• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    單層,少層和塊狀WS2薄膜中聲子位移隨溫度的變化

    2019-10-14 07:56:50劉新科王佳樂許楚瑜羅江流梁迪斯岑俞諾呂有明李治文
    物理化學(xué)學(xué)報 2019年10期
    關(guān)鍵詞:深圳大學(xué)聲子實驗室

    劉新科,王佳樂,許楚瑜,羅江流,梁迪斯,岑俞諾,呂有明,李治文

    深圳大學(xué)材料科學(xué)與工程學(xué)院,深圳市特種功能材料重點實驗室,深圳大學(xué)南山區(qū)生物聚合物與安全評價重點實驗室,廣東 深圳 518060

    1 Introduction

    Two-dimensional transition metal dichalcogenides (TMDs)have recently gained much interest due to their rich physical and chemical properties, which enable the future applications in nano-electronics1,2, nano-photonics3-5, and valley-electronics6-8.The counterpart graphene, has also been intensively investigated due to its high electron mobility ~200000 cm2·V-1·s-1, since its first mechanical exfoliation by Novoselov et al. in 20049,10.However, due to its absence of bandgap, to achieve high current on/off ratio is difficult for graphene-based devices. Several techniques have been proposed to create the bandgap for graphene.For example, employing quantum mechanical confinement in patterned11or exfoliated graphene nano-ribbons12introduces a bandgap up to 400 meV, and applying perpendicular electric field (voltage exceeding 100 V) in bi-layer graphene creates a bandgap up to 250 meV13. These innovative methods of introducing a bandgap in graphene always come with a price of significant mobility degradation (~200 cm2·V-1·s-1), process complexity, or device reliability under high voltage14-16. For TMDs, such as MoS2, MoSe2, WSe2, and WS2etc, these materials have a bandgap, which is tunable based on the number of layer. Usually, the bandgap of the bulk TMDs is ~1.2-1.3 eV,and one of mono-layer TMDs is ~1.8-2.1 eV, the increase of bandgap with decreasing number of layer for TMDs is due to the carrier quantum confinement at an atomic scale. Being able to achieve atomic thickness and have a bandgap larger than that of silicon, TMDs are also attractive for being used as the channel material for Si CMOS devices beyond sub-22 nm, since TMDs have advantage for suppressing the source-to-drain tunneling current in ultra-short transistors and offering superior immunity to short-channel effects17.

    Among TMD group, MoS2in both mono- and few-layer films has been intensively studied in the research community over the years18-23. MoS2-based field effect transistors (FETs) with excellent electrical characteristics have been demonstrated, such as high current on/off ratio (~108), low subthreshold swing (~70-80 mV·dec-1), mobility up to ~200 cm2·V-1·s-1(in highk/MoS2/high-k structure)24. As a typical TMD, WS2 has been widely used due to its potential excellent performance25. Similar to MoS2, WS2can also be grown through chemical vapor deposition (CVD)26. According to the simulation work by Liu et al.27, WS2 have a lower in-plane electronic mass, compared with MoS2, MoSe2, and MoTe2, which shows the potential for higher carrier mobility or higher output current for WS2-based FETs.However, as compared with MoS2, the experimental studies on WS2 are limited, or more work is required to be done for further harnessing the full potential of WS2-based FETs. In the literature, mono- and multi-layer WS2-based FETs were demonstrated, and achieved on/off current ratio of ~106-108with mobility of ~140-234 cm2·V-1·s-128-30.

    As for the nano-electronic application, it is important to investigate the electron-phonon interaction and vibration properties of WS2. Raman spectroscopy, as an effective and nondestructive approach for phonon vibration study, has been used to evaluate graphene, and TMDs31-33. Raman spectra reveal much useful information of the test sample through Raman peak position and Raman shape change. Temperature dependent phonon shifts of single layer WS2by mechanical exfoliation34and multi-layer WS2by hydrothermal method35, have been investigated by Raman spectroscopy. In this work, we present thickness- and temperature-dependent studies of the phonon vibration mode for mono-layer, few-layer, and bulk WS2films prepared by mechanical exfoliation.

    2 Experimental

    The mono-layer (1L), few-layer (FL), and bulk WS2films were prepared on 300 nm SiO2/Si wafer by mechanical exfoliation from bulk WS2crystal, which was purchased from 2D Semiconductor Inc. 3M scotch-tape was used for transferring the WS2films. Raman and photoluminescence (PL) spectra were collected in a Renishaw inVia confocal system in the backscattering configuration. The wavelength of the laser was 514 nm (2.4 eV) from an argon ion laser, the grating of 2400 grooves·mm-1was used to obtain more details of line shapes of the Raman band. The laser power on the sample was set at around 1.0 μW to avoid laser induced heating. The application of a 100× objective lens with a numerical aperture of 0.9 can provide us a spot size of ~1 μm, and spectral resolution was 1 cm-1. The Si peak at 520 cm-1was used as a reference for wavelength calibration. Atomic force microscopy (AFM)images were obtained under tapping mode using Bruker Dimension Icon.

    3 Rseults and Discussion

    The atomic force microscopy (AFM) images of 1L, FL, and bulk WS2films are shown in Fig. 1a, b, and c. The film thickness was directly measured by AFM in a non-contact mode. As shown in Fig. 1d, e, and f, the step height or thickness of 1L, FL, and bulk WS2films were measured to be 0.98, 10, and 76 nm. Based on the reported mono-layer WS2thickness of ~0.9 nm, the number of layer for 0.98, 10, and 76 nm is determined to be 1L,~11 L, and ~84 L, respectively. In Fig. 2, PL spectra were measured using a 514 nm excitation laser. It is known that the bulk WS2is an indirect bandgap semiconductor with a ~1.3 eV bandgap, whereas 1L WS2has a direct bandgap of ~2.1 eV. For the bulk WS2, the electron states involved in the indirect transition (the valence band maximum at Γ point and the conduction band minimum at T point) originate from linear combination of tungsten d-orbital and sulfur pz-orbital, and their dispersion strongly depends on the number of layers. For the 1L WS2, the electron states involved in the direct transition (the valence band maximum at K point and the conduction band minimum at K point) mainly originate tungsten d-orbital, and their energies are not very sensitive to the number of layers36. In Fig. 2, one sharp PL peak centered at ~638.5 nm is observed for 1L WS2and the measured spectral range nearly vanishes for the FL WS2sample. When the thickness decreases to 1L, the dramatic increase of the PL intensity is a signature of the transformation from indirect to direct bandgap structures. Based on the PL peak for 1L WS2shown in Fig. 2, the bandgap of 1L WS2is estimated from the PL peak to be ~1.94 eV, which is smaller than ~2.1 eV. Direct electronic transitions in 1L WS2originate from exitonic radiative relaxation, and for this reason the PL peak signal always appears at energies slightly lower than~2.1 eV direct bandgap of WS2.

    Fig. 1 The atomic force microscopy (AFM) images of (a) 1L, (b) FL, and (c) bulk WS2 films.The step height or thickness of (d) 1L, (e) FL, and (f) bulk WS2 films.

    Fig. 2 Photoluminescence spectra from FL to 1L. One sharp PL peak centered at ~638.5 nm for 1L WS2, however nearly no peak for the FL sample.

    Raman studies of 1L, FL, and bulk WS2films have been carried out using a 514 nm excitation laser, since Raman spectrum of WS2under a 514 nm excitation laser becomes very rich, revealing many second-order peaks37,38. Raman spectra at 300 K of 1L, FL, and bulk WS2films are shown in Fig. 3a, b,and c. Raman active modes of WS2comprise of A1g, E1g, E12g, and E22gat the center of the Brillouin zone, but E1gis forbidden in the back-scattering configuration and E22g is less studied due to its low frequency out of the most conventional Raman spectral range. The A1gmode is related to the out-of-plane vibration of sulfur atoms, and the E12gmode is associated with the in-plane vibration of tungsten and sulfur atoms. Under a 514 nm excitation laser, the A1g(Γ) mode was observed at 419 cm-1and dominant 2LA(M) mode observed at ~350 cm-1overlapping with E12g(Γ) mode (~355 cm-1), which was acquired by multi-Lorentzian fitting. Fig. 3d, e, and f show the multi-Lorentzian fitting of 2LA(M)-2 E22g(Γ), E12g(M), 2LA(M), and E12g(Γ) modes for 1L, FL, and bulk WS2films, respectively. When the number of layer increases from 1L to bulk, the A1g(Γ) mode shows a blueshift of 1.34 cm-1from 419.14 to 420.48 cm-1, similar to the trend observed for MoS2, as the van der Waals interactions between the layers increase the restoring force in the thicker layers. On the other hand, E12g(Γ) mode shows a red-shift of 0.69 cm-1from 354.59 (1L) to 353.90 cm-1(bulk), which is attributed to the increment of dielectric long-range coulomb interactions among the effective charges. It is worth noting that in WS2, the close proximity of the 2LA(M), and E12g(Γ) modes increases the error in determining the frequency shift. As compared with MoS2, the A1g(Γ) blue-shift of 1.34 cm-1and the E12g(Γ) red-shift of 0.69 cm-1of WS2are much smaller, as the A1gblue-shift and the E12gred-shift of MoS2as increasing 1L to bulk is ~4.2 and 2.2 cm-1, respectively. As shown in Fig. 3, the frequency difference(Δ) between A1g(Γ) and E12g(Γ) modes is varied from 64.55 to 66.58 cm-1, when the number of WS2layer increases from 1L to bulk. The Δ between A1g(Γ) and E12g(Γ) modes for 1L WS2prepared by mechanical exfoliation is reported to be 64 cm-1by Thripuranthaka et al.34. In the literature, Δ between A1g(Γ) and E12g(Γ) modes is also increased from ~62 to 65 cm-1, when the number of WS2 layer increases from 1L to bulk prepared by chemical vapor deposition (CVD) method. Although this observed trend is similar to that of MoS2, there are a larger Δ change between A1g(Γ) and E12g(Γ) modes (from ~19 to ~25 cm-1), when the number of MoS2layer increases from 1L to bulk. It is noted that the Δ (~18 cm-1) between A1g and E12g modes for the 1L MoS2 by mechanical exfoliation is smaller than that of 1L MoS2by CVD method (~19 cm-1). However, based on the reported values in the literature, the case for WS2is opposite,since the Δ (~64 cm-1) between A1g(Γ) and E12g(Γ) modes for the 1L WS2by mechanical exfoliation is larger than that (~62 cm-1)of 1L WS2 by CVD method. Further, it looks that Raman vibration mode for WS2 is less sensitive to the number of layer as compared to MoS2. Δ between A1gand E12gmodes is often used to identify the number of layer in MoS2films. Due to the less sensitivity of Δ between A1g(Γ) and E12g(Γ) modes to the number of layer for WS2, more accurate or robust method is needed for identifying the number of layer in WS2 films, except for the AFM direct measurement method.

    Temperature-dependent Raman measurements of 1L, FL, and bulk WS2films have been carried out at 80-300 K under a 514 nm excitation laser, and the results are show in Fig. 4a, b, and c.In this part, we will focus on the discussion about peak intensity ratio [2LA(M)/A1g(Γ), E12g(Γ)/A1g(Γ), etc.] and peak position as a function of temperature. In viewing of WS2 as the potential CMOS channel material beyond Si, it is important to study the electron-phone interactions or vibration modes under various temperatures through non-destructive Raman method. The temperature-dependent Raman vibration modes of WS2can have a direct bearing on the carrier transport of WS2-based FETs. As shown in Fig. 5, the 2LA(M)/A1g(Γ), E12g(Γ)/A1g(Γ), and Rec.[2LA(M), E12g(Γ)]/A1g(Γ) peak intensity ratio are plotted as a function of temperature for (a) 1L, (b) FL, and (c) bulk WS2.Rec. [2LA(M), E12g(Γ)] is the recombination of 2LA(M) and E12g(Γ) modes, or the mode without multi-Lorentzian fitting. The peak intensity of Rec.[2LA(M),, and A1g(Γ) as a function of temperature for 1L, FL, and bulk WS2 films can be referred to Fig. 5. With the temperature decreasing,the Raman intensities of Rec. [2LA(M), E12g(Γ)], 2LA(M), E12g(Γ),and A1g(Γ) are increasing at different rates for 1L, FL, and bulk WS2 films. As shown in Fig. 5, it is noted that the Rec. [2LA(M),E12g(Γ)]/A1g(Γ) intensity ratio is creased to more than 1 at 230,190, and 160 K, respectively, for 1L, FL, and bulk WS2films.The A1g(Γ) vibration mode, related to the out-of-plane vibration of sulfur atoms, is dominated when the temperature is above the“cross-over” point or intensity ratio more than 1; Rec.[2LA(M),E12g(Γ)] mode, related to film disorder and in-plane vibration of tungsten and sulfur atoms, is dominated when the temperature is below “cross-over” point or intensity ratio less than 1. The“cross-over” phenomenon is mainly caused by the fast increasing intensity of 2LA(M) mode as the temperature decreasing. Based on the “cross-over” temperature, it may be possible to determine the layer number of WS2 films, since it shows layer-dependent behavior, although more detailed work is needed.

    Fig. 3 Raman spectra at 300 K of (a) 1L, (b) FL, and (c) bulk WS2 film under a 514 nm excitation laser. Multi-Lorentzian fitting of 2LA(M) - modes for (d) 1L,(e) FL, and (f) bulk WS2 film, respectively.

    Fig. 4 Temperature-dependent Raman measurements of (a) 1L, (b) FL, and (c) bulk WS2 films at 80-300 K under a 514 nm excitation laser.

    Fig. 5 2LA(M)/A1g(Γ), E12g(Γ)/A1g(Γ), and Rec. [2LA(M), E12g(Γ)]/A1g(Γ) peak intensity ratios as a function of temperature for (a) 1L,(b) FL, and (c) bulk WS2 films.It is noted that the Rec.[2LA(M), E1 2g(Γ)]/A1g(Γ) ratio is creased to more than 1 at 230, 190, and 160 K, respectively, for 1L, FL, and bulk WS2 films.

    When the temperature decreasing from 300 to 80 K, all the Raman modes of 2LA(M), E12g(Γ), A1g(Γ), and A1g(M) + LA(M)for 1L, FL, and bulk WS2 films change linearly as a function of temperature, shown in Fig. 6a, b, c, and d. It is well-known that Raman spectroscopy is a photon-phonon process which is dominant over thermal expansion, as well as the phonon process on the Raman mode linearly shifts with change in temperature.A few data point dispersion for the Raman peak position can be expected and is well-understood due to the slight variation in the laser spot on the sample, or the local Raman stage vibration, or low excitation power on the sample followed by the extra attenuation from the cold-hot cell window during the measurement. The observed data of peak position obtained from Lorentzian fitting for 2LA(M), E12g(Γ), A1g(Γ), and A1g(M) +LA(M) modes versus temperature were fitted using the Grüneisen model: ω(T) = ω0 + XT, where ω0 is the Raman mode peak position at zero Kelvin temperature, and X is the first-order temperature coefficient of the same mode. The slope of fitted lines gives the first-order temperature coefficient of the specific Raman mode, and shown as an inset in Fig. 6. X values of 2LA(M), E12g(Γ), and A1g(Γ) modes for the 1L WS2are larger than those of FL and bulk WS2, shown in Fig. 6a, b, and c. However,X (~-0.010 cm-1·K-1) of A1g(M) + LA(M) mode is almost identical for 1L, FL, and bulk WS2. Table 1 summarizes the extracted first-order temperature coefficient of LA(M), 2LA(M)- 2E22g(Γ), E12g(M), 2LA(M), E12g(Γ), A1g(Γ), and A1g(M) + LA(M),for 1L, FL, and bulk WS2. The X values for the 2LA(M), A1g(Γ),and A1g(M) + LA(M) modes of 1L WS2 in this work were observed to be close or nearly same as the reported one by Thripuranthaka et al.34. The X variation of E12g(Γ) between this work and Ref.34could be due to the error caused by multi-Lorentzian fitting. Also, the reported X for E12g(Γ) and A1g(Γ)modes of 1L WS2grown by CVD method is -0.0125 and-0.0149 cm-1·K-1, respectively, which is larger or one order magnitude higher than the ones reported in this work and Ref.34.In addition, the reported X for and E12gand A1gmodes of 1L MoS2by mechanical exfoliation method, is ~-0.017 and ~-0.013 cm-1·K-1, respectively, which is larger or one order magnitude higher than the ones reported in this work and Ref.39-41. This indicates that the thermal stability of WS2 may be better than that of MoS2, based on the first-order temperature coefficient of the Raman modes. As compared to X (~-0.0162 cm-1·K-1) of G peak for 1L graphene by mechanical exfoliation, X of 1L WS2in this work is also about one order magnitude lower. With the combination of lower in-plan electronic mass and higher thermal stability (or lower temperature coefficient)42, WS2 could serve as a better candidate for Si CMOS channel material beyond sub-22 nm, as compared to other TMDs. By now, temperaturedependent Raman studies have not been carried out for FL and bulk WS2films by mechanical exfoliation in the literature. The presence of substrate 300 nm SiO2/Si in this work may not affect the final results of temperature coefficient a lot. The effect of substrate on temperature coefficient of WS2 grown by CVD has been investigated by Peimyoo et al.39, and only gives about 6%variation. It is interesting to note that we did not observe the dependence of FWHM on the temperature in the examined temperature range in the 1L, FL, and bulk WS2samples. This is in contrast with the A1g FWHM temperature dependent for MoS2. Further, the variation in the Raman peak position as a function of temperature for the 1L, FL, and bulk WS2samples is due to the temperature contribution that consequences from anharmonicity and contribution from the thermal expansion or volume contribution.

    Fig. 6 Effect of temperature variation on the Raman modes of (a) 2LA(M), (b) E12g(Γ), (c) A1g(Γ), and (d) A1g(M) + LA(M) for 1L, FL, and bulk WS2 films.

    Table 1 Extracted temperature coefficient X for 1L, FL, and bulk WS2 films.

    4 Conclusions

    We have systematically investigated the thickness- and temperature-dependent Raman studies of the phonon vibration mode for mono-layer (1L), few-layer (FL), and bulk WS2films prepared by mechanical exfoliation. With the film thickness increasing to bulk, A1g(Γ) and E12g(Γ) modes show blue-shift of 1.34 cm-1and red-shift of 0.69 cm-1, respectively, with respect to 1L WS2. With temperature decreasing, all the Raman peak positions shift to a higher energy. The “cross-over” temperature,when the dominant Raman vibration modes swaps between E12g(Γ) and A1g(Γ), was identified to be 230, 190, and 160 K,respectively, for 1L, FL, and bulk WS2films. As compared to MoS2, WS2shows much smaller frequency change (64.55-66.58 cm-1) between E12g(Γ) and A1g(Γ) as the film thickness varying,and one magnitude lower temperature coefficient of Raman peak position or better thermal stability. Through this systematic study, the results shown here provide a physical guidance for WS2-based device engineering.

    猜你喜歡
    深圳大學(xué)聲子實驗室
    《深圳大學(xué)學(xué)報理工版》2023 年分類總目次
    半無限板類聲子晶體帶隙仿真的PWE/NS-FEM方法
    《深圳大學(xué)學(xué)報理工版》2021 年分類總目次
    納米表面聲子 首次實現(xiàn)三維成像
    聲子晶體覆蓋層吸聲機(jī)理研究
    《深圳大學(xué)學(xué)報理工版》2020年分類總目次
    電競實驗室
    電子競技(2019年22期)2019-03-07 05:17:26
    電競實驗室
    電子競技(2019年21期)2019-02-24 06:55:52
    電競實驗室
    電子競技(2019年20期)2019-02-24 06:55:35
    電競實驗室
    電子競技(2019年19期)2019-01-16 05:36:09
    欧美不卡视频在线免费观看 | 在线看三级毛片| 欧美+亚洲+日韩+国产| 精品高清国产在线一区| 欧美丝袜亚洲另类 | 亚洲欧洲精品一区二区精品久久久| 1024视频免费在线观看| 亚洲18禁久久av| 久久香蕉精品热| netflix在线观看网站| 老司机福利观看| 久久久久久大精品| 日韩免费av在线播放| 久久久久免费精品人妻一区二区| 狂野欧美白嫩少妇大欣赏| 岛国在线免费视频观看| 久久99热这里只有精品18| 日韩中文字幕欧美一区二区| 波多野结衣巨乳人妻| 欧美一级毛片孕妇| 久久天躁狠狠躁夜夜2o2o| 亚洲精品国产精品久久久不卡| 国产一区二区在线观看日韩 | 白带黄色成豆腐渣| 成人18禁高潮啪啪吃奶动态图| 99精品久久久久人妻精品| 亚洲五月天丁香| 国产午夜精品久久久久久| 亚洲电影在线观看av| 日韩欧美在线乱码| 中文字幕久久专区| 精品久久久久久成人av| 欧美成狂野欧美在线观看| 亚洲一码二码三码区别大吗| 亚洲熟妇熟女久久| 欧美av亚洲av综合av国产av| 久久婷婷成人综合色麻豆| 欧美日韩瑟瑟在线播放| 真人做人爱边吃奶动态| 美女扒开内裤让男人捅视频| 亚洲欧美日韩高清专用| 精品久久久久久久末码| av有码第一页| 国内揄拍国产精品人妻在线| 日韩成人在线观看一区二区三区| 色哟哟哟哟哟哟| 欧美乱码精品一区二区三区| 欧美大码av| 色综合欧美亚洲国产小说| 免费人成视频x8x8入口观看| 国产私拍福利视频在线观看| 久久精品aⅴ一区二区三区四区| 男人舔奶头视频| 亚洲一区二区三区色噜噜| 国产伦在线观看视频一区| 99精品在免费线老司机午夜| 国产精品 欧美亚洲| 两人在一起打扑克的视频| 麻豆国产av国片精品| 18禁裸乳无遮挡免费网站照片| 男女视频在线观看网站免费 | 国产激情欧美一区二区| 一本精品99久久精品77| 99久久精品国产亚洲精品| 男女视频在线观看网站免费 | 国产精品亚洲美女久久久| 亚洲专区字幕在线| 国产亚洲精品一区二区www| 亚洲中文日韩欧美视频| 日日摸夜夜添夜夜添小说| 天堂av国产一区二区熟女人妻 | 超碰成人久久| 国产伦在线观看视频一区| 欧美久久黑人一区二区| 免费看日本二区| 午夜精品久久久久久毛片777| 18美女黄网站色大片免费观看| 国产成人精品久久二区二区91| 国产一区二区在线av高清观看| 在线永久观看黄色视频| 亚洲自拍偷在线| ponron亚洲| 精品一区二区三区视频在线观看免费| 又黄又粗又硬又大视频| 日韩大尺度精品在线看网址| 在线播放国产精品三级| 91麻豆av在线| 女人被狂操c到高潮| 丰满人妻熟妇乱又伦精品不卡| 一本精品99久久精品77| 香蕉久久夜色| 小说图片视频综合网站| 国产精品综合久久久久久久免费| 又粗又爽又猛毛片免费看| 美女大奶头视频| 在线免费观看的www视频| 欧美一区二区国产精品久久精品 | 日本一区二区免费在线视频| 人妻久久中文字幕网| 男女那种视频在线观看| 脱女人内裤的视频| 亚洲最大成人中文| 国产一级毛片七仙女欲春2| 神马国产精品三级电影在线观看 | 99久久精品国产亚洲精品| 精品日产1卡2卡| 怎么达到女性高潮| 欧美日韩国产亚洲二区| 变态另类成人亚洲欧美熟女| 日韩免费av在线播放| 久久国产乱子伦精品免费另类| 日韩精品免费视频一区二区三区| 亚洲av成人av| 久久久久久大精品| 色精品久久人妻99蜜桃| 亚洲欧美日韩高清专用| 精品无人区乱码1区二区| av片东京热男人的天堂| 很黄的视频免费| 两人在一起打扑克的视频| 在线看三级毛片| 国产v大片淫在线免费观看| 国产av一区在线观看免费| 国产熟女午夜一区二区三区| 桃色一区二区三区在线观看| 淫妇啪啪啪对白视频| 亚洲av第一区精品v没综合| 亚洲五月天丁香| 亚洲第一欧美日韩一区二区三区| 国产99久久九九免费精品| 一级黄色大片毛片| 精品电影一区二区在线| 黄色女人牲交| 18禁国产床啪视频网站| 女生性感内裤真人,穿戴方法视频| 亚洲中文av在线| 搡老妇女老女人老熟妇| 欧美成人一区二区免费高清观看 | 亚洲片人在线观看| 国产一区二区激情短视频| 国模一区二区三区四区视频 | 欧美乱色亚洲激情| 老司机午夜十八禁免费视频| 1024视频免费在线观看| 亚洲aⅴ乱码一区二区在线播放 | 在线十欧美十亚洲十日本专区| 老司机深夜福利视频在线观看| 超碰成人久久| 中文字幕熟女人妻在线| 一二三四社区在线视频社区8| 国产精品日韩av在线免费观看| 日本免费a在线| 亚洲五月天丁香| 97超级碰碰碰精品色视频在线观看| 欧美国产日韩亚洲一区| 看免费av毛片| 亚洲欧美日韩东京热| 欧美日韩黄片免| 久久人人精品亚洲av| 日韩欧美三级三区| 久久中文字幕一级| 1024视频免费在线观看| 亚洲成人久久爱视频| 久久久久国产一级毛片高清牌| 91麻豆av在线| 国产人伦9x9x在线观看| 高清在线国产一区| 久久 成人 亚洲| 一本大道久久a久久精品| 成人国产综合亚洲| 国产精品影院久久| 亚洲成人国产一区在线观看| 欧美日韩中文字幕国产精品一区二区三区| 99国产综合亚洲精品| 亚洲国产欧美一区二区综合| 久久亚洲真实| 一本久久中文字幕| 后天国语完整版免费观看| 97超级碰碰碰精品色视频在线观看| 日本在线视频免费播放| 最新美女视频免费是黄的| 午夜精品一区二区三区免费看| 成人欧美大片| 人人妻人人看人人澡| 不卡av一区二区三区| 99国产精品一区二区三区| 久热爱精品视频在线9| 国产99白浆流出| 国产野战对白在线观看| 啦啦啦免费观看视频1| 欧美黑人欧美精品刺激| 18禁国产床啪视频网站| 午夜a级毛片| 十八禁网站免费在线| 一夜夜www| 别揉我奶头~嗯~啊~动态视频| 一卡2卡三卡四卡精品乱码亚洲| 亚洲欧美日韩高清在线视频| 精品高清国产在线一区| 婷婷精品国产亚洲av| 国产精品久久久久久亚洲av鲁大| 18禁国产床啪视频网站| 久久精品综合一区二区三区| 在线观看美女被高潮喷水网站 | 999久久久精品免费观看国产| 好男人电影高清在线观看| 久久99热这里只有精品18| 母亲3免费完整高清在线观看| 18禁黄网站禁片午夜丰满| 国产久久久一区二区三区| 国产精品电影一区二区三区| 欧美高清成人免费视频www| 麻豆成人av在线观看| 99国产极品粉嫩在线观看| 国产一区二区在线观看日韩 | 麻豆久久精品国产亚洲av| 免费在线观看影片大全网站| 国产亚洲精品第一综合不卡| 少妇被粗大的猛进出69影院| 淫秽高清视频在线观看| 18美女黄网站色大片免费观看| 18禁黄网站禁片午夜丰满| www.熟女人妻精品国产| 精品高清国产在线一区| 亚洲va日本ⅴa欧美va伊人久久| 亚洲欧美日韩东京热| 久久精品人妻少妇| 日本黄大片高清| 一级黄色大片毛片| 欧美激情久久久久久爽电影| 欧美性长视频在线观看| 国产熟女xx| 国产成人精品久久二区二区免费| 中文字幕久久专区| 久久久精品大字幕| 正在播放国产对白刺激| 午夜福利成人在线免费观看| 免费看日本二区| 欧美中文日本在线观看视频| 免费在线观看亚洲国产| 99久久国产精品久久久| 18禁黄网站禁片午夜丰满| 在线观看日韩欧美| 国产一级毛片七仙女欲春2| 老司机在亚洲福利影院| 村上凉子中文字幕在线| 露出奶头的视频| 91国产中文字幕| 成年女人毛片免费观看观看9| 欧美乱码精品一区二区三区| 村上凉子中文字幕在线| 黄色视频不卡| 欧美色视频一区免费| www.熟女人妻精品国产| 婷婷精品国产亚洲av| 99久久精品热视频| 男女视频在线观看网站免费 | 精品福利观看| av国产免费在线观看| 视频区欧美日本亚洲| 国产成人影院久久av| www国产在线视频色| 久久 成人 亚洲| 精品少妇一区二区三区视频日本电影| 又粗又爽又猛毛片免费看| 亚洲,欧美精品.| 亚洲av第一区精品v没综合| 操出白浆在线播放| 亚洲天堂国产精品一区在线| 熟妇人妻久久中文字幕3abv| 国产一级毛片七仙女欲春2| 久久久国产欧美日韩av| 国产成年人精品一区二区| 国产精品久久久久久人妻精品电影| 国产麻豆成人av免费视频| 中文字幕最新亚洲高清| 欧美精品啪啪一区二区三区| 97碰自拍视频| 99在线人妻在线中文字幕| 国产精品美女特级片免费视频播放器 | 亚洲国产看品久久| 国产亚洲精品久久久久5区| 国内久久婷婷六月综合欲色啪| 妹子高潮喷水视频| 国产一区二区激情短视频| 欧美日韩福利视频一区二区| 一卡2卡三卡四卡精品乱码亚洲| 99精品在免费线老司机午夜| 亚洲成人免费电影在线观看| 婷婷精品国产亚洲av在线| 日韩欧美免费精品| 欧美色欧美亚洲另类二区| 国产激情偷乱视频一区二区| 777久久人妻少妇嫩草av网站| 97人妻精品一区二区三区麻豆| or卡值多少钱| 欧美日韩一级在线毛片| 最近最新中文字幕大全电影3| 变态另类成人亚洲欧美熟女| 国产一区在线观看成人免费| 国产精品av久久久久免费| 国产成人aa在线观看| 最新美女视频免费是黄的| 亚洲欧美精品综合一区二区三区| 国产精品久久久久久精品电影| 午夜福利在线观看吧| 国产av一区在线观看免费| 精品一区二区三区视频在线观看免费| 国产精品香港三级国产av潘金莲| 成在线人永久免费视频| 麻豆成人午夜福利视频| 观看免费一级毛片| 亚洲午夜精品一区,二区,三区| 人人妻,人人澡人人爽秒播| 女生性感内裤真人,穿戴方法视频| 免费看日本二区| 波多野结衣巨乳人妻| 日本成人三级电影网站| 亚洲美女视频黄频| 香蕉国产在线看| 中文字幕高清在线视频| 欧美日本亚洲视频在线播放| 欧美黑人巨大hd| 啦啦啦观看免费观看视频高清| 99国产极品粉嫩在线观看| 欧美日韩乱码在线| 级片在线观看| 天天躁夜夜躁狠狠躁躁| 性色av乱码一区二区三区2| 久久草成人影院| 757午夜福利合集在线观看| 婷婷六月久久综合丁香| 中亚洲国语对白在线视频| 日本一本二区三区精品| 国内少妇人妻偷人精品xxx网站 | 国产高清视频在线观看网站| bbb黄色大片| 国产激情偷乱视频一区二区| 久久婷婷成人综合色麻豆| 色综合亚洲欧美另类图片| 亚洲色图 男人天堂 中文字幕| 国产熟女xx| 一进一出好大好爽视频| tocl精华| 波多野结衣巨乳人妻| 国产男靠女视频免费网站| 亚洲欧美一区二区三区黑人| 亚洲在线自拍视频| 男人舔奶头视频| 黄频高清免费视频| www.精华液| 日本黄色视频三级网站网址| 国产av不卡久久| 久久久精品国产亚洲av高清涩受| 可以在线观看毛片的网站| 亚洲中文字幕一区二区三区有码在线看 | 黄色成人免费大全| 黄色视频不卡| 亚洲一区高清亚洲精品| 黄色成人免费大全| 久久久水蜜桃国产精品网| x7x7x7水蜜桃| 亚洲av五月六月丁香网| 国产一区二区在线观看日韩 | 最近最新中文字幕大全电影3| 久久久久亚洲av毛片大全| 日本 欧美在线| 人妻丰满熟妇av一区二区三区| 久久欧美精品欧美久久欧美| 色精品久久人妻99蜜桃| 亚洲av中文字字幕乱码综合| 久久久国产欧美日韩av| 成年人黄色毛片网站| 欧美乱色亚洲激情| 变态另类丝袜制服| 女警被强在线播放| 黑人操中国人逼视频| 午夜福利在线在线| 国产精品av久久久久免费| 日本撒尿小便嘘嘘汇集6| 真人做人爱边吃奶动态| 日本免费一区二区三区高清不卡| 床上黄色一级片| 日本一区二区免费在线视频| 中文字幕高清在线视频| 午夜免费成人在线视频| 搡老妇女老女人老熟妇| 一卡2卡三卡四卡精品乱码亚洲| 国语自产精品视频在线第100页| 国产精品香港三级国产av潘金莲| 一级片免费观看大全| 婷婷丁香在线五月| 欧美精品啪啪一区二区三区| 色噜噜av男人的天堂激情| 最近最新免费中文字幕在线| 制服人妻中文乱码| 色哟哟哟哟哟哟| 琪琪午夜伦伦电影理论片6080| 亚洲欧美激情综合另类| 欧美日韩瑟瑟在线播放| 久久精品夜夜夜夜夜久久蜜豆 | 精品无人区乱码1区二区| 一本大道久久a久久精品| 18禁黄网站禁片免费观看直播| 岛国在线免费视频观看| 校园春色视频在线观看| 国产精品99久久99久久久不卡| 国产欧美日韩一区二区三| 日本一二三区视频观看| 免费观看精品视频网站| 女人高潮潮喷娇喘18禁视频| 制服丝袜大香蕉在线| 精品午夜福利视频在线观看一区| 又紧又爽又黄一区二区| 97碰自拍视频| 少妇裸体淫交视频免费看高清 | 黄色a级毛片大全视频| 黄色 视频免费看| 淫秽高清视频在线观看| 欧美丝袜亚洲另类 | 99国产精品一区二区蜜桃av| 国产精品野战在线观看| 久久久久亚洲av毛片大全| 亚洲aⅴ乱码一区二区在线播放 | 在线视频色国产色| 免费人成视频x8x8入口观看| 久久久久精品国产欧美久久久| 熟女电影av网| 亚洲精品美女久久久久99蜜臀| 99久久综合精品五月天人人| 亚洲一区二区三区色噜噜| 九九热线精品视视频播放| 成在线人永久免费视频| 国产高清视频在线播放一区| a级毛片a级免费在线| 性欧美人与动物交配| 手机成人av网站| 久久精品影院6| 成人国语在线视频| 777久久人妻少妇嫩草av网站| 国产成年人精品一区二区| 18禁黄网站禁片午夜丰满| 不卡av一区二区三区| 五月玫瑰六月丁香| 无人区码免费观看不卡| 在线观看舔阴道视频| 亚洲国产看品久久| 久久久久性生活片| 女同久久另类99精品国产91| 母亲3免费完整高清在线观看| 人妻丰满熟妇av一区二区三区| 人妻久久中文字幕网| 亚洲成人久久性| 亚洲人成77777在线视频| 成熟少妇高潮喷水视频| 夜夜看夜夜爽夜夜摸| 国产一区二区激情短视频| 老司机福利观看| 日本黄色视频三级网站网址| 少妇裸体淫交视频免费看高清 | 中文字幕精品亚洲无线码一区| 婷婷精品国产亚洲av| 变态另类丝袜制服| 国产久久久一区二区三区| 人妻夜夜爽99麻豆av| 亚洲九九香蕉| 九色国产91popny在线| 亚洲av成人不卡在线观看播放网| 亚洲av熟女| 日韩大尺度精品在线看网址| 午夜福利18| 嫁个100分男人电影在线观看| 欧美最黄视频在线播放免费| 亚洲国产精品sss在线观看| 久久精品91无色码中文字幕| 人妻丰满熟妇av一区二区三区| 亚洲成人精品中文字幕电影| 国模一区二区三区四区视频 | 精品久久久久久久久久久久久| 国产亚洲精品第一综合不卡| 真人一进一出gif抽搐免费| 成年版毛片免费区| 亚洲精品国产精品久久久不卡| 欧美中文日本在线观看视频| av福利片在线观看| or卡值多少钱| 天堂影院成人在线观看| 好男人电影高清在线观看| 禁无遮挡网站| 天天一区二区日本电影三级| 床上黄色一级片| 欧美极品一区二区三区四区| 日本免费一区二区三区高清不卡| 大型av网站在线播放| 99国产精品99久久久久| 亚洲片人在线观看| 国产成人aa在线观看| 国产精品免费视频内射| 淫秽高清视频在线观看| 国产成人av激情在线播放| 欧美黑人精品巨大| 成人亚洲精品av一区二区| 男人舔女人的私密视频| 麻豆av在线久日| 亚洲av成人一区二区三| 在线免费观看的www视频| 国产日本99.免费观看| 亚洲一区二区三区色噜噜| а√天堂www在线а√下载| 国产探花在线观看一区二区| 日本 av在线| 老司机午夜十八禁免费视频| 麻豆成人av在线观看| 国产伦人伦偷精品视频| 日韩大尺度精品在线看网址| 免费av毛片视频| 欧美中文日本在线观看视频| 99久久久亚洲精品蜜臀av| 亚洲精华国产精华精| 99久久99久久久精品蜜桃| 欧美黑人欧美精品刺激| 99久久综合精品五月天人人| 国内少妇人妻偷人精品xxx网站 | 亚洲精品国产精品久久久不卡| 国产激情久久老熟女| 神马国产精品三级电影在线观看 | 免费在线观看视频国产中文字幕亚洲| 女生性感内裤真人,穿戴方法视频| 精品第一国产精品| 一区福利在线观看| 中出人妻视频一区二区| 成人av一区二区三区在线看| 老鸭窝网址在线观看| 天堂影院成人在线观看| av中文乱码字幕在线| bbb黄色大片| 999久久久精品免费观看国产| 亚洲国产欧美一区二区综合| 又黄又粗又硬又大视频| 欧美性猛交黑人性爽| 国产精品一区二区免费欧美| 宅男免费午夜| 午夜久久久久精精品| 在线永久观看黄色视频| 黄色丝袜av网址大全| 99久久精品热视频| 国产精品永久免费网站| 久久精品aⅴ一区二区三区四区| 熟女少妇亚洲综合色aaa.| 欧美在线黄色| 欧美一级毛片孕妇| 搡老岳熟女国产| 精品久久蜜臀av无| av国产免费在线观看| 99久久综合精品五月天人人| av国产免费在线观看| 久久久久国产一级毛片高清牌| 在线视频色国产色| 99久久综合精品五月天人人| 精华霜和精华液先用哪个| www国产在线视频色| 国产在线观看jvid| 色综合欧美亚洲国产小说| 色噜噜av男人的天堂激情| 国产v大片淫在线免费观看| 欧美av亚洲av综合av国产av| 桃色一区二区三区在线观看| 国产精品影院久久| 久久久久性生活片| 人人妻,人人澡人人爽秒播| 午夜激情福利司机影院| 国产高清视频在线播放一区| 久久久国产成人免费| 999精品在线视频| 国产精华一区二区三区| 精品国产亚洲在线| 国产亚洲av嫩草精品影院| 妹子高潮喷水视频| 后天国语完整版免费观看| 一区二区三区激情视频| 午夜福利视频1000在线观看| 在线观看www视频免费| 欧美日韩福利视频一区二区| 天天躁夜夜躁狠狠躁躁| 两人在一起打扑克的视频| 五月伊人婷婷丁香| 久久伊人香网站| 日本精品一区二区三区蜜桃| 在线国产一区二区在线| 国产成人精品久久二区二区91| 一级黄色大片毛片| 1024手机看黄色片| 伊人久久大香线蕉亚洲五| 久9热在线精品视频| 悠悠久久av| 国产精品美女特级片免费视频播放器 | 久久久精品国产亚洲av高清涩受| 日韩免费av在线播放| 国产成人av教育| 免费看a级黄色片| 亚洲avbb在线观看| 18禁国产床啪视频网站| 黑人欧美特级aaaaaa片| АⅤ资源中文在线天堂| 可以在线观看毛片的网站| av有码第一页| netflix在线观看网站| av在线天堂中文字幕| 欧美 亚洲 国产 日韩一| 亚洲一码二码三码区别大吗| 婷婷亚洲欧美| 国产成人影院久久av| 在线观看免费视频日本深夜| 俺也久久电影网| 麻豆久久精品国产亚洲av|