• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    單層,少層和塊狀WS2薄膜中聲子位移隨溫度的變化

    2019-10-14 07:56:50劉新科王佳樂許楚瑜羅江流梁迪斯岑俞諾呂有明李治文
    物理化學(xué)學(xué)報 2019年10期
    關(guān)鍵詞:深圳大學(xué)聲子實驗室

    劉新科,王佳樂,許楚瑜,羅江流,梁迪斯,岑俞諾,呂有明,李治文

    深圳大學(xué)材料科學(xué)與工程學(xué)院,深圳市特種功能材料重點實驗室,深圳大學(xué)南山區(qū)生物聚合物與安全評價重點實驗室,廣東 深圳 518060

    1 Introduction

    Two-dimensional transition metal dichalcogenides (TMDs)have recently gained much interest due to their rich physical and chemical properties, which enable the future applications in nano-electronics1,2, nano-photonics3-5, and valley-electronics6-8.The counterpart graphene, has also been intensively investigated due to its high electron mobility ~200000 cm2·V-1·s-1, since its first mechanical exfoliation by Novoselov et al. in 20049,10.However, due to its absence of bandgap, to achieve high current on/off ratio is difficult for graphene-based devices. Several techniques have been proposed to create the bandgap for graphene.For example, employing quantum mechanical confinement in patterned11or exfoliated graphene nano-ribbons12introduces a bandgap up to 400 meV, and applying perpendicular electric field (voltage exceeding 100 V) in bi-layer graphene creates a bandgap up to 250 meV13. These innovative methods of introducing a bandgap in graphene always come with a price of significant mobility degradation (~200 cm2·V-1·s-1), process complexity, or device reliability under high voltage14-16. For TMDs, such as MoS2, MoSe2, WSe2, and WS2etc, these materials have a bandgap, which is tunable based on the number of layer. Usually, the bandgap of the bulk TMDs is ~1.2-1.3 eV,and one of mono-layer TMDs is ~1.8-2.1 eV, the increase of bandgap with decreasing number of layer for TMDs is due to the carrier quantum confinement at an atomic scale. Being able to achieve atomic thickness and have a bandgap larger than that of silicon, TMDs are also attractive for being used as the channel material for Si CMOS devices beyond sub-22 nm, since TMDs have advantage for suppressing the source-to-drain tunneling current in ultra-short transistors and offering superior immunity to short-channel effects17.

    Among TMD group, MoS2in both mono- and few-layer films has been intensively studied in the research community over the years18-23. MoS2-based field effect transistors (FETs) with excellent electrical characteristics have been demonstrated, such as high current on/off ratio (~108), low subthreshold swing (~70-80 mV·dec-1), mobility up to ~200 cm2·V-1·s-1(in highk/MoS2/high-k structure)24. As a typical TMD, WS2 has been widely used due to its potential excellent performance25. Similar to MoS2, WS2can also be grown through chemical vapor deposition (CVD)26. According to the simulation work by Liu et al.27, WS2 have a lower in-plane electronic mass, compared with MoS2, MoSe2, and MoTe2, which shows the potential for higher carrier mobility or higher output current for WS2-based FETs.However, as compared with MoS2, the experimental studies on WS2 are limited, or more work is required to be done for further harnessing the full potential of WS2-based FETs. In the literature, mono- and multi-layer WS2-based FETs were demonstrated, and achieved on/off current ratio of ~106-108with mobility of ~140-234 cm2·V-1·s-128-30.

    As for the nano-electronic application, it is important to investigate the electron-phonon interaction and vibration properties of WS2. Raman spectroscopy, as an effective and nondestructive approach for phonon vibration study, has been used to evaluate graphene, and TMDs31-33. Raman spectra reveal much useful information of the test sample through Raman peak position and Raman shape change. Temperature dependent phonon shifts of single layer WS2by mechanical exfoliation34and multi-layer WS2by hydrothermal method35, have been investigated by Raman spectroscopy. In this work, we present thickness- and temperature-dependent studies of the phonon vibration mode for mono-layer, few-layer, and bulk WS2films prepared by mechanical exfoliation.

    2 Experimental

    The mono-layer (1L), few-layer (FL), and bulk WS2films were prepared on 300 nm SiO2/Si wafer by mechanical exfoliation from bulk WS2crystal, which was purchased from 2D Semiconductor Inc. 3M scotch-tape was used for transferring the WS2films. Raman and photoluminescence (PL) spectra were collected in a Renishaw inVia confocal system in the backscattering configuration. The wavelength of the laser was 514 nm (2.4 eV) from an argon ion laser, the grating of 2400 grooves·mm-1was used to obtain more details of line shapes of the Raman band. The laser power on the sample was set at around 1.0 μW to avoid laser induced heating. The application of a 100× objective lens with a numerical aperture of 0.9 can provide us a spot size of ~1 μm, and spectral resolution was 1 cm-1. The Si peak at 520 cm-1was used as a reference for wavelength calibration. Atomic force microscopy (AFM)images were obtained under tapping mode using Bruker Dimension Icon.

    3 Rseults and Discussion

    The atomic force microscopy (AFM) images of 1L, FL, and bulk WS2films are shown in Fig. 1a, b, and c. The film thickness was directly measured by AFM in a non-contact mode. As shown in Fig. 1d, e, and f, the step height or thickness of 1L, FL, and bulk WS2films were measured to be 0.98, 10, and 76 nm. Based on the reported mono-layer WS2thickness of ~0.9 nm, the number of layer for 0.98, 10, and 76 nm is determined to be 1L,~11 L, and ~84 L, respectively. In Fig. 2, PL spectra were measured using a 514 nm excitation laser. It is known that the bulk WS2is an indirect bandgap semiconductor with a ~1.3 eV bandgap, whereas 1L WS2has a direct bandgap of ~2.1 eV. For the bulk WS2, the electron states involved in the indirect transition (the valence band maximum at Γ point and the conduction band minimum at T point) originate from linear combination of tungsten d-orbital and sulfur pz-orbital, and their dispersion strongly depends on the number of layers. For the 1L WS2, the electron states involved in the direct transition (the valence band maximum at K point and the conduction band minimum at K point) mainly originate tungsten d-orbital, and their energies are not very sensitive to the number of layers36. In Fig. 2, one sharp PL peak centered at ~638.5 nm is observed for 1L WS2and the measured spectral range nearly vanishes for the FL WS2sample. When the thickness decreases to 1L, the dramatic increase of the PL intensity is a signature of the transformation from indirect to direct bandgap structures. Based on the PL peak for 1L WS2shown in Fig. 2, the bandgap of 1L WS2is estimated from the PL peak to be ~1.94 eV, which is smaller than ~2.1 eV. Direct electronic transitions in 1L WS2originate from exitonic radiative relaxation, and for this reason the PL peak signal always appears at energies slightly lower than~2.1 eV direct bandgap of WS2.

    Fig. 1 The atomic force microscopy (AFM) images of (a) 1L, (b) FL, and (c) bulk WS2 films.The step height or thickness of (d) 1L, (e) FL, and (f) bulk WS2 films.

    Fig. 2 Photoluminescence spectra from FL to 1L. One sharp PL peak centered at ~638.5 nm for 1L WS2, however nearly no peak for the FL sample.

    Raman studies of 1L, FL, and bulk WS2films have been carried out using a 514 nm excitation laser, since Raman spectrum of WS2under a 514 nm excitation laser becomes very rich, revealing many second-order peaks37,38. Raman spectra at 300 K of 1L, FL, and bulk WS2films are shown in Fig. 3a, b,and c. Raman active modes of WS2comprise of A1g, E1g, E12g, and E22gat the center of the Brillouin zone, but E1gis forbidden in the back-scattering configuration and E22g is less studied due to its low frequency out of the most conventional Raman spectral range. The A1gmode is related to the out-of-plane vibration of sulfur atoms, and the E12gmode is associated with the in-plane vibration of tungsten and sulfur atoms. Under a 514 nm excitation laser, the A1g(Γ) mode was observed at 419 cm-1and dominant 2LA(M) mode observed at ~350 cm-1overlapping with E12g(Γ) mode (~355 cm-1), which was acquired by multi-Lorentzian fitting. Fig. 3d, e, and f show the multi-Lorentzian fitting of 2LA(M)-2 E22g(Γ), E12g(M), 2LA(M), and E12g(Γ) modes for 1L, FL, and bulk WS2films, respectively. When the number of layer increases from 1L to bulk, the A1g(Γ) mode shows a blueshift of 1.34 cm-1from 419.14 to 420.48 cm-1, similar to the trend observed for MoS2, as the van der Waals interactions between the layers increase the restoring force in the thicker layers. On the other hand, E12g(Γ) mode shows a red-shift of 0.69 cm-1from 354.59 (1L) to 353.90 cm-1(bulk), which is attributed to the increment of dielectric long-range coulomb interactions among the effective charges. It is worth noting that in WS2, the close proximity of the 2LA(M), and E12g(Γ) modes increases the error in determining the frequency shift. As compared with MoS2, the A1g(Γ) blue-shift of 1.34 cm-1and the E12g(Γ) red-shift of 0.69 cm-1of WS2are much smaller, as the A1gblue-shift and the E12gred-shift of MoS2as increasing 1L to bulk is ~4.2 and 2.2 cm-1, respectively. As shown in Fig. 3, the frequency difference(Δ) between A1g(Γ) and E12g(Γ) modes is varied from 64.55 to 66.58 cm-1, when the number of WS2layer increases from 1L to bulk. The Δ between A1g(Γ) and E12g(Γ) modes for 1L WS2prepared by mechanical exfoliation is reported to be 64 cm-1by Thripuranthaka et al.34. In the literature, Δ between A1g(Γ) and E12g(Γ) modes is also increased from ~62 to 65 cm-1, when the number of WS2 layer increases from 1L to bulk prepared by chemical vapor deposition (CVD) method. Although this observed trend is similar to that of MoS2, there are a larger Δ change between A1g(Γ) and E12g(Γ) modes (from ~19 to ~25 cm-1), when the number of MoS2layer increases from 1L to bulk. It is noted that the Δ (~18 cm-1) between A1g and E12g modes for the 1L MoS2 by mechanical exfoliation is smaller than that of 1L MoS2by CVD method (~19 cm-1). However, based on the reported values in the literature, the case for WS2is opposite,since the Δ (~64 cm-1) between A1g(Γ) and E12g(Γ) modes for the 1L WS2by mechanical exfoliation is larger than that (~62 cm-1)of 1L WS2 by CVD method. Further, it looks that Raman vibration mode for WS2 is less sensitive to the number of layer as compared to MoS2. Δ between A1gand E12gmodes is often used to identify the number of layer in MoS2films. Due to the less sensitivity of Δ between A1g(Γ) and E12g(Γ) modes to the number of layer for WS2, more accurate or robust method is needed for identifying the number of layer in WS2 films, except for the AFM direct measurement method.

    Temperature-dependent Raman measurements of 1L, FL, and bulk WS2films have been carried out at 80-300 K under a 514 nm excitation laser, and the results are show in Fig. 4a, b, and c.In this part, we will focus on the discussion about peak intensity ratio [2LA(M)/A1g(Γ), E12g(Γ)/A1g(Γ), etc.] and peak position as a function of temperature. In viewing of WS2 as the potential CMOS channel material beyond Si, it is important to study the electron-phone interactions or vibration modes under various temperatures through non-destructive Raman method. The temperature-dependent Raman vibration modes of WS2can have a direct bearing on the carrier transport of WS2-based FETs. As shown in Fig. 5, the 2LA(M)/A1g(Γ), E12g(Γ)/A1g(Γ), and Rec.[2LA(M), E12g(Γ)]/A1g(Γ) peak intensity ratio are plotted as a function of temperature for (a) 1L, (b) FL, and (c) bulk WS2.Rec. [2LA(M), E12g(Γ)] is the recombination of 2LA(M) and E12g(Γ) modes, or the mode without multi-Lorentzian fitting. The peak intensity of Rec.[2LA(M),, and A1g(Γ) as a function of temperature for 1L, FL, and bulk WS2 films can be referred to Fig. 5. With the temperature decreasing,the Raman intensities of Rec. [2LA(M), E12g(Γ)], 2LA(M), E12g(Γ),and A1g(Γ) are increasing at different rates for 1L, FL, and bulk WS2 films. As shown in Fig. 5, it is noted that the Rec. [2LA(M),E12g(Γ)]/A1g(Γ) intensity ratio is creased to more than 1 at 230,190, and 160 K, respectively, for 1L, FL, and bulk WS2films.The A1g(Γ) vibration mode, related to the out-of-plane vibration of sulfur atoms, is dominated when the temperature is above the“cross-over” point or intensity ratio more than 1; Rec.[2LA(M),E12g(Γ)] mode, related to film disorder and in-plane vibration of tungsten and sulfur atoms, is dominated when the temperature is below “cross-over” point or intensity ratio less than 1. The“cross-over” phenomenon is mainly caused by the fast increasing intensity of 2LA(M) mode as the temperature decreasing. Based on the “cross-over” temperature, it may be possible to determine the layer number of WS2 films, since it shows layer-dependent behavior, although more detailed work is needed.

    Fig. 3 Raman spectra at 300 K of (a) 1L, (b) FL, and (c) bulk WS2 film under a 514 nm excitation laser. Multi-Lorentzian fitting of 2LA(M) - modes for (d) 1L,(e) FL, and (f) bulk WS2 film, respectively.

    Fig. 4 Temperature-dependent Raman measurements of (a) 1L, (b) FL, and (c) bulk WS2 films at 80-300 K under a 514 nm excitation laser.

    Fig. 5 2LA(M)/A1g(Γ), E12g(Γ)/A1g(Γ), and Rec. [2LA(M), E12g(Γ)]/A1g(Γ) peak intensity ratios as a function of temperature for (a) 1L,(b) FL, and (c) bulk WS2 films.It is noted that the Rec.[2LA(M), E1 2g(Γ)]/A1g(Γ) ratio is creased to more than 1 at 230, 190, and 160 K, respectively, for 1L, FL, and bulk WS2 films.

    When the temperature decreasing from 300 to 80 K, all the Raman modes of 2LA(M), E12g(Γ), A1g(Γ), and A1g(M) + LA(M)for 1L, FL, and bulk WS2 films change linearly as a function of temperature, shown in Fig. 6a, b, c, and d. It is well-known that Raman spectroscopy is a photon-phonon process which is dominant over thermal expansion, as well as the phonon process on the Raman mode linearly shifts with change in temperature.A few data point dispersion for the Raman peak position can be expected and is well-understood due to the slight variation in the laser spot on the sample, or the local Raman stage vibration, or low excitation power on the sample followed by the extra attenuation from the cold-hot cell window during the measurement. The observed data of peak position obtained from Lorentzian fitting for 2LA(M), E12g(Γ), A1g(Γ), and A1g(M) +LA(M) modes versus temperature were fitted using the Grüneisen model: ω(T) = ω0 + XT, where ω0 is the Raman mode peak position at zero Kelvin temperature, and X is the first-order temperature coefficient of the same mode. The slope of fitted lines gives the first-order temperature coefficient of the specific Raman mode, and shown as an inset in Fig. 6. X values of 2LA(M), E12g(Γ), and A1g(Γ) modes for the 1L WS2are larger than those of FL and bulk WS2, shown in Fig. 6a, b, and c. However,X (~-0.010 cm-1·K-1) of A1g(M) + LA(M) mode is almost identical for 1L, FL, and bulk WS2. Table 1 summarizes the extracted first-order temperature coefficient of LA(M), 2LA(M)- 2E22g(Γ), E12g(M), 2LA(M), E12g(Γ), A1g(Γ), and A1g(M) + LA(M),for 1L, FL, and bulk WS2. The X values for the 2LA(M), A1g(Γ),and A1g(M) + LA(M) modes of 1L WS2 in this work were observed to be close or nearly same as the reported one by Thripuranthaka et al.34. The X variation of E12g(Γ) between this work and Ref.34could be due to the error caused by multi-Lorentzian fitting. Also, the reported X for E12g(Γ) and A1g(Γ)modes of 1L WS2grown by CVD method is -0.0125 and-0.0149 cm-1·K-1, respectively, which is larger or one order magnitude higher than the ones reported in this work and Ref.34.In addition, the reported X for and E12gand A1gmodes of 1L MoS2by mechanical exfoliation method, is ~-0.017 and ~-0.013 cm-1·K-1, respectively, which is larger or one order magnitude higher than the ones reported in this work and Ref.39-41. This indicates that the thermal stability of WS2 may be better than that of MoS2, based on the first-order temperature coefficient of the Raman modes. As compared to X (~-0.0162 cm-1·K-1) of G peak for 1L graphene by mechanical exfoliation, X of 1L WS2in this work is also about one order magnitude lower. With the combination of lower in-plan electronic mass and higher thermal stability (or lower temperature coefficient)42, WS2 could serve as a better candidate for Si CMOS channel material beyond sub-22 nm, as compared to other TMDs. By now, temperaturedependent Raman studies have not been carried out for FL and bulk WS2films by mechanical exfoliation in the literature. The presence of substrate 300 nm SiO2/Si in this work may not affect the final results of temperature coefficient a lot. The effect of substrate on temperature coefficient of WS2 grown by CVD has been investigated by Peimyoo et al.39, and only gives about 6%variation. It is interesting to note that we did not observe the dependence of FWHM on the temperature in the examined temperature range in the 1L, FL, and bulk WS2samples. This is in contrast with the A1g FWHM temperature dependent for MoS2. Further, the variation in the Raman peak position as a function of temperature for the 1L, FL, and bulk WS2samples is due to the temperature contribution that consequences from anharmonicity and contribution from the thermal expansion or volume contribution.

    Fig. 6 Effect of temperature variation on the Raman modes of (a) 2LA(M), (b) E12g(Γ), (c) A1g(Γ), and (d) A1g(M) + LA(M) for 1L, FL, and bulk WS2 films.

    Table 1 Extracted temperature coefficient X for 1L, FL, and bulk WS2 films.

    4 Conclusions

    We have systematically investigated the thickness- and temperature-dependent Raman studies of the phonon vibration mode for mono-layer (1L), few-layer (FL), and bulk WS2films prepared by mechanical exfoliation. With the film thickness increasing to bulk, A1g(Γ) and E12g(Γ) modes show blue-shift of 1.34 cm-1and red-shift of 0.69 cm-1, respectively, with respect to 1L WS2. With temperature decreasing, all the Raman peak positions shift to a higher energy. The “cross-over” temperature,when the dominant Raman vibration modes swaps between E12g(Γ) and A1g(Γ), was identified to be 230, 190, and 160 K,respectively, for 1L, FL, and bulk WS2films. As compared to MoS2, WS2shows much smaller frequency change (64.55-66.58 cm-1) between E12g(Γ) and A1g(Γ) as the film thickness varying,and one magnitude lower temperature coefficient of Raman peak position or better thermal stability. Through this systematic study, the results shown here provide a physical guidance for WS2-based device engineering.

    猜你喜歡
    深圳大學(xué)聲子實驗室
    《深圳大學(xué)學(xué)報理工版》2023 年分類總目次
    半無限板類聲子晶體帶隙仿真的PWE/NS-FEM方法
    《深圳大學(xué)學(xué)報理工版》2021 年分類總目次
    納米表面聲子 首次實現(xiàn)三維成像
    聲子晶體覆蓋層吸聲機(jī)理研究
    《深圳大學(xué)學(xué)報理工版》2020年分類總目次
    電競實驗室
    電子競技(2019年22期)2019-03-07 05:17:26
    電競實驗室
    電子競技(2019年21期)2019-02-24 06:55:52
    電競實驗室
    電子競技(2019年20期)2019-02-24 06:55:35
    電競實驗室
    電子競技(2019年19期)2019-01-16 05:36:09
    中文字幕高清在线视频| 亚洲成av片中文字幕在线观看| 日韩免费av在线播放| 亚洲av成人不卡在线观看播放网| 在线观看66精品国产| 美国免费a级毛片| 大片电影免费在线观看免费| 日韩有码中文字幕| 少妇裸体淫交视频免费看高清 | 男男h啪啪无遮挡| 国产97色在线日韩免费| 久久性视频一级片| 免费女性裸体啪啪无遮挡网站| 满18在线观看网站| 午夜福利,免费看| 他把我摸到了高潮在线观看 | 亚洲国产av新网站| 成年人黄色毛片网站| 黄色视频不卡| 蜜桃在线观看..| 搡老岳熟女国产| 亚洲少妇的诱惑av| 亚洲五月色婷婷综合| 久久人人97超碰香蕉20202| 国产精品98久久久久久宅男小说| 我的亚洲天堂| 伦理电影免费视频| 9色porny在线观看| 一级毛片电影观看| 三级毛片av免费| 女警被强在线播放| 亚洲人成电影免费在线| 亚洲五月婷婷丁香| 久9热在线精品视频| 亚洲精品乱久久久久久| 亚洲av日韩精品久久久久久密| 久久精品国产亚洲av香蕉五月 | 99国产极品粉嫩在线观看| 在线观看66精品国产| videos熟女内射| 欧美+亚洲+日韩+国产| 一级黄色大片毛片| 建设人人有责人人尽责人人享有的| 老熟妇乱子伦视频在线观看| 中文字幕高清在线视频| 丰满少妇做爰视频| 精品第一国产精品| 久久午夜综合久久蜜桃| 日本av手机在线免费观看| 91麻豆av在线| e午夜精品久久久久久久| 欧美乱妇无乱码| 久久久国产成人免费| 精品国产乱码久久久久久小说| 高清黄色对白视频在线免费看| 国产精品一区二区在线观看99| 极品教师在线免费播放| 十八禁人妻一区二区| 久久精品亚洲av国产电影网| 久久久久精品人妻al黑| 天天躁狠狠躁夜夜躁狠狠躁| 我要看黄色一级片免费的| 国产欧美亚洲国产| 成人特级黄色片久久久久久久 | 亚洲熟女精品中文字幕| 一边摸一边做爽爽视频免费| 操美女的视频在线观看| 十八禁人妻一区二区| 久久这里只有精品19| 正在播放国产对白刺激| 亚洲欧美日韩高清在线视频 | 国产欧美亚洲国产| 国产精品一区二区在线观看99| 国产精品一区二区在线观看99| 天堂中文最新版在线下载| 视频在线观看一区二区三区| 最黄视频免费看| 99香蕉大伊视频| 操出白浆在线播放| 日本wwww免费看| 色综合欧美亚洲国产小说| 正在播放国产对白刺激| 人人妻人人添人人爽欧美一区卜| 久久国产精品人妻蜜桃| 男男h啪啪无遮挡| 女性被躁到高潮视频| 建设人人有责人人尽责人人享有的| 少妇粗大呻吟视频| 午夜福利视频在线观看免费| 国产精品麻豆人妻色哟哟久久| 精品一品国产午夜福利视频| 男女床上黄色一级片免费看| 国产高清激情床上av| 人人妻人人爽人人添夜夜欢视频| 亚洲精品美女久久久久99蜜臀| 狠狠狠狠99中文字幕| 波多野结衣一区麻豆| 成年女人毛片免费观看观看9 | 天天添夜夜摸| 香蕉丝袜av| 精品免费久久久久久久清纯 | 国产精品欧美亚洲77777| 99久久精品国产亚洲精品| 久久精品亚洲av国产电影网| 高清毛片免费观看视频网站 | 成人国产av品久久久| 日日摸夜夜添夜夜添小说| 黄色a级毛片大全视频| 国产在线精品亚洲第一网站| 国产片内射在线| 欧美国产精品一级二级三级| 亚洲精品国产一区二区精华液| 精品午夜福利视频在线观看一区 | 欧美人与性动交α欧美精品济南到| 久久精品国产亚洲av高清一级| 国产精品自产拍在线观看55亚洲 | 久久久精品区二区三区| 美女国产高潮福利片在线看| 国产亚洲av高清不卡| 黄色成人免费大全| 欧美激情久久久久久爽电影 | 黑人操中国人逼视频| 丝袜美足系列| 丝袜美足系列| 欧美性长视频在线观看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲熟女毛片儿| 麻豆乱淫一区二区| 天堂俺去俺来也www色官网| 在线亚洲精品国产二区图片欧美| 欧美日韩黄片免| 日韩一区二区三区影片| 国产精品98久久久久久宅男小说| 亚洲专区国产一区二区| 精品少妇一区二区三区视频日本电影| 亚洲精品成人av观看孕妇| 成人特级黄色片久久久久久久 | 无遮挡黄片免费观看| 天天躁狠狠躁夜夜躁狠狠躁| 午夜福利视频在线观看免费| 成年动漫av网址| 美女午夜性视频免费| 欧美黑人精品巨大| 国产av一区二区精品久久| 两个人免费观看高清视频| 一区福利在线观看| 亚洲久久久国产精品| 99在线人妻在线中文字幕 | 日本精品一区二区三区蜜桃| 亚洲精品美女久久av网站| 国产又爽黄色视频| 久久久欧美国产精品| 19禁男女啪啪无遮挡网站| 亚洲精品粉嫩美女一区| 亚洲人成77777在线视频| 91av网站免费观看| 最近最新免费中文字幕在线| 亚洲av国产av综合av卡| 久久这里只有精品19| 法律面前人人平等表现在哪些方面| 久久青草综合色| 在线十欧美十亚洲十日本专区| 久久国产精品影院| 日韩免费av在线播放| 97在线人人人人妻| 欧美激情 高清一区二区三区| 中文字幕人妻丝袜一区二区| 香蕉丝袜av| 最近最新中文字幕大全免费视频| 欧美亚洲 丝袜 人妻 在线| 久久精品亚洲av国产电影网| 操出白浆在线播放| 免费av中文字幕在线| 国产人伦9x9x在线观看| 黄色a级毛片大全视频| 午夜91福利影院| 国产精品一区二区精品视频观看| 变态另类成人亚洲欧美熟女 | 国产精品国产高清国产av | 搡老熟女国产l中国老女人| 国产精品久久久久成人av| 高清欧美精品videossex| 久久久久久免费高清国产稀缺| 亚洲全国av大片| 天天影视国产精品| 18禁国产床啪视频网站| 在线看a的网站| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧洲日产国产| 中文字幕最新亚洲高清| 夜夜骑夜夜射夜夜干| 老熟妇乱子伦视频在线观看| 欧美+亚洲+日韩+国产| 天天躁狠狠躁夜夜躁狠狠躁| kizo精华| www.999成人在线观看| 黄色视频,在线免费观看| 精品国产一区二区三区久久久樱花| 男女边摸边吃奶| 十八禁人妻一区二区| 国产av又大| 啦啦啦 在线观看视频| 一本一本久久a久久精品综合妖精| 国产在线免费精品| 国产伦人伦偷精品视频| 18禁黄网站禁片午夜丰满| 国产成人欧美在线观看 | 成人手机av| 成年女人毛片免费观看观看9 | 1024视频免费在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久久亚洲精品国产蜜桃av| 久久青草综合色| 亚洲午夜精品一区,二区,三区| 欧美日韩黄片免| 在线观看人妻少妇| 高清视频免费观看一区二区| 日本黄色日本黄色录像| 交换朋友夫妻互换小说| 国产国语露脸激情在线看| 久久精品国产99精品国产亚洲性色 | 婷婷丁香在线五月| 最新美女视频免费是黄的| 99国产精品99久久久久| 亚洲精品国产区一区二| 亚洲美女黄片视频| 十八禁网站免费在线| 国产一区二区三区在线臀色熟女 | 色综合婷婷激情| 免费在线观看影片大全网站| 99久久人妻综合| 热99久久久久精品小说推荐| 亚洲中文av在线| 99国产精品一区二区蜜桃av | 精品人妻在线不人妻| 新久久久久国产一级毛片| 欧美变态另类bdsm刘玥| 91国产中文字幕| 多毛熟女@视频| 99久久99久久久精品蜜桃| 另类精品久久| tube8黄色片| 欧美午夜高清在线| 亚洲av电影在线进入| 一级,二级,三级黄色视频| 日韩一卡2卡3卡4卡2021年| 欧美日韩亚洲国产一区二区在线观看 | 亚洲精品一二三| 青草久久国产| 午夜免费鲁丝| 中文字幕制服av| 露出奶头的视频| 免费不卡黄色视频| 老司机亚洲免费影院| 涩涩av久久男人的天堂| 狠狠狠狠99中文字幕| 国产成人啪精品午夜网站| 女同久久另类99精品国产91| 国产欧美日韩一区二区三| 欧美亚洲 丝袜 人妻 在线| 黑人欧美特级aaaaaa片| 亚洲熟女毛片儿| avwww免费| 大型av网站在线播放| 国产单亲对白刺激| www日本在线高清视频| 国产日韩欧美亚洲二区| 成人免费观看视频高清| 极品人妻少妇av视频| 亚洲情色 制服丝袜| 久热爱精品视频在线9| 他把我摸到了高潮在线观看 | 一本久久精品| 97在线人人人人妻| 久久久国产精品麻豆| 日韩一卡2卡3卡4卡2021年| 精品高清国产在线一区| 动漫黄色视频在线观看| 考比视频在线观看| 嫁个100分男人电影在线观看| 老司机福利观看| 99国产精品一区二区三区| 欧美日韩亚洲高清精品| 久久国产精品男人的天堂亚洲| 亚洲黑人精品在线| 色尼玛亚洲综合影院| 久久国产精品影院| 亚洲,欧美精品.| 天天添夜夜摸| av片东京热男人的天堂| 色视频在线一区二区三区| 黄网站色视频无遮挡免费观看| 两个人免费观看高清视频| 中亚洲国语对白在线视频| 亚洲avbb在线观看| 欧美日韩av久久| 午夜福利欧美成人| 黄频高清免费视频| 亚洲国产av影院在线观看| 午夜福利视频精品| 久久精品国产a三级三级三级| 黄色视频,在线免费观看| 两人在一起打扑克的视频| 女人爽到高潮嗷嗷叫在线视频| 亚洲伊人色综图| 国内毛片毛片毛片毛片毛片| 久久久久久亚洲精品国产蜜桃av| 老司机亚洲免费影院| 国产精品麻豆人妻色哟哟久久| 亚洲九九香蕉| 熟女少妇亚洲综合色aaa.| 亚洲一卡2卡3卡4卡5卡精品中文| 制服人妻中文乱码| 亚洲一区中文字幕在线| 男女无遮挡免费网站观看| 麻豆av在线久日| 欧美另类亚洲清纯唯美| 黄色成人免费大全| 久久中文看片网| 国产av又大| 怎么达到女性高潮| 精品亚洲乱码少妇综合久久| 肉色欧美久久久久久久蜜桃| 自拍欧美九色日韩亚洲蝌蚪91| 丰满饥渴人妻一区二区三| 欧美日韩亚洲综合一区二区三区_| 超色免费av| 丝袜美足系列| 精品人妻1区二区| 日韩熟女老妇一区二区性免费视频| 亚洲色图 男人天堂 中文字幕| 色综合婷婷激情| 久热这里只有精品99| 99精品久久久久人妻精品| 9191精品国产免费久久| av欧美777| 欧美乱妇无乱码| 国产精品电影一区二区三区 | 中文字幕高清在线视频| 美女视频免费永久观看网站| 国产一区二区激情短视频| 两人在一起打扑克的视频| 激情在线观看视频在线高清 | 成年动漫av网址| 丝袜人妻中文字幕| 黄色a级毛片大全视频| 91字幕亚洲| 国产免费福利视频在线观看| 老司机福利观看| 久热爱精品视频在线9| 欧美黄色片欧美黄色片| 视频区图区小说| 不卡av一区二区三区| h视频一区二区三区| 免费人妻精品一区二区三区视频| 国产av国产精品国产| 亚洲少妇的诱惑av| 国产黄色免费在线视频| 久久人妻av系列| 不卡一级毛片| 19禁男女啪啪无遮挡网站| 无人区码免费观看不卡 | 亚洲熟妇熟女久久| 精品久久久久久电影网| 免费日韩欧美在线观看| 少妇被粗大的猛进出69影院| 久久精品91无色码中文字幕| 怎么达到女性高潮| 无遮挡黄片免费观看| 国产免费福利视频在线观看| 高清在线国产一区| 国产成人欧美| 国产免费现黄频在线看| 色婷婷av一区二区三区视频| 在线 av 中文字幕| 高清视频免费观看一区二区| 亚洲一卡2卡3卡4卡5卡精品中文| 成人永久免费在线观看视频 | 成人国产av品久久久| 日韩视频在线欧美| 亚洲国产欧美一区二区综合| 天堂8中文在线网| 999久久久国产精品视频| 中文字幕人妻丝袜制服| 国产成人啪精品午夜网站| 另类精品久久| 成在线人永久免费视频| 国产高清国产精品国产三级| 亚洲精品在线美女| 露出奶头的视频| 大片电影免费在线观看免费| 中文亚洲av片在线观看爽 | 人妻一区二区av| 视频区图区小说| 99国产精品一区二区三区| 亚洲视频免费观看视频| 亚洲伊人久久精品综合| 免费在线观看视频国产中文字幕亚洲| 少妇粗大呻吟视频| 免费女性裸体啪啪无遮挡网站| 亚洲欧美日韩高清在线视频 | av福利片在线| 久久ye,这里只有精品| 大码成人一级视频| 日韩免费av在线播放| 在线看a的网站| 最近最新中文字幕大全电影3 | 婷婷成人精品国产| 国产一卡二卡三卡精品| 女警被强在线播放| 午夜福利影视在线免费观看| 欧美激情 高清一区二区三区| 99热网站在线观看| av免费在线观看网站| 十八禁网站免费在线| 国产精品久久电影中文字幕 | 亚洲欧美日韩高清在线视频 | 亚洲黑人精品在线| 免费在线观看日本一区| 一个人免费看片子| 91国产中文字幕| 真人做人爱边吃奶动态| 久久久精品免费免费高清| 国产极品粉嫩免费观看在线| 国产精品久久久久成人av| 热99久久久久精品小说推荐| 女人精品久久久久毛片| 精品一区二区三区视频在线观看免费 | 男女午夜视频在线观看| 久久人妻熟女aⅴ| 国产99久久九九免费精品| 新久久久久国产一级毛片| 夜夜爽天天搞| 国产精品九九99| 亚洲色图 男人天堂 中文字幕| 国产精品熟女久久久久浪| 日韩欧美三级三区| 国产极品粉嫩免费观看在线| 黄网站色视频无遮挡免费观看| 黑丝袜美女国产一区| 夫妻午夜视频| 丝袜喷水一区| 黄色片一级片一级黄色片| 超碰97精品在线观看| 一级片免费观看大全| 久久影院123| 男女午夜视频在线观看| 大香蕉久久成人网| 亚洲成人手机| 久热这里只有精品99| 老司机午夜十八禁免费视频| 色婷婷久久久亚洲欧美| 亚洲成av片中文字幕在线观看| 一级片'在线观看视频| 黑人巨大精品欧美一区二区蜜桃| 如日韩欧美国产精品一区二区三区| 国产在线视频一区二区| 女性生殖器流出的白浆| 成人影院久久| tube8黄色片| 午夜精品久久久久久毛片777| 欧美 亚洲 国产 日韩一| 亚洲精品美女久久久久99蜜臀| 精品久久久久久电影网| 在线观看www视频免费| 狠狠婷婷综合久久久久久88av| 久久人人爽av亚洲精品天堂| 国产xxxxx性猛交| 国产国语露脸激情在线看| 国产精品久久久久久精品电影小说| 人妻一区二区av| 亚洲免费av在线视频| 国产成人欧美| 麻豆av在线久日| 超碰成人久久| av有码第一页| 中文字幕最新亚洲高清| 国产一区有黄有色的免费视频| 亚洲人成电影免费在线| 麻豆成人av在线观看| 久久精品国产亚洲av高清一级| 高潮久久久久久久久久久不卡| 久久精品aⅴ一区二区三区四区| 国产精品美女特级片免费视频播放器 | 黄色视频在线播放观看不卡| 老司机影院毛片| 精品国产乱子伦一区二区三区| 丁香欧美五月| 亚洲伊人久久精品综合| 动漫黄色视频在线观看| 欧美精品一区二区免费开放| 美女视频免费永久观看网站| 久久香蕉激情| 成人av一区二区三区在线看| 操出白浆在线播放| 亚洲国产成人一精品久久久| 久久精品亚洲av国产电影网| 国产亚洲av高清不卡| a在线观看视频网站| 久热爱精品视频在线9| 久久免费观看电影| 国产精品久久久久成人av| 满18在线观看网站| 欧美激情久久久久久爽电影 | 国产黄频视频在线观看| 下体分泌物呈黄色| 19禁男女啪啪无遮挡网站| 大片免费播放器 马上看| 国产欧美日韩精品亚洲av| 91大片在线观看| 美女高潮喷水抽搐中文字幕| 国产日韩一区二区三区精品不卡| 深夜精品福利| 啦啦啦中文免费视频观看日本| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品久久久人人做人人爽| 国产区一区二久久| 亚洲全国av大片| 欧美日韩视频精品一区| 变态另类成人亚洲欧美熟女 | 美女主播在线视频| 亚洲中文字幕日韩| av网站免费在线观看视频| 国产精品99久久99久久久不卡| 中国美女看黄片| 欧美成人午夜精品| 国产精品 国内视频| 曰老女人黄片| 天天操日日干夜夜撸| 一本综合久久免费| 露出奶头的视频| 啦啦啦视频在线资源免费观看| 宅男免费午夜| 丰满人妻熟妇乱又伦精品不卡| 国产精品 欧美亚洲| 91字幕亚洲| 国产熟女午夜一区二区三区| 国产日韩欧美视频二区| 老鸭窝网址在线观看| 中文字幕精品免费在线观看视频| 一二三四社区在线视频社区8| 欧美久久黑人一区二区| 王馨瑶露胸无遮挡在线观看| 黄网站色视频无遮挡免费观看| 91成年电影在线观看| 亚洲av成人一区二区三| 久久国产精品大桥未久av| 欧美乱码精品一区二区三区| 日韩欧美免费精品| 亚洲自偷自拍图片 自拍| 男女免费视频国产| 国产成+人综合+亚洲专区| 露出奶头的视频| 亚洲成人手机| 国产免费现黄频在线看| 美女福利国产在线| 亚洲人成77777在线视频| 日韩免费高清中文字幕av| 国产av精品麻豆| 91九色精品人成在线观看| 国产av精品麻豆| 高清欧美精品videossex| 黄频高清免费视频| 不卡av一区二区三区| cao死你这个sao货| 国产精品一区二区精品视频观看| 一级,二级,三级黄色视频| 精品国产亚洲在线| 久久久国产成人免费| 久久久精品区二区三区| 如日韩欧美国产精品一区二区三区| 老熟妇仑乱视频hdxx| av福利片在线| av天堂在线播放| 中文字幕色久视频| 人妻 亚洲 视频| 久久热在线av| 精品少妇黑人巨大在线播放| 国产99久久九九免费精品| av有码第一页| 丝袜美足系列| 大香蕉久久网| 色综合婷婷激情| 中文字幕另类日韩欧美亚洲嫩草| 精品久久久精品久久久| 国产有黄有色有爽视频| 欧美 亚洲 国产 日韩一| 51午夜福利影视在线观看| 国产精品1区2区在线观看. | 黄色 视频免费看| 亚洲人成电影免费在线| 久久精品国产a三级三级三级| 日本vs欧美在线观看视频| 亚洲美女黄片视频| 亚洲成国产人片在线观看| 搡老岳熟女国产| 国产亚洲午夜精品一区二区久久| 欧美激情 高清一区二区三区| 成人18禁高潮啪啪吃奶动态图| 一本一本久久a久久精品综合妖精| 一级毛片女人18水好多| 五月开心婷婷网| 亚洲成人手机| 欧美激情高清一区二区三区| 欧美国产精品va在线观看不卡| 久久99一区二区三区| 亚洲色图av天堂| 十八禁人妻一区二区| 亚洲精品国产区一区二| 一区二区av电影网| 在线观看一区二区三区激情| 大片电影免费在线观看免费| 久久久欧美国产精品| 亚洲欧美日韩高清在线视频 | 高潮久久久久久久久久久不卡|