Qu G, Liu WD, et al. Structure-function relationships of industrial enzymes. Chin J Biotech, 2019, 35(10): 1806–1818.
May 29, 2019;
September 23, 2019
Supported by: CAS Pioneer Hundred Talents Program (No. 2016-053).
Weidong Liu. Tel: +86-22-24828704; E-mail: liu_wd@tib.cas.cn
*These authors contributed equally to this study.
中國科學院率先行動“百人計劃”項目 (No. 2016-053)資助。
2019-10-21
http://kns.cnki.net/kcms/detail/11.1998.Q.20191021.1128.001.html
(本文責編 郝麗芳)