• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Inflationary Cosmology with Quantum Gravitational Effects and Swampland Conjectures?

    2019-10-16 08:45:34QiangWu武強(qiáng)andTaoZhu朱濤
    Communications in Theoretical Physics 2019年9期
    關(guān)鍵詞:武強(qiáng)

    Qiang Wu(武強(qiáng))and Tao Zhu(朱濤)

    Institute for Theoretical Physics and Cosmology,Zhejiang University of Technology,Hangzhou 310032,China

    (Received April 4,2019;revised manuscript received April 21,2019)

    AbstractRecently proposed two swampland criteria that arising from string theory landscape leads to the important challenge of the realization of single-field inflationary models.Especially one of swampland criteria which implies a large tensor-to-scalar ratio is strongly in tension with recent observational results.In this paper,we explore the possibility the swampland conjectures could be compatible with single-field inflationary scenarios if the effects due to the quantum theory of gravity are considered.We show that the quantum gravitational effects due to the nonlinear dispersion relation provides significant modifications on the amplitude of both the scalar and tensor perturbation spectra.Such modifications could be either raise or reduce the perturbation spectra depending on the values of the parameters in the nonlinear terms of the dispersion relations.Therefore,these effects can reduce the tensor-to-scalar ratio to a smaller value,which helps to relax the tension between the swampland conjecture and observational data.

    Key words:inflation,quantum gravitational effects,swampland conjectures,uniform asymptotic approximation

    1 Introduction

    As one of the most promising candidates for an ultraviolet completed description of the quantum gravity that combines gauge and gravitational interactions,string/M theory is expected to provide possibilities for an explicit realization of the cosmological inflationary paradigm.Indeed,at effective level,there are a lot of phenomenological single scalar field inflation models that can arise from the String/M theory.However,in order to consistently embed such single scalar field inflation models into a quantum theory of gravity,it was proposed recently that they have to pass the two criteria of the swampland conjectures.[1?2]Specifically,the swampland conjectures includes two criteria,which state that the scalar inflaton field ? being consistent with a reasonable quantum description of gravity has to fulfill the following two conditions.

    ?The Swampland Criterion I(SCI):The excursion of the scalar field in the field space is bounded by[3]

    ?The Swampland Criterion II(SCII):The gradient of the scalar potential V(?)with V(?)>0 is limited by[4]

    where MPlis the reduced Planck mass and V?=dV(?)/d?.Here c1and c2are two positive constants of order unity.

    The first criterion is not surprise since it reflects the condition for the validity of the effective field theory of inflation and can be fulfilled by a lot of single scalar field inflation models.For the second criterion,it obviously violates the slow-roll condition,thus leads to a strong tension with the standard slow-roll inflation of the single scalar field inflationary models,[5?6]in which the slow-roll parameter ?Vis defined as

    ?The refined Swampland Criterion(rSCII):the derivatives of the scalar potential V(?)are limited by

    where V??=d2V/d?2and c3is a third positive constant with order one.This refined version of the swampland criterion is weaker than SCII and its implications on inflation and cosmology have been discussed extensively,see Refs.[33–40]for examples.For rSCI,it is observed that the original second swampland condition SCII now is included in rSCII as only one of possible conditions.It is because of rSCII,some of the single scalar field inflation models could be compatible with the swampland conjectures.However,SCII is still one of possible conditions and in the current research,we will concentrate on it and provide a proposal that could be used to relax its tension with observational data.

    In general,CMB temperature anisotropy derived from the inflation models are sensitive to the vacuum state of the perturbation modes.Since the energy scale of inflation at the earlier stage of the inflation is not far from the Planck energy,[41?42]one naturally expects that the effects of the quantum gravity can leave some effects on the perturbation modes,which could produce excited initial conditions for the inflationary perturbations.For instance,in loop quantum cosmology,an excited state on the primordial perturbation modes can be generated during the quantum bounce phase prior to the inflation.[43?47]A similar dynamics for quantum bounce can also be achieved in the framework of the effective field theory description of nonsingular bounce.[48]It is worth noting that the nonsingular bounces from the phenomenological considerations of the effective field theory analysis provides an alternative way to address the initial state issues of the primordial perturbations,see Refs.[48–51]for examples.In Hoava-Lifshitz theory of quantum gravity,such excited states can be produced by the contribution of high-order spatial derivative terms in the action of the theory,which also supply a nonlinear dispersion relation for the inflationary perturbations.[52?54]We note that such nonlinear dispersion relation can also arise from high-order extension of the effective field theory of inflation[55?59]and phenomenological consideration of achieving a nearly scaleinvariant power spectrum,[60]for examples.

    For the nonlinear dispersion relations,normally it arises from the theory that violates the Lorentz symmetry at the high energy regime.For example,in Hoava-Lifshitz theory of quantum gravity,the Lorentz symmetry has to be violated when the high-order spatial derivative terms dominated at high energy regime,and restores in the low energy limit.[61?62]Since the swampland conjectures are based on the analysis that only restricts to the effective theory with Lorentz symmetry,it is important to see if the effects of the Lorentz violation can make the single scalar field inflation models compatible with the swampland conjectures.In fact,it is proposed very recently that the strong tension between the swampland conjecture SCII and the single field inflationary modes can be relaxed by the excited initial conditions on the perturbation modes.[12,21]As we mentioned,the nonlinear dispersion relation can provide a natural mechanism for generating excited initial states.

    In this paper,we consider concrete nonlinear dispersion relations for both the scalar and tensor perturbations and discuss their implications on the swampland conjectures.The nonlinear dispersion relations considered here can be concretely realized in the Hoava-Lifshitz theory of quantum gravity.We show that the nonlinear dispersion relation can modify both the scalar and tensor perturbation spectra but still keep the scale invariance.By using the analytical expressions of perturbation spectra derived from the uniform asymptotic approximation,it is shown that the modification of spectra by the nonlinear dispersion relation can significantly relax the strong tension between the swampland conjectures and the single field inflation.

    2 Effects of Nonlinear Dispersion Relations

    Inflationary theory of the early universe provides a natural mechanism for the generation of the formation of the large scale structure and anaistropies in the cosmic microwave background(CMB).However,it is still suffering from the trans-Planckian issue considering its energy scale at the earlier stage of the inflation is close to the Planck scale.[41?42]To address the trans-Planckian issue,one approach is to consider the nonlinear dispersion relations for both the inflationary scalar and tensor perturbations.[42,45,63?64]It is interesting to mention here that the nonlinear dispersion relation can arise naturally from the Hoava-Lifshitz theory of quantum gravity.[52?54,61?62]Recently it is also shown that such relations can arise from high-order extension of the effective field theory of inflation.[55]In this section,we show that the nonlinear dispersion relation can modify both the inflationary scalar and tensor spectra significantly,which could provide a mechanism to relax the tension between the SCII and Planck data.

    To proceed,let us start with the equations of motion for the scalar and tensor perturbations.With the nonlinear dispersion relation(η),the inflationary mode function uk(η)for perturbations(scalar or tensor)obeys the modified Mukhanov-Sasaki equation

    Here η represents the conformal time,′denotes derivatives of η,and z(η)is related to the slow-roll evolution of the background.We parametrize the nonlinear dispersion relation in the form of

    where M?is the relevant energy scale of trans-Planckian physics,k is the comoving wavenumber of the mode,b1and b2are dimensionless constants.In the Hoava-Lifshitz theory of quantum gravity,the coefficients b1and b2can be related to the coupling constants of the theory,[52?54,62]in whichis related to the sixth order spatial derivative terms andis related to the fourth order.In order to get a healthy ultraviolet limit,we require>0.

    For scalar or tensor modes the equation of motion described by Eq.(5)can be solved analytically by the uni-form asymptotic approximation developed in Refs.[65–66].We would like to mention that this mathematical method has been applied to the calculations of the primordial spectra in a lot of inflation modes with quantum gravitational effects,[65?72]calculations of quantum gravitational effects of loop quantum cosmology,[73?76]studying parametric resonance during inflation and reheating,[77]and derivation of quantization condition in quantum mechanics.[78]In the uniform asymptotic approximation,we use the dimensionless variable y= ?kη.Then the equation of motion Eq.(5)can be rewritten as[79?80]

    This is a second-order ordinary differential equation.Normally it’s solution is sensitive to the poles and turning points of g(y)and q(x).In the uniform asymptotic approximation,the functions g(y)and q(y)are determined by the behaviors of the corresponding error control function around the poles or turning points.[65,79?80]For the second-order ordinary differential equation(7),we find that g(y)and q(y)contain a second-order pole at the origin,i.e.,y=0.In order to ensure the corresponding error control function of the uniform asymptotic approximate solutions,[65,79?80]the functions g(y)and q(y)have to be chosen as,[65,79?80]

    We observe that the function g(y)defined in the above could also have turning points.According to the nature of these turning points,as depicted in Fig.1,g(y)can be normally divided into four physical cases.[79]We label the corresponding turning points of g(y)=0 by y0,y1and y2with y0

    With the analysis about the turning points of g(y)in the above,we can employ the uniform asymptotic approximation to construct the corresponding approximate solutions associated about each turning points,which have been presented in details in Ref.[65]).By imposing the Bunch-Davies vacuum as the initial state,[65]using the approximate solutions of mode function for both scalar and tensor perturbations,the corresponding power spectra can be casted formally in the form,[65]

    Fig.1 (Color online)The schematic plots of function g(y)in Eq.(9)for four representative cases.The number and nature of the turning points for each case are different.Case(a):three single real turning points(y0?y10.

    where A represents the modification of the power spectra due to the presence of the nonlinear dispersion relation(6),which could be amplified by the non-adiabatic evolution of inflationary perturbations,and is given by

    with

    where ?(x) ≡ x/2? (x/4)lnx2+phΓ(ix+1/2)/2 with phΓ(ix+1/2)being the phase of the Gamma function Γ(ix+1/2),which is zero when x=0,and is determined by continuity otherwise.[65,79]Here αkand βkdenote the Bogoliubov coefficients of the excited state generated by the nonlinear dispersion relation.We see thatis related to the integral ofbetween y1and y2.When y1and y2are two real and single turning points of g(y),is positive,while it becomes negative if the two turning points are complex conjugated.Obviously,the perturbation spectra is amplified by the non-adiabatic evolution of the primordial perturbation since for this case the two turning points are both real and single.When the two turning points are complex conjugated,sinceis negatively large,the modified factor A is order of 1 and the violation of the adiabatic evolution of the primordial perturbation is strongly suppressed.

    Obviously the perturbation spectra can be modified due to nonlinear dispersion relation,which could arise from Hoava-Lifshitz theory of gravity.The effects can be described by two terms.One is determined by the modified factor A,which measures the non-adiabatic effects.Another is due to the exponential integration offrom y0to 0.To compare different effects,it is convenient to introduce the integral M0without the presence of the nonlinear terms in the dispersion relation(by setting b1=0=b2),

    When b1and b2terms are included,this integral now becomes

    With the help of M0and M,the primordial power spectra(10)can be expressed as

    To estimate the primordial power spectrum(16)with the presence of the nonlinear terms in the dispersion relation,let us study the integral in Eq.(15)in details.For primordial perturbation modes,the inflationary mode function uk(η)for the cosmological scalar perturbation can be related to the comoving curvature fluctuation aswhile for tensor perturbation we have.In these expression,the Hubble slow-roll parameter ? defined as ?=Then the ratio between the amplitudes of the tensor and scalar perturbation spectra can be calculated via

    where rGR=16? denotes the ratio between the amplitudes of the tensor and scalar perturbation spectra predicted in slow-roll inflation models when the nonlinear terms in the dispersion relation are set to zero.The quantity σkis expressed as

    where the superscript “s” and “t” denote the quantities for the scalar and tensor perturbations respectively.We note that we have usedIn the above expression,we observe that the effects due to the nonlinear terms in the dispersion relation is measured by the factor

    With SCII,we write the ratio between the amplitudes of the tensor and scalar perturbation spectra as

    The main purpose of the current paper is to justify that the above criterion can be fulfilled with the presence of the nonlinear terms in the modified dispersion relations.

    From Eq.(20),for the condition to be satisfied,one can either reduce the modified factor A or reduce σk.The former possibility is related to the non-adiabatic effects of the primordial perturbations due to the presence of the nonlinear terms in the modified dispersion relations.It is worth mentioning that when we consider the nonadiabatic effects,one assumes σk? 1 for simplicity,which can be easily achieved if? 1.

    However,once the non-adiabatic evolutions of the primordial perturbations are involved,as we mentioned,the corresponding perturbation modes are non longer at the Bunch-Davies vacuum states and can grow exponentially during the process.In this case,one has to be at caution about the question that whether the amplification of the non-adiabatic modes could be large enough to destroy the background evolution due to their back-reactions.This important issue has been discussed in details in Refs.[81–82],which shows that to avoid large back-reactions,the Bogoliubov coefficient βkhas to be constrained by

    where Hinfis the energy scale of the inflation which is constrained by Hinf/MPl≤ 2.7×10?5due to the most recent Planck 2018 results.[7?8]Thus,if we take Hinf/MPl2×10?3,one can infer that

    Then one has

    which leads to the constraint on|αk+ βk|2as,

    Using this constraint,it is obvious that the ratio between the modified factors Atfor the scalar perturbation and Asfor the tensor perturbation is restricted to be

    This condition provides a strong constraint on the nonadiabatic effects on the primordial perturbation spectrum.Clearly,from this condition,it is obvious that we have a large space for adjusting parameters b1and b2such that

    Another way to fulfill the condition(20)is to reduce the factor σk,which is related to two direct integrals of√from the turning point y0until the end of the slowroll inflation.Therefore,in order to achieve the condition(20),one has to properly adjust the parameters in the expression of the integrand.As we mentioned,when ??? 1,therefore the only way for this to be possible is to relax ??? 1 by requiring1.In order to show the effect of σkexplicitly,we considerIt is worth noting that this implies that the adiabatic condition is satisfied during inflation for the scalar and tensor perturbation modes.To estimate the integrals in the expression of σk,one observes that due to the nonlinear terms in the modified dispersion relation,the calculation becomes very much mathematics involved.However,for the purpose to show that the condition(20)can be fulfilled by reducing the value of σk,we plot the gs(y)and gt(y)in Fig.2 by specifying a set of values for the parameters in the dispersion relation.For scalar perturbation we choose>0,which leads to a shift of y0from ν for linear dispersion relation to a larger value,while for tensor perturbation we consider<0,which leads to y0<ν.With these reasons,one sees that the curve of g(y)for tensor perturbation is always beneath the scalar one,which implies that.Note that for the purpose to make the SCII to be consistent with observational data,one has to require thatand for the parameters chosen in Fig.2 we find σk~ 0.1.

    Here we would like to make some remarks about the modification on the scalar and tensor power spectra.First,as shown in Refs.[65,71–72],the effects due to the nonlinear terms in the dispersion relation in the form of Eq.(6)can only make modifications on the amplitudes of the primordial scalar and tensor spectrum.This implies that the non-adiabatic evolution of the primordial perturbations due to the nonlinear dispersion relation does not break the nearly scale invariance of the spectrum.Considering the observational data favors a nearly scale invariant scalar spectrum,therefore,the modifications on the power spectrum due to the nonlinear dispersion relation is consistent with the recent observational data.Second,the parameters b1and b2involved in the nonlinear terms of the dispersion relation(6)are related to the fourth and sixth order spatial derivative terms in Hoava-Lifshitz theory respectively.While the most of the consistency analysis are related to the parameter b2,the parameter b1is less constraint.As a result,we have a large parameter space for the parameter b1that does not lead any inconsistent issues.

    Fig.2 (Color online)Comparison of g(y)for primordial scalar perturbation and the tensor perturbation in the interval y∈(0,y0)for a set of values for the parameters in the dispersion relation(6).

    3 Conclusions

    In the current research,we discuss the implications of the quantum gravitational effects due to the nonlinear dispersion relations on relaxing the strong tension between the recent proposed swampland conjectures and the single field inflationary models.The nonlinear dispersion relations for both the scalar and tensor perturbations considered in this paper can arise naturally in the Hoava-Lifshitz theory of quantum gravity.We show that the quantum gravitational effects due to the nonlinear dispersion relation provide significant modifications on the amplitude of both the scalar and tensor power spectra.Such modifications could be either raise or reduce the power spectra depending on the parameters of the nonlinear dispersion relations.Therefore,these effects can reduce the tensor-to-scalar ratio to a smaller value,which helps to relax the tension between the swampland conjecture and Planck data.

    猜你喜歡
    武強(qiáng)
    吃老本
    吃老本
    小讀者(2023年12期)2023-07-01 00:12:40
    武強(qiáng)木板年畫的傳承、圖新與藝術(shù)生機(jī)
    論武強(qiáng)年畫急需再生性研究的緊迫性
    西部皮革(2021年8期)2021-05-13 03:00:46
    武強(qiáng)
    移動(dòng)電商助力“9+5”武強(qiáng)年畫發(fā)展探討
    俯視黃河
    詩潮(2019年8期)2019-08-23 05:39:48
    一帆風(fēng)雨
    鴨綠江(2016年8期)2016-11-14 23:25:49
    全國音樂教育服務(wù)項(xiàng)目交流暨聯(lián)盟示范基地評(píng)審活動(dòng)在武強(qiáng)舉辦
    衡水非物質(zhì)文化遺產(chǎn)保護(hù)與傳承探略:武強(qiáng)年畫
    国产 精品1| av.在线天堂| 色婷婷av一区二区三区视频| 久久久欧美国产精品| 国产精品久久久久久精品电影小说| 国产精品秋霞免费鲁丝片| 黄色日韩在线| 熟妇人妻不卡中文字幕| 午夜91福利影院| 色哟哟·www| 丁香六月天网| 一本一本综合久久| a级毛片免费高清观看在线播放| 最近中文字幕2019免费版| 黄色怎么调成土黄色| 国产色爽女视频免费观看| 亚洲欧美中文字幕日韩二区| 国产精品久久久久久av不卡| 午夜福利在线观看免费完整高清在| 秋霞伦理黄片| 极品教师在线视频| 精品少妇内射三级| 97精品久久久久久久久久精品| 国产熟女午夜一区二区三区 | 色婷婷久久久亚洲欧美| 99九九线精品视频在线观看视频| 777米奇影视久久| 黑人高潮一二区| www.av在线官网国产| 三上悠亚av全集在线观看 | 午夜福利,免费看| 亚洲精品成人av观看孕妇| 秋霞在线观看毛片| 亚洲国产精品成人久久小说| 午夜激情久久久久久久| 在线观看av片永久免费下载| 国产有黄有色有爽视频| 久久国产精品大桥未久av | freevideosex欧美| 国产一区亚洲一区在线观看| 国产免费一级a男人的天堂| 国产精品一区二区在线观看99| 精品久久久噜噜| av国产久精品久网站免费入址| 亚州av有码| 自拍偷自拍亚洲精品老妇| 国产男女超爽视频在线观看| 免费人成在线观看视频色| 丝瓜视频免费看黄片| 国精品久久久久久国模美| 国产精品三级大全| 国产有黄有色有爽视频| 国产日韩欧美视频二区| 偷拍熟女少妇极品色| 国产一区二区在线观看av| 天天操日日干夜夜撸| 中文资源天堂在线| 高清在线视频一区二区三区| av女优亚洲男人天堂| 亚洲欧美精品专区久久| 久久久久久久久久成人| 国产色婷婷99| 国产色婷婷99| 国产精品久久久久久av不卡| 少妇人妻 视频| 午夜福利在线观看免费完整高清在| 日韩电影二区| 国产91av在线免费观看| 十八禁高潮呻吟视频 | 精品国产露脸久久av麻豆| 亚洲人成网站在线观看播放| 丝瓜视频免费看黄片| 久久久久久人妻| 国产精品蜜桃在线观看| 麻豆成人午夜福利视频| 精品国产一区二区久久| 黑丝袜美女国产一区| 国产精品国产av在线观看| 国产黄色视频一区二区在线观看| 在线观看三级黄色| 国产一区二区三区综合在线观看 | 久久99蜜桃精品久久| av天堂中文字幕网| 黄色一级大片看看| 亚洲久久久国产精品| 黄色欧美视频在线观看| 亚洲色图综合在线观看| 午夜久久久在线观看| 黑人猛操日本美女一级片| 亚洲精品久久午夜乱码| 久久韩国三级中文字幕| 哪个播放器可以免费观看大片| 国产高清不卡午夜福利| 精品酒店卫生间| 少妇被粗大的猛进出69影院 | 观看免费一级毛片| 一级毛片我不卡| 精品久久久久久久久av| 日韩不卡一区二区三区视频在线| 免费久久久久久久精品成人欧美视频 | 在线观看www视频免费| 国产亚洲精品久久久com| 免费观看无遮挡的男女| 成人特级av手机在线观看| 亚洲综合色惰| 日本色播在线视频| 成人毛片a级毛片在线播放| 国产白丝娇喘喷水9色精品| a级片在线免费高清观看视频| 91成人精品电影| 一个人免费看片子| 丝袜在线中文字幕| 日韩一区二区三区影片| 亚洲欧美一区二区三区国产| 水蜜桃什么品种好| 日韩强制内射视频| 亚洲欧美成人综合另类久久久| 高清午夜精品一区二区三区| 日本免费在线观看一区| 精品国产露脸久久av麻豆| 久久热精品热| 交换朋友夫妻互换小说| 国产黄片美女视频| 人妻夜夜爽99麻豆av| 91午夜精品亚洲一区二区三区| 大陆偷拍与自拍| 亚洲av成人精品一区久久| 最近2019中文字幕mv第一页| 色视频在线一区二区三区| 美女福利国产在线| 在现免费观看毛片| 久久人人爽人人片av| 色婷婷久久久亚洲欧美| 免费观看的影片在线观看| 性色avwww在线观看| 国国产精品蜜臀av免费| 国产精品欧美亚洲77777| av一本久久久久| 国产亚洲最大av| 9色porny在线观看| 欧美亚洲 丝袜 人妻 在线| 国产一区二区三区综合在线观看 | 久久99一区二区三区| 国产毛片在线视频| 中文字幕制服av| 丝袜在线中文字幕| 久久久久久久大尺度免费视频| 久久99热6这里只有精品| 日日啪夜夜爽| 一级av片app| 精品人妻熟女av久视频| 王馨瑶露胸无遮挡在线观看| 久久精品久久精品一区二区三区| 99久久综合免费| 国产精品一区二区在线不卡| 久久久精品94久久精品| 国产亚洲午夜精品一区二区久久| 日韩三级伦理在线观看| 色婷婷av一区二区三区视频| 精品国产一区二区久久| 人人妻人人澡人人看| 一区二区av电影网| 日韩欧美 国产精品| 高清午夜精品一区二区三区| 日本黄大片高清| 精品人妻偷拍中文字幕| 人人妻人人爽人人添夜夜欢视频 | kizo精华| 亚洲av二区三区四区| 大话2 男鬼变身卡| av播播在线观看一区| 亚洲精品自拍成人| 永久免费av网站大全| 国产熟女午夜一区二区三区 | 亚洲av中文av极速乱| 一级毛片aaaaaa免费看小| 国产精品伦人一区二区| 国产亚洲一区二区精品| 男人添女人高潮全过程视频| 十八禁网站网址无遮挡 | 久久6这里有精品| 18禁裸乳无遮挡动漫免费视频| 最近最新中文字幕免费大全7| 97超视频在线观看视频| 日本wwww免费看| 日韩伦理黄色片| 国产一区二区在线观看av| 久久影院123| 亚洲美女视频黄频| 伦理电影大哥的女人| 黄色日韩在线| 国产成人精品无人区| 色婷婷av一区二区三区视频| 国产综合精华液| 免费播放大片免费观看视频在线观看| 亚洲精品,欧美精品| 中文欧美无线码| 午夜av观看不卡| 自拍偷自拍亚洲精品老妇| 天天操日日干夜夜撸| 视频区图区小说| 亚洲一级一片aⅴ在线观看| 久久99精品国语久久久| av播播在线观看一区| 男女边摸边吃奶| av在线观看视频网站免费| 国产精品成人在线| 26uuu在线亚洲综合色| 久久久久久伊人网av| xxx大片免费视频| a级毛片免费高清观看在线播放| 成人漫画全彩无遮挡| 中文字幕av电影在线播放| 一二三四中文在线观看免费高清| 久久 成人 亚洲| 国产在视频线精品| 黄色视频在线播放观看不卡| 99热这里只有是精品在线观看| 韩国av在线不卡| 妹子高潮喷水视频| 啦啦啦啦在线视频资源| 欧美日韩亚洲高清精品| 丝瓜视频免费看黄片| 午夜影院在线不卡| 另类亚洲欧美激情| 午夜免费男女啪啪视频观看| 国产精品人妻久久久久久| 国产精品一区二区三区四区免费观看| 91午夜精品亚洲一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 亚洲真实伦在线观看| 91久久精品电影网| 亚洲一区二区三区欧美精品| 日韩制服骚丝袜av| 国产亚洲91精品色在线| 国产成人a∨麻豆精品| 老司机亚洲免费影院| 久久午夜福利片| 少妇 在线观看| 久久国产精品男人的天堂亚洲 | 人人妻人人爽人人添夜夜欢视频 | 少妇的逼水好多| 亚洲国产精品999| 免费观看在线日韩| 伊人亚洲综合成人网| 寂寞人妻少妇视频99o| 日日啪夜夜撸| 日韩制服骚丝袜av| 日本vs欧美在线观看视频 | 99热这里只有是精品在线观看| 国产精品久久久久久久久免| 精品亚洲成a人片在线观看| 一个人看视频在线观看www免费| 久久免费观看电影| 91久久精品国产一区二区三区| 国产精品嫩草影院av在线观看| 狂野欧美激情性bbbbbb| 久久久久网色| 亚洲精品成人av观看孕妇| 久久精品国产鲁丝片午夜精品| 在线精品无人区一区二区三| 亚洲av二区三区四区| 人体艺术视频欧美日本| 伊人亚洲综合成人网| 日本vs欧美在线观看视频 | 日本欧美视频一区| 黄色一级大片看看| 国产精品国产三级专区第一集| 爱豆传媒免费全集在线观看| 午夜免费鲁丝| 99九九在线精品视频 | 日韩一本色道免费dvd| 久久99精品国语久久久| 亚洲欧美精品专区久久| 亚洲一级一片aⅴ在线观看| 观看美女的网站| 成年人午夜在线观看视频| 极品教师在线视频| 精品一区二区三卡| 欧美激情极品国产一区二区三区 | 2021少妇久久久久久久久久久| 欧美丝袜亚洲另类| 美女中出高潮动态图| 久久久国产精品麻豆| 久久久亚洲精品成人影院| 国产黄频视频在线观看| 久久久久视频综合| 天美传媒精品一区二区| 简卡轻食公司| 国产精品久久久久久精品古装| 久久精品国产亚洲av天美| 午夜免费男女啪啪视频观看| 午夜福利,免费看| 精品国产露脸久久av麻豆| 天堂中文最新版在线下载| 在线观看av片永久免费下载| 少妇人妻一区二区三区视频| 欧美少妇被猛烈插入视频| 国产成人免费无遮挡视频| xxx大片免费视频| 欧美国产精品一级二级三级 | 亚洲伊人久久精品综合| 噜噜噜噜噜久久久久久91| 久久精品夜色国产| 久久久久久久国产电影| av不卡在线播放| 99热这里只有精品一区| 伊人久久国产一区二区| 亚洲第一av免费看| 成年美女黄网站色视频大全免费 | 王馨瑶露胸无遮挡在线观看| 亚洲激情五月婷婷啪啪| 老司机影院成人| 亚洲国产成人一精品久久久| 熟女av电影| 亚洲精品第二区| 色5月婷婷丁香| 国产免费福利视频在线观看| 欧美少妇被猛烈插入视频| 国产成人aa在线观看| 亚洲国产精品999| 天堂中文最新版在线下载| 日韩av不卡免费在线播放| 久久久精品94久久精品| 久久 成人 亚洲| 午夜av观看不卡| 久久精品国产亚洲av涩爱| 亚洲性久久影院| 久久99蜜桃精品久久| 只有这里有精品99| 国产精品国产三级国产av玫瑰| 久久久精品94久久精品| 国产乱来视频区| 久久久a久久爽久久v久久| 赤兔流量卡办理| 美女脱内裤让男人舔精品视频| 久久久亚洲精品成人影院| 亚洲精品,欧美精品| 精品久久久久久久久av| 午夜福利视频精品| 高清欧美精品videossex| 国产精品女同一区二区软件| 国产精品久久久久久精品古装| 成人综合一区亚洲| 国产成人精品福利久久| 国内揄拍国产精品人妻在线| 黑人猛操日本美女一级片| 少妇被粗大猛烈的视频| 美女xxoo啪啪120秒动态图| 男男h啪啪无遮挡| 国产老妇伦熟女老妇高清| 欧美成人精品欧美一级黄| 久久精品熟女亚洲av麻豆精品| 国产午夜精品一二区理论片| 免费看光身美女| 国产午夜精品久久久久久一区二区三区| 美女国产视频在线观看| 亚洲欧洲精品一区二区精品久久久 | 91精品伊人久久大香线蕉| 人妻人人澡人人爽人人| 国产成人a∨麻豆精品| 高清欧美精品videossex| 丁香六月天网| www.av在线官网国产| 天天操日日干夜夜撸| 18禁裸乳无遮挡动漫免费视频| 天堂俺去俺来也www色官网| av在线老鸭窝| 久久鲁丝午夜福利片| 亚洲av二区三区四区| 亚洲精品乱码久久久久久按摩| 日本wwww免费看| 精品久久久久久久久av| 天堂8中文在线网| 性色av一级| 极品少妇高潮喷水抽搐| 亚洲三级黄色毛片| 肉色欧美久久久久久久蜜桃| 国产极品天堂在线| 亚州av有码| 老司机亚洲免费影院| 国产亚洲一区二区精品| a级片在线免费高清观看视频| .国产精品久久| 日本vs欧美在线观看视频 | 日本爱情动作片www.在线观看| 狠狠精品人妻久久久久久综合| 一级av片app| 久热这里只有精品99| a级毛片在线看网站| 亚洲国产欧美在线一区| av在线播放精品| 妹子高潮喷水视频| 亚洲av综合色区一区| 国产亚洲av片在线观看秒播厂| 午夜福利在线观看免费完整高清在| 免费观看a级毛片全部| 午夜免费鲁丝| 十八禁高潮呻吟视频 | 国产精品三级大全| 成人无遮挡网站| 下体分泌物呈黄色| 亚洲无线观看免费| av在线观看视频网站免费| 91在线精品国自产拍蜜月| 免费看日本二区| 丝袜喷水一区| 你懂的网址亚洲精品在线观看| 日韩av在线免费看完整版不卡| av免费在线看不卡| 日本欧美国产在线视频| av在线app专区| 色94色欧美一区二区| 大片电影免费在线观看免费| 一级毛片我不卡| 亚洲国产欧美日韩在线播放 | 亚洲精品日韩av片在线观看| 久久综合国产亚洲精品| 久久精品久久精品一区二区三区| 久久久久久人妻| 亚洲av二区三区四区| 久久午夜综合久久蜜桃| 久久人人爽人人片av| 亚洲国产精品999| 国产精品人妻久久久影院| 国产精品久久久久成人av| 午夜视频国产福利| 欧美区成人在线视频| 国产午夜精品久久久久久一区二区三区| 午夜激情久久久久久久| 亚洲精品国产色婷婷电影| 黄色视频在线播放观看不卡| 国产伦精品一区二区三区四那| 青春草视频在线免费观看| 久久免费观看电影| 国产精品免费大片| 久久精品久久久久久久性| 久久婷婷青草| 天堂中文最新版在线下载| av一本久久久久| 狂野欧美激情性bbbbbb| 日本黄色日本黄色录像| 久久99蜜桃精品久久| 观看美女的网站| 国产乱人偷精品视频| 久久精品国产亚洲av涩爱| 最新的欧美精品一区二区| xxx大片免费视频| 少妇裸体淫交视频免费看高清| 国产精品国产三级国产专区5o| 国产在线男女| 亚洲第一区二区三区不卡| √禁漫天堂资源中文www| 日韩 亚洲 欧美在线| 欧美97在线视频| 国产成人精品久久二区二区91| 中国国产av一级| 国产精品免费视频内射| 亚洲精品成人av观看孕妇| 黄色视频不卡| 国产欧美日韩一区二区精品| 亚洲av电影在线观看一区二区三区| 老熟妇仑乱视频hdxx| 日本精品一区二区三区蜜桃| 亚洲黑人精品在线| 色视频在线一区二区三区| 日韩一区二区三区影片| 午夜影院在线不卡| a级毛片在线看网站| 在线观看免费高清a一片| 亚洲中文字幕日韩| 久久亚洲精品不卡| 久久99一区二区三区| 黄色怎么调成土黄色| 在线亚洲精品国产二区图片欧美| 美女高潮到喷水免费观看| svipshipincom国产片| 亚洲午夜精品一区,二区,三区| 国产成人精品在线电影| 一本—道久久a久久精品蜜桃钙片| 国产亚洲精品一区二区www | 丁香六月天网| 伊人亚洲综合成人网| 咕卡用的链子| 一个人免费看片子| 亚洲人成电影观看| 熟女少妇亚洲综合色aaa.| 大片免费播放器 马上看| 亚洲精品一区蜜桃| 大陆偷拍与自拍| 各种免费的搞黄视频| 国产欧美日韩一区二区三区在线| 日韩视频一区二区在线观看| 亚洲精品自拍成人| 国产成人a∨麻豆精品| 欧美97在线视频| 国产福利在线免费观看视频| 免费一级毛片在线播放高清视频 | 久久久久国产精品人妻一区二区| 国产精品自产拍在线观看55亚洲 | 国产亚洲一区二区精品| 天天添夜夜摸| tocl精华| 在线十欧美十亚洲十日本专区| 久久久精品免费免费高清| 精品国产一区二区三区久久久樱花| 天堂8中文在线网| 亚洲国产欧美网| 丝袜喷水一区| 久久精品国产亚洲av高清一级| 91老司机精品| 极品少妇高潮喷水抽搐| 欧美精品一区二区免费开放| 日日爽夜夜爽网站| 两个人免费观看高清视频| 亚洲熟女精品中文字幕| 日韩 亚洲 欧美在线| 久久av网站| 免费看十八禁软件| 美女福利国产在线| 男女无遮挡免费网站观看| 亚洲免费av在线视频| 亚洲欧美精品综合一区二区三区| h视频一区二区三区| 在线观看免费日韩欧美大片| 久久午夜综合久久蜜桃| 一边摸一边做爽爽视频免费| 丝袜美腿诱惑在线| 亚洲avbb在线观看| 久久人人97超碰香蕉20202| 久久女婷五月综合色啪小说| 亚洲精品乱久久久久久| 亚洲国产成人一精品久久久| 俄罗斯特黄特色一大片| 午夜免费鲁丝| 亚洲伊人色综图| 久久人妻熟女aⅴ| 亚洲中文日韩欧美视频| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩福利视频一区二区| 色老头精品视频在线观看| 中文字幕人妻丝袜制服| 啦啦啦中文免费视频观看日本| 黄片小视频在线播放| 少妇人妻久久综合中文| 热99国产精品久久久久久7| videosex国产| 婷婷丁香在线五月| 999久久久国产精品视频| 欧美xxⅹ黑人| 成人影院久久| av欧美777| 精品一区二区三区四区五区乱码| 欧美日韩亚洲高清精品| av超薄肉色丝袜交足视频| 99国产精品一区二区三区| 亚洲视频免费观看视频| 午夜精品久久久久久毛片777| 日韩中文字幕欧美一区二区| 俄罗斯特黄特色一大片| 精品国产国语对白av| 久久天堂一区二区三区四区| 高清在线国产一区| 97在线人人人人妻| 女警被强在线播放| 欧美精品亚洲一区二区| 中文字幕人妻丝袜制服| 国产一区二区 视频在线| 久热这里只有精品99| 69精品国产乱码久久久| 欧美激情久久久久久爽电影 | 又黄又粗又硬又大视频| 中文字幕人妻丝袜一区二区| 免费在线观看日本一区| 国产欧美日韩精品亚洲av| av又黄又爽大尺度在线免费看| 国产在线一区二区三区精| 国产成人精品久久二区二区91| xxxhd国产人妻xxx| 国产不卡av网站在线观看| 亚洲天堂av无毛| 亚洲精品第二区| 免费观看av网站的网址| 超碰成人久久| 岛国毛片在线播放| 人人妻人人添人人爽欧美一区卜| 新久久久久国产一级毛片| 免费人妻精品一区二区三区视频| 99九九在线精品视频| 国产在线免费精品| 99热网站在线观看| 97人妻天天添夜夜摸| 日韩人妻精品一区2区三区| 99国产精品99久久久久| 成人免费观看视频高清| 午夜成年电影在线免费观看| 色婷婷久久久亚洲欧美| 亚洲久久久国产精品| 欧美黄色淫秽网站| tube8黄色片| 99热国产这里只有精品6| 天天躁夜夜躁狠狠躁躁| 亚洲人成电影观看| 亚洲精品在线美女| 国产精品久久久久久人妻精品电影 | 天天躁狠狠躁夜夜躁狠狠躁| 中文欧美无线码| 国产无遮挡羞羞视频在线观看| 免费观看av网站的网址| 在线十欧美十亚洲十日本专区| 国产在线视频一区二区| 黄色毛片三级朝国网站| 成年动漫av网址| svipshipincom国产片| 丁香六月天网|