凡紹桂 段建東 孫力
Abstract:To solve the problem of synchronous generator uncontrollable voltage caused by the broken of voltage sampling PT, the high dynamic quality voltage measurement and excitation control technology was proposed. When the PT broken fault occurs, the measurement system will automatic switch from threephase measurement mode to singlephase measurement mode. To adapt to frequency fluctuation and voltage distortion, the RMS value of phase voltage was obtained by using the voltage square singlephase detection technique. However, the sampling delay caused by singlephase measurement will result in poor dynamic performance when the excitation controller has fixed PID parameters. To solve this problem, a sliding mode controller with the estimation of steady state voltage drop of generator winding was proposed. With the proposed control method, the system has high steadystate accuracy and fast dynamic performance and strong robustness to generator system model. The effectiveness of the proposed redundancy voltage sampling technique and the excitation control technique is proved by a 10 kW synchronous generator system.
Keywords:excitation controller; PT breaking fault; singlephase voltage measurement; sliding mode controller
0 引 言
中、小容量內(nèi)燃發(fā)電機組如柴油發(fā)電機組,燃氣輪機發(fā)電機組等被廣泛用在石油鉆井平臺、船舶供電,海島供電等遠離市電供電場合。孤島運行的發(fā)電機組,要求其發(fā)電機勵磁控制器具有高可靠性,高穩(wěn)態(tài)精度,以及較快的動態(tài)性能[1-2]。
勵磁控制器的電壓傳感器(potential transformer,PT)斷線故障會導致發(fā)電機無法正常工作,嚴重影響孤島發(fā)電機組可靠性。本文提出發(fā)電機電壓容錯測量技術(shù),正常情況下采用三相四線制測量模式,當發(fā)生PT斷線故障時自動切換至單相容錯測量模式。許多學者通過構(gòu)造直角坐標系來實現(xiàn)單相電壓測量,如積分延時T/4構(gòu)造直角坐標系[3]、基于反Park構(gòu)造直角坐標系[4]、采用微分構(gòu)造直角坐標系[5]以及采用廣義二階積分器(secondorder generalized integrator,SOGI)構(gòu)造直角坐標系[6-7]等,以上構(gòu)造直角坐標系的方法需要穩(wěn)定的頻率信號,對于并網(wǎng)發(fā)電系統(tǒng),電網(wǎng)頻率基本恒定,可以采用以上方法[8-9]。而對于孤島發(fā)電系統(tǒng),發(fā)電機頻率波動較大,電壓畸變嚴重,不易采用以上單相電壓測量方法。本文采用電壓自平方單相檢測方法,該方法對頻率波動及電壓畸變有較大適應性。由三相測量切換至單相測量后,單相測量帶來的采樣延時使經(jīng)典PID調(diào)節(jié)器在不改變PID參數(shù)情況下,很難達到三相測量時的控制效果,使發(fā)電機動態(tài)性能受到較大影響。為提高勵磁控制器性能,很多學者對勵磁控制器進行了改進,如文獻[10]設計了一種同時以機端電壓、有功功率、無功功率、角速度、功率角作為反饋量的線性最優(yōu)勵磁控制器,將發(fā)電機功角、無功功率這兩個與穩(wěn)定性和品質(zhì)密切相關(guān)的重要參量引入控制規(guī)律,提高了并網(wǎng)發(fā)電機穩(wěn)態(tài)性能;文獻[11]將預測函數(shù)與線性多變量反饋結(jié)合組成一種復合勵磁控制器,可在提高電力系統(tǒng)穩(wěn)定性的前提下解決發(fā)電機端電壓穩(wěn)定問題。文獻[12]提出在最優(yōu)控制下,采用變增益控制策略,以保證系統(tǒng)小擾動穩(wěn)定性。文獻[13] 將預測控制與模型降階技術(shù)相結(jié)合,以解決最優(yōu)勵磁控制和傳統(tǒng)比例積分微分勵磁控制無法考慮系統(tǒng)復雜狀態(tài)和控制輸入約束的問題。
以上控制策略以并網(wǎng)發(fā)電機為研究對象,沒有考慮孤島發(fā)電系統(tǒng)運行時負載擾動問題。滑??刂破骶哂休^強的魯棒性,被廣泛應用于電動機轉(zhuǎn)速控制[14]。文獻[15]將滑??刂破鲬迷趧畲畔到y(tǒng),提出了一種非奇異終端滑??刂频恼{(diào)壓控制策略,使發(fā)電機系統(tǒng)具有良好的穩(wěn)態(tài)性能與優(yōu)越的動態(tài)性能,不過該方法需要發(fā)電機參數(shù)較多,為工程應用帶來一定的困難。本文提出一種不需要發(fā)電機精確模型的滑??刂破?,該控制器對發(fā)電機繞組穩(wěn)態(tài)壓降進行估計,簡化了負載壓降模型,提高了負載條件下發(fā)電機穩(wěn)態(tài)性能,將負載擾動以及三相測量切換至單相測量帶來的采樣延時歸為擾動項,提高了勵磁控制器動態(tài)性能與對發(fā)電機參數(shù)的魯棒性能。
1 容錯測量邏輯及單相測量方法
勵磁控制器正常電壓測量模式采用三相四線制,其測量電路如圖1所示。uAO,uBO,uCO為發(fā)電機相電壓,uN為中性線。R1,R2為采樣分壓電阻,uaO,ubO,ucO為進入控制器模擬數(shù)字轉(zhuǎn)換器的采樣電壓。下面分析采樣電路在不同PT斷線情況下的采樣值。
表1中k=R2/(R1+R2),由表1可以看出,無論是否有中性線,當出現(xiàn)單相斷線故障時,另外兩相均有值,不易區(qū)分出現(xiàn)了哪種故障。通過觀察可以發(fā)現(xiàn),把剩余兩相相減可以得到相應的線電壓,以A相斷線為例,有中性線時,B相采樣與C相采樣電壓相減得ubc=k(uBO-uCO)=kuBC;無中性線時,B相采樣與C相采樣電壓相減得ubc=0.5kuBC-(-0.5kuBC)=kuBC,所以當出現(xiàn)單相斷線故障時,可以測得發(fā)電機另外兩相線電壓,單相斷線情況下電壓測量為單相線電壓,定義該方式為測量方式一。有中性線時出現(xiàn)兩相斷線故障時,可以測得另外一相相電壓,定義單相相電壓測量為測量方式二。測量方式一與測量方式二均采用單相測量技術(shù),只是轉(zhuǎn)換為發(fā)電機相電壓有效值時所乘系數(shù)不同。
當出現(xiàn)PT斷線時,斷線相相電壓測量值為0,這一現(xiàn)象可區(qū)別于短路故障,因為短路故障下相電壓會降低但不會為0。如果PT斷線相,參與了相應的電壓有效值計算,則該計算值會變小,根據(jù)這一性質(zhì)設計容錯測量切換邏輯,如圖2所示。
5 結(jié) 論
本文提出在發(fā)電機勵磁控制器出現(xiàn)PT斷線故障時,由三相測量自動切換到單相測量,實現(xiàn)容錯測量。采用電壓自平方單相檢測測量方案可以在頻率變化以及電壓畸變情況下實現(xiàn)單相電壓測量。單相測量中的低通濾波器帶來采樣延時,由三相測量切換至單相測量后,若不改變PID參數(shù),則發(fā)電機動態(tài)性能會變差。本文提出采用具有發(fā)電機定子穩(wěn)態(tài)壓降估計的滑模控制器,提出的滑??刂破鲗ο到y(tǒng)模型參數(shù)具有較強魯棒性,可以消除因單相采樣延時帶來動態(tài)性能變差的問題。文中所提容錯測量方法及控制器,在10 kW發(fā)電機系統(tǒng)中得到驗證,實驗證明冗余測量方法在測量方式切換過程中發(fā)電機端電壓無擾動。采用提出的滑??刂破鞯膭畲趴刂破骺梢允瓜到y(tǒng)在切換前后動態(tài)性能不變。所提容錯測量方法及勵磁控制器具有較強的工程實用意義。
參 考 文 獻:
[1] 尚敬,年曉紅,劉可安,等. 負載轉(zhuǎn)矩前饋的電勵磁同步電機定子磁鏈定向矢量控制[J].電機與控制學報,2015,19(11):25.
SHANG Jing, NIAN Xiaohong, LIU Kean, et al. Stator flux oriented vector control of excited synchronous motor based on load torque observer feedforward control [J]. Electric Machines and Control,2015,19(11):25.
[2] 楊新法,蘇劍,呂志鵬,等. 微電網(wǎng)技術(shù)綜述[J].中國電機工程學報,2014,34(1):57.
YANG Xinfa,SU Jian,L Zhipeng,et al. Overview on microgrid technology [J]. Proceedings of the CSEE,2014,34(1):57.
[3] 武琳,楊林,姜遠,等. 一種改進的單相整流器控制策略研究[J]. 電機與控制學報,2017,21(11):97.
WU Lin, YANG Lin, JIANG Yuan, et al. Improved control strategy of single phase rectifier[J]. Electric Machines and Control,2017,21(11):97.
[4] SAEED Golestan, MOHAMMAD Monfared. Dynamics assessment of advanced singlephase PLL structures[J]. IEEE Transactions on Industrial Electronics,2013,60(6):2167.
[5] GUAN Qingxin, ZHANG Yu, KANG Yong, et al. Singlephase phaselocked loop based on derivative elements[J]. IEEE Transactions on Power Electronics,2017,32(6):4411.
[6] XIAO Furong, DONG Lei, LI Li, et al. A frequencyfixed SOGI based PLL for singlephase gridconnected converters[J]. IEEE Transactions on Power Electronics,2017,32(3):1713.
[7] CHEN Ke, AI Wu, CHEN Bing, et al. A simulation study on tracking and restructuring AC signals based on enhanced SOGIPLL[C]//2016 IEEE Power and Energy Conference at Illinois, February, 2016, Urbana, IL, USA. 2016:1-5.
[8] SAEED Golestan, MOHAMMAD Monfared, FRANCISCO D. Freijedo, et al. Design and tuning of a modified powerbased PLL for singlephase gridconnected power conditioning systems[J]. IEEE Transactions on Power Electronics, 2012,27(8):3639.
[9] CHEN Xin, ZHANG Yang, WANG Shanshan, et al. Impedancephased dynamic control method for gridconnected inverters in a weak grid[J]. IEEE Transactions on Power Electronics, 2016,32(1):274.
[10] 羅建,任成君,馮樹輝, 等. 基于線性最優(yōu)控制和積分控制的勵磁控制器設計[J].電力系統(tǒng)保護與控制,2013,41(11):134.
LUO Jian, REN Chengjun, FENG Shuhui, et al. Design of excitation controller based on linear optimal control and integral control[J]. Power System Protection and Control, 2013,41(11):134.
[11] 肖健梅,張科,王錫淮. 基于預測函數(shù)與線性多變量反饋控制的同步發(fā)電機勵磁控制[J]. 電力自動化設備,2015,35(7):153.
XIAO Jianmei, ZHANG Ke, WANG Xihuai. Excitation control based on predictive function control and linear multivariable feedback control for synchronous generator[J]. Power System Protection and Control, 2015,35(7):153.
[12] 李江,李國慶,鄒維,等. 固定增益與變增益最優(yōu)勵磁控制策略的小擾動穩(wěn)定域研究[J]. 電力自動化設備,2014,34(2):97.
LI Jiang, LI Guoqing, ZOU Wei, et al. Small signal stability region of power system with fixed or variable gain optimal excitation control[J]. Power System Protection and Control, 2014,34(2):97.
[13] 趙洪山,蘭曉明,周雪青. 基于平衡降階模型的多機系統(tǒng)非線性勵磁預測控制[J]. 中國電機工程學報,2013,33(22):61.
ZHAO Hongshan, LAN Xiaoming, ZHOU Xueqing. Nonlinear excitation prediction control of multimachine power systems based on balanced reduced model[J]. Proceedings of the CSEE,2013,33(22):61.
[14] 高慶忠,關(guān)煥新,于子淞,等. 自適應補償器永磁同步電機積分型連續(xù)滑模控制[J]. 電機與控制學報,2017,21(2):103.
GAO Qingzhong, GUAN Huanxin, WANG Zisong, et al. Integral continuous sliding mode control strategy with adaptive compensator for permanent magnet synchronous motor[J]. Electric Machines and Control,2017,21(2):103.
[15] 戴衛(wèi)力,丁駿,田浩,等. 雙凸極電勵磁發(fā)電機系統(tǒng)非奇異終端滑模控制器的設計與仿真[J]. 電力自動化設備,2015,35(6):130.
DAI Weili, DING Jun, TIAN Hao, et al. Design and simulation of nonsingular terminal sliding mode controller for doubly salient electromagnetic generator system[J]. Power System Protection and Control, 2015,35(6):130.
[16] 王良,沈善德,朱守真,等. 基于EE模型的勵磁系統(tǒng)參數(shù)時域辨識法[J].電力系統(tǒng)自動化,2002,(8):25.
WANG Liang, SHEN Shande, ZHU Shouzhen, et al. A method of time domain identification based on EE model for the excitation system parameters[J]. Automation of Electric Power Systems, 2002,(8):25.
[17] 陳伯時.電力拖動自動控制系統(tǒng)[M].北京:機械工業(yè)出版社,2000: 67-79.
[18] 中國標準化委員會.GBT7409.3-2007同步發(fā)電機勵磁系統(tǒng)-大、中型同步發(fā)電機勵磁系統(tǒng)技術(shù)要求[S].北京:中國質(zhì)檢出版社,2014:2-4.
[19] 覃平生,劉覺民,周有慶,等. 基于80C196KC的原動機仿真系統(tǒng)設計[J]. 電力自動化設備,2003,23(2):41.
TAN Pingsheng, LIU Juemin, ZHOU Youqing, et al. Design of prime mover simulation system based on 80C196KC[J]. Electric Power Automation Equipment,2003,23(2):41.
(編輯:劉琳琳)