• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Diversity scaling of human vaginal microbial communities

    2019-10-31 10:51:10WendyLi,Zhan-ShanMa
    Zoological Research 2019年6期

    DEAR EDITOR,The composition and diversity of the human vaginal microbial community have been investigated intensively due to the diversity-stability relationship (DSR)-based hypothesis for bacterial vaginosis(BV)etiology,which was first proposed in the 1990s and has received renewed interest in recent years.Nevertheless,diversity changes(scaling)across individuals in a cohort or population have not yet been addressed,which is significant both theoretically and practically. Theoretically,biodiversity scaling is the core of biogeography, and practically, inter-subject heterogeneity is critical for understanding the etiology and epidemiology of human microbiome-associated diseases such as BV.Here we applied the diversity-area relationship(DAR),a recent extension to the classic species-area relationship(SAR),to study diversity scaling of the vaginal microbiome by reanalyzing reported data collected from 1107 postpartum women.The model used here characterized the power-law (or its extension)relationships between accrued diversity and areas(numbers of individuals),upon which four biogeographic profiles were thus defined. Specifically, we established the DAR profile(relationship between diversity scaling parameter and sotermed diversity order(q)),similarly pair-wise diversity overlap(PDO)profile,maximal accrual diversity(MAD)profile,and ratio of individual-level to population-level diversity (RIP)profile.These four profiles offer valuable tools to assess and predict diversity scaling (changes) in the human vaginal microbiome across individuals,as well as to understand the dynamics of vaginal microbiomes in healthy women.

    The human vaginal microbiome is a complex ecosystem that plays critical roles in maintaining host health.As the first defense of the reproductive tract,the vaginal microbiome is critical for the prevention of opportunistic pathogen colonization and viral infection. For example, endogenous,healthy vaginal microbiota can help protect against HIV infection by activating local and systemic inflammation;however,microbiota associated with BV can also increase susceptibility to HIV infection(Buvé et al.,2014;Petrova et al.,2013).For pregnant women,the vaginal microbiota is not only associated with maternal health but also that of neonates,with the composition of the newly colonized microbiome playing a key role in newborn immunity and metabolic development(Cox et al.,2014;Dominguez-Bello et al.,2010;Olszak et al.,2012;Rutayisire et al.,2016).Furthermore,babies delivered by cesarean section can have a higher risk of metabolic and immune diseases than those delivered vaginally(Dominguez-Bello et al.,2010;Sevelsted et al.,2015;Younes et al.,2018),although Chu et al.(2017)noted that delivery mode does not influence microbiome composition in newborns.Moreover,in pregnancy, vaginal dysbiosis is hypothesized to be a contributor to spontaneous preterm birth(Freitas et al.,2018;Romero et al.,2014a;Stout et al.,2017)and miscarriage(Ralph et al.,1999).

    In many healthy women, the vaginal microbiota is dominated by Lactobacillus spp.(Macklaim et al.,2013;Ravel et al.,2011).Several studies(Brotman et al.,2014;Gajer et al.,2012;Ma&Li,2017;Ravel et al.,2011)have confirmed the five major community state types of the vaginal microbiome in adult women,as first identified by Ravel et al.(2011). Four types are dominated by Lactobacillus spp.,including L.iners,L.crispatus,L.gasseri,and L.jensenii.However, 20%-30%of asymptomatic, otherwise healthy individuals lack lactic acid bacteria in their vaginal microbiome, which instead consists of obligate anaerobic bacteria(Ravel et al.,2011,2013).In addition,the frequency of microbiome type varies in different ethnic groups, with those microbiome not dominated by Lactobacillus spp.more commonly found in healthy Hispanic and black women than in Asian or white women(Ma et al.,2012;Ravel et al.,2011).Furthermore,the composition of the vaginal microbiome is dynamic during life and associated with menopause stage(Muhleisen & Herbst-Karlovetz, 2016). Recent research demonstrated the vaginal microbiome of perimenarcheal adolescents to be dominated by Lactobacillus spp.,including L.crispatus,L.iners,L.gasseri,and L.jensenii,similar to that found in reproductive-age women(Hickey et al.,2015).In premenopausal women, the vaginal microbiota is still dominated by L.crispatus and L.iners,but Lactobacillus spp.are often replaced by Streptococcus and Prevotella in the perimenopausal and postmenopausal stages(Brotman et al.,2014).Shifts in vaginal microbiome have also been observed during and after pregnancy. For example, diversity and richness of the vaginal microbiome is lower in pregnant women than in non-pregnant women(Freitas et al.,2017).Furthermore,Romero et al.(2014b)showed that the vaginal microbiome of pregnant women contains a higher abundance of L.vaginalis,L.crispatus,L.gasseri,and L.jensenii,and a lower probability of switching to a Lactobacillus-deficient community.In addition,radical changes in Lactobacillus-poor vaginal communities have been found at delivery,which can persist for up to a year(DiGuilio et al.,2015).

    Despite extensive studies on the human vaginal microbiome, what constitutes normal or healthy vaginal microbiota remains unresolved. For example, Doyle et al.(2018)sampled and sequenced the vaginal microbiome of 1 107 rural Malawi women after pregnancy, and found that 75.7% (752/994) of the population were dominated by Gardnerella vaginalis rather than by Lactobacillus spp.,and although L. iners increased with time after delivery, G.vaginalis still dominated for an extended period.In Doyle’s study,both the pregnancy delivery mode and ethnicity also appeared to influence the composition of vaginal microbiome,though all hosts were healthy.

    Previous research has revealed that the biodiversity of vaginal microbial communities varies with health status and lifestyle of the host.Nevertheless,existing studies have not addressed diversity scaling(changes)across individuals in a cohort or population. Theoretically, microbiome diversity distribution across individual subjects (i. e., space) is traditionally a focus of microbial biogeography. Practically speaking, understanding the biogeography of the human microbiome can reveal critical information on its characteristics in a cohort setting, which can, in turn,significantly influence studies on the etiology and epidemiology of human microbiome-associated diseases such as inflammatory bowel disease,obesity,and BV.To effectively assess the spatial scaling of human vaginal microbial diversity, we applied the DAR model, which is a recent extension of the classic SAR in biogeography and conservation biology(Bell et al.,2005;Horner-Devin et al.,2004;MacArthur&Wilson,1967;Noguez et al.,2005;Peay et al.,2007;Triantis et al.,2012;Várbíró et al.,2017;Whittaker& Triantis, 2012). SAR is one of the oldest described ecological laws or patterns, whereby species richness increases with increasing sampling area,and can be traced back to the 19th century(Watson,1835).It is still considered one of the most important principles in conservation biology and biogeography. The extensions from SAR to DAR introduced a several important advances including:(1) Expanding species richness (number of species) to general diversity measures in Hill numbers(Chao et al.,2012,2014;Hill,1973),thus making it possible to not only assess the scaling of species richness(numbers),but also scaling of general diversity(e.g.,change in community evenness or dominance).Therefore,the classic SAR is a special case of the more general DAR;(2)The DAR,PDO,MAD,and local regional/global diversity(LRD/LGD)profiles are effective tools for the biogeographic mapping of biodiversity over space(Ma,2018a,2018c,2019).

    In this study,we applied DAR modeling and associated biogeographic profiles to investigate the spatial diversity scaling of postpartum vaginal microbial communities across individuals by reanalyzing the large vaginal microbiome dataset originally reported by Doyle et al.(2018).The spatial diversity scaling of the vaginal microbiome revealed heterogeneity among individuals, which could provide an ecological basis for personalized and precise diagnosis and treatment of microbiome-associated diseases,including BV.The biogeographic profiles of the vaginal microbiome also provide tools for explaining the DSR hypothesis for BV etiology from multiple dimensions(Ma&Ellison,2018,2019).

    The vaginal microbial dataset (Doyle et al., 2018)reanalyzed in this study consisted of 1 158 vaginal microbiome samples collected from 1 107 rural Malawi women postdelivery.Most samples were collected within the first 20 d of delivery,though some were sampled 5-583 d post-delivery.The V5-V7 hypervariable regions of the 16S rRNA genes were amplified and sequenced under the MiSeq Illumina platform.After quality control,the sequences were clustered into 14 354 operational taxonomic units(OTUs)using QIIME 2.8.6.Samples with less than 2 000 reads were removed,as were OTUs with less than 1 000 reads. After prescreening,1 076 samples and 466 OTUs remained for DAR analysis.In DAR analysis,the number of each OTU read is equivalent to the population abundance of a species in macro-ecology,or OTU abundance in diversity analysis. More detailed information on the dataset can be found in Doyle et al.(2018).

    The Hill numbers(Hill,1973)were reintroduced to ecology by Jost(2007)and Chao et al.(2012,2014),and possess certain critical advantages over traditional diversity indexes.The Hill numbers for measuring alpha diversity are as follows:

    When q=1,the Hill number is undefined,but its limit exists in the following form:

    where,D is the diversity in Hill numbers,q(=0,1,2,…)is the order number of diversity,S is the number of species(or OTUs),and piis the relative abundance of species i.The diversity order(q)sets the sensitivity of the Hill numbers to the relative frequencies of species abundances.When q=0,0D is equal to the number of species or species richness(S).When q=1,1D is the number of typical or common species in the community and is equal to the exponential of Shannon entropy.When q=2,2D is more sensitive to species with high abundance,and is equal to the inverse of the Simpson index.Generally,qD is the diversity of a community with x=qD equally abundant species.

    Beta-diversity can be defined with the multiplicative partitioning of Hill numbers(Chao et al.,2012,2014;Ellison,2010;Gotelli&Chao,2013;Jost,2007),as follows:

    where,qDαandqDγare the alpha and gamma diversities in terms of Hill numbers,respectively.AsqDγis equivalent to the alpha diversity of the meta-community, it has the same definition as alpha-diversity (Eqn. (1)). Chao et al. (2012,2014) defined a series of Hill numbers corresponding to different diversity orders(q)as the diversity profile.In this study,the diversity or Hill numbers were computed until the third order,q=3.

    According to Ma(2018a),we used the power law(PL)DAR model and power-law with exponential cutoff(PLEC)model as the DAR models for the human vaginal microbiome.The PL model is:

    where,qD is diversity measured in Hill numbers of the q-th order,A is the area(number of individuals),and c&z are the PL parameters.

    The PLEC model is:

    where,d is a third parameter that is usually less than zero in DAR modeling,and exp(dA)is then the exponential decay item that eventually overwhelms the power law behavior when A is sufficiently large.

    To simplify parameter estimation,we transformed non-linear Equations(4)and(5)into log-linear regression equations:

    In Eqn.(6),z is the slope of the log-linear transformed PL model,which is equivalent to its interpretation in the traditional SAR—ratio of diversity accrual rate to area increase rate.Parameter c of the PL model can be viewed as the number of species equivalent to diversity in the first unit of area to accrue.Thus,the accrual order of area unit may influence parameter c. To deal with this technical issue, the units(individuals/samples) to be accumulated were randomly permutated each time the DAR model was built.For each dataset,we repeatedly applied DAR modeling 100 times by randomly re-ordering all samples in the dataset. For the detailed computational procedure,please refer to Ma(2018a).

    Similar to the diversity profile concept of Chao et al.(2012,2014),which is a series of Hill numbers corresponding to different diversity orders(q),Ma(2018a)and Ma&Li(2018)proposed four DAR-based profiles,including the DAR,PDO,MAD, and LRD/LGD profiles. These four profiles can be quantitatively characterized by parameters from the PL/PLEC DAR models and can be used to sketch out biogeography maps of the human microbiome or other ecological communities.

    The DAR profile was defined as a series of z-values(scaling parameter)of the PL-DAR model(Eqns.4&6),i.e.,a series of z-values corresponding to different diversity orders(q)or z-q trends.

    The PDO profile was defined as:

    where,z is the scaling parameter of the PL-DAR model,i.e.,the PDO profile is a series of g(q)values corresponding to different diversity orders(q),computed with Eqn.(8).

    The MAD profile was defined as a series of MAD orqDmaxvalues,corresponding to different diversity orders(q):

    where, Amax=-z/d is the number of individuals (samples)needed to reach the MAD,and c and z are parameters of the PLEC-DAR model(Eqns.(5)&(7)).

    The RIP profile was defined as a series of RIP values corresponding to different diversity orders(q),as specified by the following equation:

    where,c is a parameter of the PL-DAR model and D is the diversity in Hill numbers estimated with the PLEC-DAR model(Eqns.(5)&(7)).Based on the above RIP definition,a RIP profile can be defined for a population(cohort)of any size.In practice,usingqDmaxforqD is more convenient,i.e.:

    The RIP parameter assesses the average level of an individual to represent a population(or cohort)from which the individual is a member.The RIP profile is also known as the LRD (local-to-regional diversity) or LGD (local-to-global diversity) profile in other ecological systems beyond the human microbiome(Ma&Li,2018;Ma,2019).

    We built two DAR models for the vaginal microbiome,including the PL and PLEC models for alpha-diversity and beta-diversity scaling,respectively.The results are listed in Tables 1 and 2, including the diversity order (q) of Hill numbers,mean model parameters(z,ln(c),d,g,Dmax)and their standard errors,and measures(correlation coefficient R&P-value)for goodness-of-fitting.N represented the number of successful fittings out of 100 p re-samplings,as explained previously. Re-sampling was performed to deal with the possible influence of the order of diversity accrual(i.e.,order in which the samples were accrued for building the DAR model)on model parameter c.Except for two cases of alpha-DAR modeling at diversity order q=3,the fittings to the DAR models were successful in all 100 re-samplings.Even in the two exceptions, the success rates were 97% and 99%,respectively. Therefore, the DAR models were considered suitable for vaginal microbiome assessment,as also evident by the R (linear correlation coefficient) and associated p values,which indicated the goodness-of-fit of the DAR models.

    Based on Table 1,we found the following in regard to alpha-DAR scaling:

    (1)As one of the most important parameters from the PLDAR model,the scaling parameter(z)at different diversity orders(q)was z(q)=(0.807(0),0.171(1),0.110(2),0.095(3)),where z(q)represents the DAR profile according to previous definition.The DAR profile characterizes the diversity scaling across individuals(over space)comprehensively.Results also showed that the scaling level differed at different orders.Forexample,scaling at diversity order q=0,which is equivalent to the classic SAR law,was faster than that at q=1,2,or 3,as indicated by the monotonically decreasing z-value(see Figure 1A for alpha-DAR profile).

    Table 1 Alpha-DAR models computed with 100 re-samplings for the vaginal microbiome

    Figure 1 DAR profile(z-q)and PDO profile(g-q)of the vaginal microbiome

    (2)The PDO profile was g(q)=(0.250(0),0.874(1),0.920(2),0.931(3)).The PDO profile,which characterizes the overlap or similarity between pair-wise individuals,showed the opposite trend as the DAR profile,i.e.,a monotonically increasing trend(see Figure 1A for alpha-PDO profile).

    (3)The MAD profile characterizes the theoretically maximal accumulation of diversity across individuals.Here,regarding the MAD profile,the PLEC model failed to produce Dmaxat diversity order q=0 because d>0,for which a maximum does not exist.For the diversity orders q=1,2,3,the PLEC model for alpha-diversity successfully generated Dmax,i.e.,Dmax(q)=(86.8(1),34.4(2),24.5(3)).

    Table 2 Beta-DAR models computed with 100 re-samplings for the vaginal microbiome

    From Table 2,we found the following in regard to beta-DAR scaling:

    (1)As one of the most important parameters of the PL-DAR model, the beta-diversity scaling parameter (z) at different diversity orders(q)was z(q)=(0.805(0),0.176(1),0.146(2),0.166(3)),where z(q)represents the DAR profile according to previous definition and characterizes diversity scaling across individuals(over space)comprehensively(see Figure 1B for beta-DAR profile).Comparison between the beta-DAR and alpha-DAR profiles revealed an interesting phenomenon:i.e.,the alpha-DAR profile monotonically decreased with q,whereas the beta-DAR profile was valley-shaped. This suggests that,at a lower diversity order(q),the alpha-DAR and beta-DAR scaling parameters(z)were rather close to each other,but the difference was enlarged at higher diversity orders(q).

    (2)The beta-PDO profile was g(q)=(0.253(0), 0.870(1),0.893(2),0.877(3))for beta-diversity scaling.Here,the PDO profile,which characterizes the overlap or similarity between pair-wise individuals,showed the opposite trend to the DAR profile,i.e.,a bell-shaped trend(see Figure 1B for beta-PDO profile).

    (3)The MAD profile characterizes the theoretical maximal accumulation of diversity across individuals.Here,regarding the beta-MAD profile,the PLEC model failed to produce Dmaxat diversity order q=0 because d>0,for which a maximum does not exist.For diversity orders q=1,2,3,the PLEC model for beta-diversity successfully generated Dmax,i.e.,Dmax(q)=(15.5(1),17.3(2),21.3(3)).

    Table 3 shows the RIP values for both alpha-DAR and beta-DAR of the vaginal microbiome.At diversity order q=0,the estimation of0Dmaxfailed, and RIP for q=0 could not be estimated.For q=1,2,3,RIP was successfully estimated for alpha- and beta-diversity, respectively. Here, RIP characterized the relationship between individual- and population-level diversity.For example,at diversity order q=1,alpha-RIP=0.327 and beta-RIP=0.316, indicating that an average individual represented approximately 33%and 32%of population alpha-and beta-diversity,respectively.

    In the current study,we investigated the diversity(including alpha- and beta-diversity) scaling of the human vaginal microbiome across individuals by re-analyzing a big datasetoriginally published by Doyle et al.(2018).Compared with the microbial SAR range reported in existing literature for other microbes, such as Green & Bohannan’s (2006) range between 0.019-0.470,the scaling parameter(z)estimated in our study,i.e.,alpha-z=0.807,beta-z=0.805,appears to be out of the known range,at nearly twice that reported for SAR values for other microbes.Three possibilities exist for the significant difference: (1) The use of revolutionary metagenomic sequencing technology, which allows for detection of more microbial species and consequently large scaling parameter;(2)The human vaginal microbiome has higher heterogeneity across individuals, which could be validated by future biomedical studies; and (3) The postpartum nature of the vaginal microbiome samples analyzed in this study. We could not exclude these possibilities at present due to insufficient available data for comparative research. Indeed, previous studies have classified human vaginal microbiomes into five main community-state types(CSTs),in which CST I,II,III,and V are dominated by Lactobacillus spp.,and CST IV is composed of facultative or strictly anaerobic bacteria(Gajer et al.,2012;Ravel et al.,2011),many of which are BV-related.The vaginal microbial communities of postpartum women in rural Malawi studied by Doyle et al. (2018) and reanalyzed here were mostly Lactobacillus-deficient microbiomes, which could be grouped as CST IV,although all these women were healthy.Therefore,the classification of CSTs may be more complex than initially conceived. Consequently, our DAR analysis based on Doyle et al.(2018)may be limited by the datasets of postpartum women,and the DAR parameters of the vaginal microbiomes of other CST women are likely different from the results reported here.Further studies should be performed to clarify this important issue.

    Table 3 Ratio of individual-level to population-level diversity(RIP)of the vaginal microbiome

    The major findings in this study can be summarized using four profiles: i.e., DAR profile, characterizing the change(scaling)in diversity heterogeneity across individuals;PDO profile, characterizing the pair-wise similarity (overlap)between individuals;MAD profile,characterizing the maximal accrual diversity in a population; and RIP profile,characterizing the ratio of individual-level diversity to population-level diversity.Theoretically,the four profiles can together summarize the essential characteristics of the spatial distribution of vaginal microbial diversity and offer effective tools to sketch out the biogeographic maps of the human vaginal microbiome. Practically, they are essentially quantitative metrics of diversity heterogeneity across individuals from different dimensions(diversity scaling,pairwise similarity in diversity,maximal accrual diversity,ratio of individual to population diversity). These multidimensional metrics could provide more comprehensive tools for understanding the implications of vaginal microbial diversity to women’s health,including the DSR hypothesis for BV etiology(Ma et al.,2012,Ma&Ellison 2018,2019 Sobel,1999).In addition,the quantitative models of the four profiles obtained here could be harnessed to assess and predict microbiome diversity changes at the population scale and are of potential significance for evaluating women’s health associated with vaginal microbiomes.

    COMPETING INTERESTS

    The authors declare that they have no competing interests.

    AUTHORS'CONTRIBUTIONS

    Z.S.M.designed the study and wrote the paper.W.L.performed the data analysis and interpretation.All authors read and approved the final version of the manuscript.

    ACKNOWLEDGEMENTS

    We are deeply indebted to Prof.Yong-Gang Yao for his advice and review of our manuscript.We are also deeply grateful to Dr.Ronan Doyle,Great Ormond Street Hospital,NHS Foundation Trust,United Kingdom,for his assistance in re-analyzing the raw sequencing reads for this study.

    两性午夜刺激爽爽歪歪视频在线观看 | 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产欧美在线一区| 美国免费a级毛片| 麻豆av在线久日| 精品国产一区二区三区四区第35| a级片在线免费高清观看视频| 99热国产这里只有精品6| 日韩欧美国产一区二区入口| 操美女的视频在线观看| 精品人妻在线不人妻| 老司机午夜十八禁免费视频| 一级a爱视频在线免费观看| 色精品久久人妻99蜜桃| 亚洲专区国产一区二区| 一区二区三区精品91| 久久久久久人人人人人| 久久久国产精品麻豆| 日韩制服骚丝袜av| 中国美女看黄片| 激情视频va一区二区三区| 午夜福利在线观看吧| 国产成人欧美| 国产一区二区 视频在线| 成年美女黄网站色视频大全免费| 亚洲国产欧美网| 视频在线观看一区二区三区| 高清欧美精品videossex| 在线观看免费日韩欧美大片| 飞空精品影院首页| 99国产精品99久久久久| 国产精品成人在线| 一区二区日韩欧美中文字幕| 9热在线视频观看99| 中文字幕人妻熟女乱码| 国产一区二区三区在线臀色熟女 | 老汉色av国产亚洲站长工具| 9191精品国产免费久久| 十八禁网站免费在线| 一级片'在线观看视频| 欧美日韩国产mv在线观看视频| 99re6热这里在线精品视频| 又黄又粗又硬又大视频| 亚洲av欧美aⅴ国产| 99久久人妻综合| 99国产精品99久久久久| 欧美成狂野欧美在线观看| 他把我摸到了高潮在线观看 | 亚洲中文字幕日韩| 美女主播在线视频| 日日摸夜夜添夜夜添小说| 在线永久观看黄色视频| 99久久99久久久精品蜜桃| 国产一区二区三区av在线| 精品高清国产在线一区| 另类亚洲欧美激情| 女性被躁到高潮视频| 欧美精品一区二区免费开放| 黄网站色视频无遮挡免费观看| 亚洲欧美精品自产自拍| 久久久久久久国产电影| 如日韩欧美国产精品一区二区三区| 国产精品久久久久久精品古装| 国产精品欧美亚洲77777| 久久久水蜜桃国产精品网| 777久久人妻少妇嫩草av网站| 欧美激情极品国产一区二区三区| 91老司机精品| a在线观看视频网站| 蜜桃国产av成人99| 亚洲综合色网址| 90打野战视频偷拍视频| 久久热在线av| a级毛片在线看网站| 中文字幕精品免费在线观看视频| 亚洲精品美女久久久久99蜜臀| 亚洲精品第二区| 欧美黄色淫秽网站| a级毛片在线看网站| 亚洲国产成人一精品久久久| 亚洲国产精品一区二区三区在线| 亚洲欧美精品综合一区二区三区| 国产精品偷伦视频观看了| 青春草视频在线免费观看| 老司机在亚洲福利影院| 免费人妻精品一区二区三区视频| 蜜桃在线观看..| 啪啪无遮挡十八禁网站| 精品人妻一区二区三区麻豆| 国产片内射在线| 成年女人毛片免费观看观看9 | 男男h啪啪无遮挡| 99re6热这里在线精品视频| 日韩有码中文字幕| 亚洲精品国产精品久久久不卡| 麻豆乱淫一区二区| 99久久国产精品久久久| 久热这里只有精品99| 99国产精品99久久久久| 亚洲人成电影免费在线| 在线永久观看黄色视频| 亚洲精品久久午夜乱码| 中文字幕另类日韩欧美亚洲嫩草| 91字幕亚洲| 欧美另类亚洲清纯唯美| 高清视频免费观看一区二区| 日韩大片免费观看网站| 人妻 亚洲 视频| av免费在线观看网站| 纵有疾风起免费观看全集完整版| 天堂俺去俺来也www色官网| 国产区一区二久久| 国产91精品成人一区二区三区 | av在线app专区| 99久久综合免费| 99国产精品一区二区蜜桃av | 国产精品麻豆人妻色哟哟久久| 韩国高清视频一区二区三区| 男男h啪啪无遮挡| 青春草亚洲视频在线观看| 午夜老司机福利片| 亚洲一码二码三码区别大吗| 亚洲精品一二三| 一边摸一边抽搐一进一出视频| 丝袜人妻中文字幕| 午夜福利,免费看| 亚洲精品成人av观看孕妇| tocl精华| 日本一区二区免费在线视频| 久久免费观看电影| 成年人黄色毛片网站| 黄色视频不卡| 99re6热这里在线精品视频| 精品人妻一区二区三区麻豆| 午夜激情久久久久久久| 人成视频在线观看免费观看| 日韩免费高清中文字幕av| 交换朋友夫妻互换小说| 久久久久久人人人人人| 一级片'在线观看视频| 精品人妻熟女毛片av久久网站| 一边摸一边做爽爽视频免费| 日本vs欧美在线观看视频| 成年人免费黄色播放视频| 亚洲熟女毛片儿| 国产日韩一区二区三区精品不卡| 91av网站免费观看| 考比视频在线观看| 日韩制服丝袜自拍偷拍| 成人三级做爰电影| 日本av免费视频播放| 9热在线视频观看99| 欧美精品人与动牲交sv欧美| 12—13女人毛片做爰片一| 久久久精品94久久精品| 亚洲成av片中文字幕在线观看| 久久精品熟女亚洲av麻豆精品| 欧美精品高潮呻吟av久久| 国产色视频综合| 欧美亚洲 丝袜 人妻 在线| 叶爱在线成人免费视频播放| 亚洲精品一二三| 国产av一区二区精品久久| 精品国产超薄肉色丝袜足j| 久久99热这里只频精品6学生| 母亲3免费完整高清在线观看| 国产日韩欧美在线精品| 精品一区二区三区av网在线观看 | 曰老女人黄片| 午夜成年电影在线免费观看| 国产精品九九99| 日本五十路高清| 日韩中文字幕欧美一区二区| 首页视频小说图片口味搜索| 91av网站免费观看| 一二三四社区在线视频社区8| 正在播放国产对白刺激| 久久国产精品男人的天堂亚洲| 夜夜夜夜夜久久久久| 99精国产麻豆久久婷婷| 激情视频va一区二区三区| 一区二区三区四区激情视频| 日本wwww免费看| 亚洲人成77777在线视频| 亚洲一区中文字幕在线| 国产男人的电影天堂91| 久久亚洲精品不卡| 亚洲精品国产色婷婷电影| 亚洲av日韩精品久久久久久密| 亚洲欧美清纯卡通| 日韩制服骚丝袜av| 丝袜美腿诱惑在线| 国产不卡av网站在线观看| 老司机影院成人| 久久99热这里只频精品6学生| 国产成人免费观看mmmm| 最近最新免费中文字幕在线| 国产三级黄色录像| 午夜福利,免费看| 国产精品香港三级国产av潘金莲| 欧美日韩视频精品一区| 久久久久久久国产电影| 9热在线视频观看99| 人人澡人人妻人| 亚洲精品国产一区二区精华液| 久久人妻福利社区极品人妻图片| 精品人妻在线不人妻| 国产亚洲av高清不卡| 国产成人av激情在线播放| 中文字幕另类日韩欧美亚洲嫩草| 精品国产一区二区三区四区第35| 天堂8中文在线网| 国产亚洲欧美精品永久| 色94色欧美一区二区| 亚洲伊人色综图| 天堂俺去俺来也www色官网| 香蕉国产在线看| 99精国产麻豆久久婷婷| 老熟女久久久| 国产无遮挡羞羞视频在线观看| 国产高清videossex| 99热国产这里只有精品6| 老司机影院毛片| 91成人精品电影| 成人国产一区最新在线观看| 国产熟女午夜一区二区三区| 亚洲男人天堂网一区| 亚洲三区欧美一区| 亚洲九九香蕉| 一二三四社区在线视频社区8| 亚洲国产看品久久| 国产日韩欧美在线精品| 在线观看人妻少妇| 久久人妻福利社区极品人妻图片| 日本精品一区二区三区蜜桃| 国产一区二区激情短视频 | 少妇的丰满在线观看| 夜夜夜夜夜久久久久| 久久久久久久精品精品| 超碰成人久久| 亚洲精品一卡2卡三卡4卡5卡 | av在线app专区| 午夜福利一区二区在线看| 19禁男女啪啪无遮挡网站| 精品国产乱码久久久久久男人| 一级片免费观看大全| tocl精华| 熟女少妇亚洲综合色aaa.| 免费av中文字幕在线| 色视频在线一区二区三区| 亚洲国产欧美网| 性少妇av在线| 久久久国产成人免费| 亚洲一区二区三区欧美精品| 久久久久久久久久久久大奶| 嫁个100分男人电影在线观看| 99香蕉大伊视频| 最新在线观看一区二区三区| 高清在线国产一区| 久久精品国产综合久久久| 下体分泌物呈黄色| 国产精品久久久av美女十八| 一本一本久久a久久精品综合妖精| 国产欧美亚洲国产| 少妇裸体淫交视频免费看高清 | 精品国产一区二区三区久久久樱花| 亚洲精品成人av观看孕妇| 国产精品免费大片| 一边摸一边抽搐一进一出视频| 久久久久久免费高清国产稀缺| 老司机在亚洲福利影院| 亚洲精品国产区一区二| 各种免费的搞黄视频| 亚洲五月婷婷丁香| 美女扒开内裤让男人捅视频| 国产精品一区二区免费欧美 | 国产精品久久久av美女十八| 亚洲国产欧美日韩在线播放| 性色av一级| 黑人巨大精品欧美一区二区mp4| a 毛片基地| 久久国产精品男人的天堂亚洲| 少妇精品久久久久久久| av欧美777| 黄色视频,在线免费观看| 国产男女超爽视频在线观看| 国产有黄有色有爽视频| 色精品久久人妻99蜜桃| 两性夫妻黄色片| 自拍欧美九色日韩亚洲蝌蚪91| 午夜免费鲁丝| 热99国产精品久久久久久7| 动漫黄色视频在线观看| 国产高清视频在线播放一区 | 最近中文字幕2019免费版| 桃红色精品国产亚洲av| 国产av又大| 精品久久蜜臀av无| 一区二区三区乱码不卡18| www日本在线高清视频| 午夜两性在线视频| a级片在线免费高清观看视频| 欧美xxⅹ黑人| 亚洲第一欧美日韩一区二区三区 | 亚洲久久久国产精品| 精品免费久久久久久久清纯 | www.熟女人妻精品国产| 精品卡一卡二卡四卡免费| 国产一级毛片在线| 久久久水蜜桃国产精品网| 色精品久久人妻99蜜桃| 在线av久久热| 一区二区三区乱码不卡18| 777久久人妻少妇嫩草av网站| 午夜视频精品福利| 国产亚洲av片在线观看秒播厂| 久久久久久久国产电影| 他把我摸到了高潮在线观看 | 精品一品国产午夜福利视频| 国产伦人伦偷精品视频| 国产精品偷伦视频观看了| 性少妇av在线| 国产av国产精品国产| 国产成+人综合+亚洲专区| 黑人巨大精品欧美一区二区mp4| 国产日韩欧美亚洲二区| 午夜激情av网站| 悠悠久久av| 亚洲av美国av| 国产精品偷伦视频观看了| 高清av免费在线| 99热全是精品| 日韩 欧美 亚洲 中文字幕| 人人妻人人澡人人爽人人夜夜| 日韩大码丰满熟妇| 久久影院123| 韩国高清视频一区二区三区| 国产又爽黄色视频| 久久久国产精品麻豆| 波多野结衣一区麻豆| 欧美精品av麻豆av| 下体分泌物呈黄色| 欧美97在线视频| 男女下面插进去视频免费观看| 日本vs欧美在线观看视频| 50天的宝宝边吃奶边哭怎么回事| 少妇 在线观看| 欧美黄色片欧美黄色片| 久久性视频一级片| 日日夜夜操网爽| 精品亚洲成国产av| 国产成人精品无人区| 91麻豆av在线| 国产精品免费视频内射| 青春草视频在线免费观看| 性色av乱码一区二区三区2| 日本撒尿小便嘘嘘汇集6| 精品卡一卡二卡四卡免费| videos熟女内射| 久久精品国产亚洲av高清一级| 国产区一区二久久| 五月天丁香电影| 国产精品国产av在线观看| 亚洲av欧美aⅴ国产| 婷婷丁香在线五月| 99热全是精品| 亚洲av日韩精品久久久久久密| av片东京热男人的天堂| 欧美大码av| 12—13女人毛片做爰片一| 考比视频在线观看| 一区二区三区精品91| 真人做人爱边吃奶动态| 99国产极品粉嫩在线观看| 18禁国产床啪视频网站| 精品熟女少妇八av免费久了| 91精品伊人久久大香线蕉| 真人做人爱边吃奶动态| 女人被躁到高潮嗷嗷叫费观| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品香港三级国产av潘金莲| 人成视频在线观看免费观看| 国产精品欧美亚洲77777| 下体分泌物呈黄色| 日本黄色日本黄色录像| 最黄视频免费看| 久久精品国产综合久久久| 久久精品国产a三级三级三级| 久久人妻福利社区极品人妻图片| 精品欧美一区二区三区在线| av天堂久久9| 欧美日韩亚洲高清精品| 丝袜美腿诱惑在线| 久久午夜综合久久蜜桃| 日韩 亚洲 欧美在线| 精品一品国产午夜福利视频| 天堂中文最新版在线下载| 高清av免费在线| 久久久久久免费高清国产稀缺| 99精品欧美一区二区三区四区| 精品熟女少妇八av免费久了| 久久青草综合色| 国产深夜福利视频在线观看| 久久中文字幕一级| 搡老乐熟女国产| 好男人电影高清在线观看| 亚洲精品美女久久av网站| 亚洲国产av新网站| 我要看黄色一级片免费的| 欧美黑人精品巨大| 国产黄频视频在线观看| 高潮久久久久久久久久久不卡| 天天躁夜夜躁狠狠躁躁| 国产男女超爽视频在线观看| 一本—道久久a久久精品蜜桃钙片| 中文字幕精品免费在线观看视频| 亚洲第一av免费看| 国产黄频视频在线观看| 脱女人内裤的视频| av在线老鸭窝| 1024视频免费在线观看| 免费在线观看日本一区| 中文字幕制服av| 亚洲精品中文字幕一二三四区 | 欧美日韩一级在线毛片| 美女福利国产在线| 巨乳人妻的诱惑在线观看| 亚洲黑人精品在线| 黄色怎么调成土黄色| 午夜视频精品福利| 成年美女黄网站色视频大全免费| 国产男女内射视频| 国产精品久久久久久精品古装| 人人妻人人爽人人添夜夜欢视频| 精品国产乱码久久久久久小说| 国产成人a∨麻豆精品| videos熟女内射| 亚洲精品日韩在线中文字幕| 丰满迷人的少妇在线观看| 18禁观看日本| 69av精品久久久久久 | 中文字幕最新亚洲高清| 飞空精品影院首页| 少妇裸体淫交视频免费看高清 | 亚洲全国av大片| 欧美xxⅹ黑人| 国产精品一区二区免费欧美 | 国产精品偷伦视频观看了| 黄色怎么调成土黄色| 成年动漫av网址| 久久精品久久久久久噜噜老黄| 人人妻人人澡人人爽人人夜夜| 首页视频小说图片口味搜索| 久久久水蜜桃国产精品网| 十八禁人妻一区二区| 咕卡用的链子| 精品乱码久久久久久99久播| 别揉我奶头~嗯~啊~动态视频 | 亚洲国产精品999| 久久久精品国产亚洲av高清涩受| 欧美精品啪啪一区二区三区 | 交换朋友夫妻互换小说| 中文字幕av电影在线播放| 在线永久观看黄色视频| 波多野结衣一区麻豆| 免费日韩欧美在线观看| 1024香蕉在线观看| 操美女的视频在线观看| 丝袜脚勾引网站| 精品国产一区二区三区久久久樱花| 老司机福利观看| 纯流量卡能插随身wifi吗| cao死你这个sao货| 99久久综合免费| 亚洲男人天堂网一区| 欧美黄色淫秽网站| 纯流量卡能插随身wifi吗| 亚洲欧美一区二区三区黑人| 久久人人爽av亚洲精品天堂| 人人妻,人人澡人人爽秒播| 国产精品久久久久久人妻精品电影 | 久久99一区二区三区| 国产高清国产精品国产三级| 成人国产一区最新在线观看| a级毛片在线看网站| 男男h啪啪无遮挡| 亚洲男人天堂网一区| 成人国语在线视频| 每晚都被弄得嗷嗷叫到高潮| 最近最新中文字幕大全免费视频| 黄色怎么调成土黄色| 女人高潮潮喷娇喘18禁视频| 国产精品自产拍在线观看55亚洲 | 亚洲伊人色综图| 99国产精品一区二区蜜桃av | 亚洲少妇的诱惑av| 国产黄频视频在线观看| 搡老熟女国产l中国老女人| 国产真人三级小视频在线观看| 国产精品偷伦视频观看了| 99国产精品99久久久久| 久久狼人影院| 女警被强在线播放| 亚洲专区国产一区二区| 精品乱码久久久久久99久播| 黄色片一级片一级黄色片| 不卡av一区二区三区| 99re6热这里在线精品视频| 最新在线观看一区二区三区| 中文字幕人妻熟女乱码| 人妻人人澡人人爽人人| 日韩欧美一区二区三区在线观看 | 国产片内射在线| 国产在线一区二区三区精| 日韩大码丰满熟妇| 国产精品免费视频内射| 国产亚洲精品久久久久5区| 国产99久久九九免费精品| 美女午夜性视频免费| 久久久精品国产亚洲av高清涩受| 黑人巨大精品欧美一区二区mp4| 日本a在线网址| 丰满少妇做爰视频| 19禁男女啪啪无遮挡网站| 亚洲国产欧美在线一区| 午夜视频精品福利| 男人操女人黄网站| 国产无遮挡羞羞视频在线观看| 国产精品九九99| 久久青草综合色| 在线永久观看黄色视频| 久久久精品国产亚洲av高清涩受| 亚洲精品一卡2卡三卡4卡5卡 | 黄色片一级片一级黄色片| a 毛片基地| 中文字幕人妻丝袜制服| 亚洲av片天天在线观看| 国产主播在线观看一区二区| 日本wwww免费看| 久久人人97超碰香蕉20202| 亚洲美女黄色视频免费看| 老司机影院成人| 在线看a的网站| 午夜福利影视在线免费观看| 老汉色av国产亚洲站长工具| 国产精品 欧美亚洲| 亚洲少妇的诱惑av| 菩萨蛮人人尽说江南好唐韦庄| 激情视频va一区二区三区| 精品福利永久在线观看| 搡老熟女国产l中国老女人| 亚洲精品美女久久久久99蜜臀| 成人影院久久| 亚洲第一av免费看| 欧美日韩福利视频一区二区| 秋霞在线观看毛片| 男女下面插进去视频免费观看| 脱女人内裤的视频| 男女床上黄色一级片免费看| 午夜成年电影在线免费观看| 午夜精品国产一区二区电影| 一级,二级,三级黄色视频| 免费在线观看日本一区| 国产精品麻豆人妻色哟哟久久| 菩萨蛮人人尽说江南好唐韦庄| 在线 av 中文字幕| 黄色视频,在线免费观看| 久久久久久久久免费视频了| 好男人电影高清在线观看| 亚洲av欧美aⅴ国产| 99国产精品一区二区三区| 久久久水蜜桃国产精品网| 国产成人啪精品午夜网站| 免费黄频网站在线观看国产| 如日韩欧美国产精品一区二区三区| 欧美乱码精品一区二区三区| 人妻一区二区av| 男女国产视频网站| 精品一品国产午夜福利视频| 777米奇影视久久| 国产野战对白在线观看| 亚洲天堂av无毛| 十八禁高潮呻吟视频| a在线观看视频网站| 老司机亚洲免费影院| 久久人妻福利社区极品人妻图片| 色视频在线一区二区三区| 精品一品国产午夜福利视频| 亚洲国产av新网站| 亚洲国产成人一精品久久久| 亚洲国产欧美一区二区综合| 在线十欧美十亚洲十日本专区| 成人亚洲精品一区在线观看| 国产人伦9x9x在线观看| 久久精品aⅴ一区二区三区四区| 日本wwww免费看| 天天躁夜夜躁狠狠躁躁| 一区在线观看完整版| 国产亚洲av高清不卡| 最近最新中文字幕大全免费视频| 9191精品国产免费久久| 久久久国产精品麻豆| 国产成人精品久久二区二区免费| 日韩三级视频一区二区三区| 一级毛片精品| 久久女婷五月综合色啪小说| 国产成人免费无遮挡视频| 黄色视频不卡| 精品高清国产在线一区| 五月开心婷婷网| 咕卡用的链子| 国产精品久久久久久人妻精品电影 | 一级,二级,三级黄色视频| 国产精品1区2区在线观看. | 久久久精品国产亚洲av高清涩受|