王敬茹,姚宗路,叢宏斌,趙立欣,馬 騰,霍麗麗,袁艷文
生物質(zhì)炭催化玉米秸稈熱解氣重整提質(zhì)研究
王敬茹1,2,姚宗路1,叢宏斌1,趙立欣1,2※,馬 騰1,霍麗麗1,袁艷文1
(1. 農(nóng)業(yè)農(nóng)村部規(guī)劃設(shè)計(jì)研究院,農(nóng)業(yè)農(nóng)村部農(nóng)業(yè)廢棄物能源化利用重點(diǎn)實(shí)驗(yàn)室,北京 100125;2. 黑龍江八一農(nóng)墾大學(xué)工程學(xué)院,大慶 163319)
為研究生物炭作催化劑消減焦油提高熱解氣品質(zhì)的效果,以玉米秸稈為原料,以焦油轉(zhuǎn)化率、熱解氣產(chǎn)率和熱解氣熱值為評(píng)價(jià)指標(biāo),研究重整溫度、停留時(shí)間和生物炭特性對(duì)熱解氣提質(zhì)的影響,并分析生物炭作為催化劑重整前后比表面積的變化。研究結(jié)果表明,與石英砂(高溫裂解)相比,生物炭具有較好的催化特性,且稻殼炭、木屑炭和玉米秸稈炭對(duì)焦油的轉(zhuǎn)化率分別為79.8%、78.6%、72.6%,熱解氣產(chǎn)率分別為39.7%、38.6%、37.9%。隨著重整溫度和停留時(shí)間的增加,熱解氣產(chǎn)率和焦油轉(zhuǎn)化率增加,而熱解氣熱值僅隨著溫度升高而增加,當(dāng)溫度為800 ℃時(shí),熱解氣熱值為17.6 MJ/m3。800 ℃催化重整后生物炭比表面積為79.81 m2/g,高于550 ℃熱解生物炭比表面積37.96 m2/g,生物炭作催化劑時(shí)不但可以提高熱解氣品質(zhì),而且生物炭比表面積也有所增加。
秸稈;熱解;催化;熱解氣;生物炭;耦合;焦油;催化重整
生物質(zhì)熱解技術(shù)是一種熱化學(xué)轉(zhuǎn)化技術(shù),利用熱解技術(shù)可以實(shí)現(xiàn)秸稈的回收利用,還能獲得生物炭和熱解氣等高附加值能源產(chǎn)品[1-4]。但在熱解過程中,秸稈內(nèi)還有5%~15%的能量轉(zhuǎn)化進(jìn)入焦油,熱解焦油含有重質(zhì)有毒組分,低溫下黏度大,易引起管道堵塞,阻礙連續(xù)熱解生產(chǎn)過程[5-7]。因此,需要對(duì)熱解氣中焦油進(jìn)行消減。消減焦油方法通常分為物理法和化學(xué)法,和物理法消減焦油相比,化學(xué)法不但能消減焦油,還能提高能源的利用率[8-9],常用的化學(xué)法為催化裂解,催化裂解是利用催化劑的作用,降低焦油裂解需要的活化能,以降低裂解氣中焦油含量并改善燃?xì)馄焚|(zhì)[10-11]。目前對(duì)催化劑的研究主要以天然礦石和鎳基催化劑為主,雖然都具有較高的活性,但天然礦石耐磨性差,鎳基催化劑成本較高,且易發(fā)生中毒失活[12-16]。
生物質(zhì)熱解得到的生物炭可以為烴類裂解提供活性表面[17],而且含有堿金屬和堿土金屬元素,兩類金屬元素對(duì)焦油裂解過程具有催化作用[18],在生物質(zhì)氣化工藝中,生物炭目前已被證明可有效脫除和轉(zhuǎn)化合成氣中的焦油,但采用生物炭催化裂解熱解氣中焦油的研究相對(duì)較少。孟凡彬等[19]證明了生物炭對(duì)熱解氣中焦油具有良好的催化特性,當(dāng)溫度為1000 ℃時(shí),玉米秸稈炭和木屑炭的產(chǎn)氣率為91.98%和94.11%。陳宗定等[20]研究表明生物炭中Fe、Ca等金屬體系具有良好的焦油催化裂解效果,并且Ca、Mg在高溫下形成MgO-CaO的配合物,使顆粒表面具有吸附焦油分子的極性活性位,降低了C-C和C-H鍵斷裂鍵能以及烴類與H2O、CO2反應(yīng)的活化能。馬欣欣[21]證明了比表面積能夠?yàn)榇呋磻?yīng)提供更多的活性位點(diǎn),從而促進(jìn)焦油的催化轉(zhuǎn)化。
本文在已有研究的基礎(chǔ)上,以兩段式固定床作為試驗(yàn)平臺(tái),以玉米秸稈為原料,生物炭為催化劑,探索應(yīng)用生物炭催化裂解熱解氣中焦油時(shí)不同工作條件對(duì)生物質(zhì)熱解氣提質(zhì)與生物炭比表面積的影響。研究了重整溫度、停留時(shí)間和生物炭特性對(duì)熱解氣提質(zhì)和焦油消減的影響,以及催化重整后生物炭性質(zhì)變化。
生物質(zhì)熱解氣重整試驗(yàn)平臺(tái)如圖1所示,上段為熱解系統(tǒng),下段為催化重整系統(tǒng),熱解反應(yīng)器和催化重整反應(yīng)器的中間連接段采用伴熱帶和保溫棉保溫,將測溫?zé)犭娕贾糜谑⒐芎桶闊釒У膴A層中,將溫度控制在320 ℃,保證焦油不會(huì)在石英管管壁上面冷凝。產(chǎn)品收集系統(tǒng)由多級(jí)冷凝裝置和制冷機(jī)組成,設(shè)定制冷機(jī)的冷凝溫度為-8 ℃,多級(jí)冷凝裝置為四級(jí)冷凝,為了使焦油完全冷凝,二、三級(jí)中裝有玻璃珠,四級(jí)中裝有硅膠[22]。工作時(shí),先將熱解爐和催化重整爐升溫到設(shè)定溫度,再通入氮?dú)獯祾撸ǖ獨(dú)饬髁繛?.3 L/min,吹掃時(shí)間為45 min),使物料填裝反應(yīng)管處于絕氧環(huán)境,將物料填裝反應(yīng)管放入熱解爐中,加熱一定時(shí)間后,生物質(zhì)在熱解反應(yīng)器中發(fā)生熱解反應(yīng),生成的焦油和熱解氣隨氮?dú)膺M(jìn)入催化重整爐,在高溫和生物炭的作用下,焦油發(fā)生催化裂解反應(yīng),使部分重質(zhì)焦油裂解為輕質(zhì)焦油,部分焦油轉(zhuǎn)化為氣體。熱解氣中CO2、水蒸氣等組分與生物炭發(fā)生氣化反應(yīng),轉(zhuǎn)化為CO、H2等可燃組分。重整后的熱解氣和焦油經(jīng)多級(jí)冷凝裝置進(jìn)行油氣分離后分別收集,以測得最終的油氣產(chǎn)率和氣體組成。
1.氮?dú)馄?2.開關(guān)閥 3.氣體質(zhì)量流量計(jì) 4.壓力表 5.熱解反應(yīng)器 6.熱解爐 7.生物質(zhì)床層 8.篩板 9.蒸汽發(fā)生器 10. 催化重整反應(yīng)器 11.催化劑床層 12.催化重整爐 13.氣袋 14.焦油瓶 15.玻璃珠 16.硅膠 17.多級(jí)冷凝裝置 18.熱電偶 19.溫度控制儀
1.2.1 試驗(yàn)原料
從生產(chǎn)與應(yīng)用實(shí)際出發(fā),選擇玉米秸稈、稻殼和木屑作為試驗(yàn)原料,3種原料分別源自山東省肥城市、北京市通州區(qū)、河北省邢臺(tái)市,分別采用國際GB 28731-2012方法和Vario EL III型元素分析儀分析3種原料的理化性質(zhì),如表1所示。
1.2.2 催化劑制備
催化劑制備在熱解爐內(nèi)完成,試驗(yàn)原料為玉米秸稈、稻殼和木屑,每次試驗(yàn)取10 g原料。熱解條件:熱解溫度550 ℃、N2流量0.1 L/min、試驗(yàn)時(shí)間為70 min,以確保生物質(zhì)有充分時(shí)間熱解。并采用JW-BK112比表面及孔徑分析儀檢測生物炭比表面積,用電感耦合等離子體發(fā)射光譜(ICP-AES; Thermo Elemental,USA)測量生物炭催化劑堿金屬和堿土金屬(AAEMs)含量,測量結(jié)果見表2。玉米秸稈炭K、Ca含量相對(duì)較高,但比表面積低于稻殼炭和木屑炭,而稻殼炭的金屬含量較低,比表面積較高。
表1 試驗(yàn)原料的理化特性
注:工業(yè)分析樣品為空氣干燥基,元素分析樣品為干燥無灰基,O元素計(jì)算采用差減法。
Note: Samples in air dry base, dry and ash free base were used for proximate analysis and ultimate analysis respectively, and O was calculated by difference.
表2 三種生物炭的主要金屬元素含量和比表面積
熱解氣提質(zhì)工藝中涉及的試驗(yàn)因素包括重整溫度、停留時(shí)間和催化劑,玉米秸稈原料質(zhì)量為10 g,催化重整溫度分別為600、650、700、750和800 ℃;停留時(shí)間是熱解氣穿過生物炭床層的時(shí)間,保證載氣流量0.1 L/min不變,N2吹掃時(shí)間為70 min,通過改變床層高度調(diào)節(jié)停留時(shí)間分別為0.2、0.6、1.0、1.4和1.8 s;催化劑分別為空白對(duì)照組(無催化劑)、玉米秸稈炭、稻殼炭、木屑炭。單因素試驗(yàn)時(shí),固定(預(yù)試驗(yàn)確定)催化重整溫度為800 ℃、停留時(shí)間為0.2 s、催化劑為玉米秸稈炭。
相同條件下3次重復(fù)試驗(yàn)結(jié)果取平均值,并在平均值的基礎(chǔ)上,加上統(tǒng)計(jì)學(xué)方差分析,以保證試驗(yàn)結(jié)果可靠。
本研究涉及的相關(guān)測試指標(biāo),包括焦油轉(zhuǎn)化率、熱解氣產(chǎn)率、熱值等。焦油轉(zhuǎn)化率是指重整反應(yīng)轉(zhuǎn)化為熱解氣的焦油占熱解反應(yīng)產(chǎn)生焦油的總量之比,其計(jì)算公式為
式中為焦油轉(zhuǎn)化率,%;1為熱解焦油質(zhì)量,g;2為催化重整后焦油質(zhì)量,g。
通過多級(jí)冷凝裝置收集熱解與催化重整焦油并離心后稱取質(zhì)量,下層液體質(zhì)量定義為焦油質(zhì)量。
熱解氣產(chǎn)率是指重整冷凝后的不可凝氣體與原料質(zhì)量之比[23],其計(jì)算公式為
式中g(shù)v為體積產(chǎn)氣率,m3/kg;gm為質(zhì)量產(chǎn)氣率,%;為產(chǎn)生熱解氣標(biāo)準(zhǔn)體積,m3。
熱解氣熱值是指單位體積的熱解氣在標(biāo)況下所含有的化學(xué)能[24],利用氣袋收集氣體后采用氣相色譜儀(浙江福立9 790A)分析不可凝氣體組分,并根據(jù)氣體組分以及單一氣體熱值計(jì)算熱解氣熱值,其中,催化重整氣體產(chǎn)物中的可燃?xì)怏w組分主要包括H2、CH4、CO和CnHm(不飽和碳?xì)浠衔铮?/p>
2.1.1 催化重整溫度對(duì)熱解氣提質(zhì)的影響
圖2為不同催化重整溫度對(duì)熱解氣產(chǎn)率、熱值和氣體組成的影響。溫度的升高,一方面提高了催化劑催化活性,另一方面也為焦油裂解提供了能量。
注:玉米秸稈炭作催化劑、玉米秸稈原料用量為10 g、停留時(shí)間0.2 s。圖上不同小寫字母表示同一指標(biāo)不同處理之間差異顯著,下同。
從圖2中可知,隨著重整溫度由550 ℃升高到800 ℃,熱解氣熱值由13.0 MJ/m3升高至17.6 MJ/m3,熱解氣產(chǎn)率由21.0%增加到37.9%。由于溫度的升高促進(jìn)了催化裂解反應(yīng)[19],使H2和CH4的體積分?jǐn)?shù)隨著溫度升高而增加。隨著重整溫度由550 ℃升高到800 ℃,H2體積分?jǐn)?shù)由11.7%增加到21.8%,CH4體積分?jǐn)?shù)由13.5%增加到18.2%。CO2體積分?jǐn)?shù)由40.2%降低到24.3%。CO體積分?jǐn)?shù)變化不明顯,由31.4%下降到30.6%。
2.1.2 催化重整溫度對(duì)焦油消減的影響
圖3為催化重整溫度對(duì)焦油消減的影響,如圖3所示,550 ℃熱解焦油產(chǎn)量為0.84 g,隨著催化重整溫度由600 ℃增加到800 ℃,焦油產(chǎn)量從0.64 g下降到0.23 g,焦油轉(zhuǎn)化率從23.8%增加到72.6%,其中600~650 ℃之間焦油轉(zhuǎn)化率變化較大,焦油轉(zhuǎn)化率提升了29.8%。這表明,隨著催化重整溫度增加,焦油的裂解反應(yīng)增強(qiáng),焦油中重質(zhì)組分部分轉(zhuǎn)化為輕質(zhì)組分和不可凝氣體[25-26]。
注:玉米秸稈炭作催化劑、玉米秸稈原料用量為10 g、停留時(shí)間0.2 s。
2.2.1 停留時(shí)間對(duì)熱解氣提質(zhì)的影響
載氣流量不變,通過增加生物炭質(zhì)量改變床層高度,通過測量生物炭質(zhì)量2 g時(shí),床層高度為3 cm。圖4為不同停留時(shí)間對(duì)熱解氣產(chǎn)率、熱值和氣體組成的影響。從圖4中可知,隨著停留時(shí)間由0.2 s增加到1.8 s,熱解氣產(chǎn)率由37.9%增加到54.3%,熱解氣熱值由17.6 MJ/m3降低到16.8 MJ/m3。由于延長熱解氣焦油組分穿過生物炭床層的停留時(shí)間,促進(jìn)焦油催化裂解反應(yīng)[27]。從氣體組成圖中可知,隨著停留時(shí)間由0.2 s增加到1.8 s,H2體積分?jǐn)?shù)由21.8%增加到32.7%,CH4體積分?jǐn)?shù)由18.1%下降到13.6%,且與H2相比,CH4的熱值相對(duì)較高,所以導(dǎo)致熱值下降[28-29]。
2.2.2 停留時(shí)間對(duì)焦油消減的影響
圖5為停留時(shí)間對(duì)焦油消減的影響,從圖5中可知,隨著停留時(shí)間增加,焦油產(chǎn)量下降,焦油轉(zhuǎn)化率增加,是由于停留時(shí)間增加,促進(jìn)了水煤氣反應(yīng),以及焦油組分在生物炭表面礦物質(zhì)組分活性位點(diǎn)上的催化轉(zhuǎn)化[30],從而引起焦油產(chǎn)量下降。當(dāng)停留時(shí)間由0.2 s增加到0.6 s時(shí),焦油轉(zhuǎn)化率由72.6%增加到74.4%,當(dāng)停留時(shí)間由0.6 s增加到1.4 s時(shí),焦油轉(zhuǎn)化率由74.4%增加到78.6%,焦油產(chǎn)量下降為0.19 g,停留時(shí)間為1.8 s時(shí),焦油轉(zhuǎn)化率為79.8%。
注:玉米秸稈炭作催化劑、玉米秸稈原料用量為10 g、溫度800 ℃。
注:玉米秸稈炭作催化劑、玉米秸稈原料用量為10 g、溫度800 ℃。
2.3.1 催化劑對(duì)熱解氣提質(zhì)的影響
圖6為催化重整溫度800 ℃時(shí),3種不同生物炭催化劑和填充材料石英砂對(duì)熱解氣產(chǎn)率、熱值和氣體組成的影響,由于石英砂為惰性材料,其對(duì)焦油裂解幾乎沒有催化作用[31-32],在本文僅用來研究高溫裂解對(duì)熱解氣提質(zhì)的影響,從圖6中可知,550 ℃熱解時(shí),熱解氣產(chǎn)率為21%,高溫裂解時(shí)(石英砂)熱解氣產(chǎn)率為33.8%,熱值為18.0 MJ/m3,木屑炭、稻殼炭、玉米秸稈炭的熱解氣產(chǎn)率為38.6%、39.7%和37.9%,熱值為17.7、17.8和17.6 MJ/m3。相比之下,石英砂的熱解氣產(chǎn)率較低,但熱值較高,是由于高溫促進(jìn)裂解反應(yīng),生成熱值較高的CO,而生物炭催化劑雖然能使H2產(chǎn)率升高,但CO體積分?jǐn)?shù)降低。由表2中可知玉米秸稈炭中K、Ca等元素含量高,有利于促進(jìn)焦油轉(zhuǎn)化,但其催化效果較低,這說明生物炭比表面積的影響要高于金屬元素的影響,當(dāng)然也可能與生物炭結(jié)構(gòu)和金屬元素存在形式有關(guān)。不同生物炭催化劑對(duì)熱解氣產(chǎn)率影響效果:稻殼炭>木屑炭>玉米秸稈炭,而對(duì)熱解氣熱值催化效果大致相同。
注:停留時(shí)間0.2 s、玉米秸稈原料用量為10 g、催化劑溫度800 ℃。
2.3.2 催化劑對(duì)焦油消減的影響
圖7為催化劑對(duì)焦油消減的影響,從圖7中可知,550 ℃熱解產(chǎn)生的焦油產(chǎn)量為0.84 g,高溫裂解時(shí),焦油產(chǎn)量為0.30 g,轉(zhuǎn)化率為64.3%,是由于石英砂具有較高的比熱容,蓄熱量大,增強(qiáng)了反應(yīng)器內(nèi)的熱量傳遞,使通過石英砂的氣體溫度迅速升高,促進(jìn)了焦油裂解[33]。和高溫裂解相比,木屑炭、稻殼炭、玉米秸稈炭的催化重整焦油轉(zhuǎn)化率為78.6%、79.8%和72.6%,提高了8.3%~15.5%,是因?yàn)樯锾款w粒的表面具有極性活化位,使π形電子云被破壞而失去穩(wěn)定,使C-C鍵、C-H鍵斷裂,促進(jìn)了裂解反應(yīng)。如表2所示,生物炭中K、Ca等元素雖然有利于焦油催化裂解,但其催化效果低于稻殼生物炭,是由于稻殼炭比表面積186.6 m2/g高于木屑炭比表面積45.7 m2/g和玉米秸稈炭比表面積37.7 m2/g,增大了催化劑的接觸面積和催化活性。
注:停留時(shí)間0.2 s、玉米秸稈原料用量為10 g、催化劑溫度800 ℃。
圖8為催化重整前后玉米秸稈炭比表面積變化,從圖8中可知,熱解溫度550 ℃的玉米秸稈炭比表面積為37.96 m2/g,600 ℃催化重整后比表面積下降到3.88 m2/g,是由于生物質(zhì)熱解產(chǎn)生的焦油附著在生物炭表面,產(chǎn)生積碳,使生物炭比表面積降低。由600 ℃升高到800 ℃時(shí),生物炭比表面積逐漸增加,重整溫度為800 ℃時(shí),生物炭比表面積為79.81 m2/g,高于熱解生物炭比表面積,一方面是由于溫度的增加,促進(jìn)焦油催化裂解反應(yīng),避免了生物炭被焦油附著,另一方面是由于熱解產(chǎn)生的水蒸氣與炭發(fā)生氣化反應(yīng),消耗表面覆蓋積碳,同時(shí)在生物炭催化劑上形成多孔[34]。生物炭作催化劑時(shí),不但可以提高熱解氣品質(zhì),而且可提高生物炭比表面積。
圖8 催化重整前后玉米秸稈炭比表面積變化
1)隨著重整溫度、停留時(shí)間增加,熱解氣產(chǎn)率和焦油轉(zhuǎn)化率增加,但熱解氣熱值只隨著溫度升高而升高,當(dāng)重整溫度為800 ℃時(shí),熱解氣熱值為17.6 MJ/m3。
2)通過生物炭與石英砂比較,說明生物炭具有較好的催化特性,玉米秸稈炭雖然K、Ca元素含量較高,但其催化效果較低,說明生物炭比表面積對(duì)裂解焦油的影響高于金屬元素。其中生物炭催化特性:稻殼炭>木屑炭>玉米秸稈炭。
3)800 ℃催化重整后玉米秸稈炭比表面積為79.81 m2/g高于550 ℃熱解玉米秸稈炭比表面積37.7 m2/g,生物炭作催化劑時(shí)不但可以提高熱解氣品質(zhì),也可提高生物炭比表面積。
[1] 胡二峰,趙立欣,吳娟,等. 生物質(zhì)熱解影響因素及技術(shù)研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(14):212-220. Hu Erfeng, Zhao Lixin, Wu Juan, et al. Research advance on influence factors and technologies of biomass pyrolysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(14): 212-220. (in Chinese with English abstract)
[2] 劉標(biāo),陳應(yīng)泉,何濤,等. 農(nóng)作物秸稈熱解多聯(lián)產(chǎn)技術(shù)的應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(16):213-219. Liu Biao, Chen Yingquan, He Tao, et al. Application of cogeneration technology of gas-liquid-solid products pyrolyzed from crop straw[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(16): 213-219. (in Chinese with English abstract)
[3] 叢宏斌,姚宗路,趙立欣,等. 自燃連續(xù)式生物質(zhì)熱解炭氣油聯(lián)產(chǎn)系統(tǒng)燃?xì)鈨艋蛛x技術(shù)工藝研究[J]. 可再生能源,2015(9):1393-1397. Cong Hongbin, Yao Zonglu, Zhao Lixin, et al. Research on gas separation and purification technology forcontinuous pyrolysis system with biomass spontaneous combustion[J]. Renewable Energy Resources, 2015(9): 1393-1397. (in Chinese with English abstract)
[4] 劉榮厚,袁海榮,徐璐,等. 玉米秸稈熱解反應(yīng)動(dòng)力學(xué)的研究[J]. 太陽能學(xué)報(bào),2007,28(5):527-531. Liu Ronghou, Yuan Hairong, Xu Lu, et al. Kinetic study of maize straw pyrolysis[J]. Journal of Solar Energy, 2007, 28(5): 527-531. (in Chinese with English abstract)
[5] José Corella. Biomass gasification with air in fluidized bed: Reforming of the gas composition with commercial steam reforming catalysts[J]. Ind.eng.chem.res,1998, 37(12): 4617-4624.
[6] Donaj P. Conversion of Biomass and Waste Using Highly Preheated Agents for Materials and Energy Recovery[D]. Stockholm: Doctoral Disse Ration of Royal Institute of Technology, 2011.
[7] 賈吉秀,趙立欣,孟海波,等. 生物質(zhì)熱解焦油燃燒試驗(yàn)系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(12): 334-339. Jia Jixiu, Zhao Lixin, Meng Haibo, et al. Design and experiment on biomass pyrolysis Tar combustion System[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(12): 334-339. (in Chinese with English abstract)
[8] 仉利,趙立欣,姚宗路,等. 生物質(zhì)燃?xì)馊紵骷夹g(shù)研究進(jìn)展[J]. 中國農(nóng)機(jī)化學(xué)報(bào),2017,38(1): 111-115. Zhang Li, Zhao Lixin, Yao Zonglu, et al. Research progress of biomass gas burner technology[J]. Journal of Chinese Agricultural Mechanization, 2017, 38(1): 111-115. (in Chinese with English abstract)
[9] 袁曉濤,胡建杭,張鳳霞,等. 銅渣載鎳催化劑催化氣化松木屑的實(shí)驗(yàn)研究[J]. 化工進(jìn)展,2018,37 (10): 3919-3927. Yuan Xiaotao, Hu Jianhang, Zhang Fengxia, et al. Experimental study on the catalytic gasification of pine sawdust over nickel catalyst supported by copper slag[J]. Chemical Industry and Engineering Progress, 2018, 37 (10): 3919-3927. (in Chinese with English abstract)
[10] 周勁松,王鐵柱,駱仲泱,等. 生物質(zhì)焦油的催化裂解研[J]. 燃料化學(xué)學(xué)報(bào),2003,31(2): 144-148. Zhou Jinsong, Wang Tiezhu, Luo Zhongyang, et al. Catalytic cracking of biomass tar[J]. Journal of Fuel Chemistry and Technology, 2003, 31(2):144-148. (in Chinese with English abstract)
[11] Thangalazhy-Gopakumar S, Adhikari S, Ravindran H, et al. Physiochemical properties of bio-oil produced at various temperatures from pine wood using an auger reactor[J]. Bioresource Technology, 2010, 101(21): 8389-8395.
[12] 李賢斌,姚宗路,趙立欣,等. 生物質(zhì)炭化生成焦油催化裂解的研究進(jìn)展[J]. 現(xiàn)代化工,2017,37(2): 46-50. Li Xianbin, Yao Zonglu, Zhao Lixin, et al. Research progress of catalytic pyrolysis of biomass tar[J]. Modern Chemical Industry, 2017, 37(2): 46—50. (in Chinese with English abstract)
[13] 姜建國,張衛(wèi)杰,孫榮峰,等. 生物質(zhì)氣化過程中焦油脫除技術(shù)研究進(jìn)展[J]. 山東科學(xué),2019,32(1): 127-134. Jiang Jianguo, Zhang Weijie, Sun Rongfeng, et al. Research progress on tar removal technology in biomass gasification process[J]. Shandong Science, 2019, 32 (1): 127-134. (in Chinese with English abstract)
[14] 金亮,童瑞明,周勁松,等. 生物質(zhì)燃?xì)饨褂彤a(chǎn)率及其凈化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(增刊2): 259-263.Jin Liang, Tong Ruiming, Zhou Jinsong, et al. Tar character and cleaning of biomass gasification gas [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(Supp.2): 259-263. (in Chinese with English abstract)
[15] 周中仁,吳文良.生物質(zhì)能研究現(xiàn)狀及展望[J].農(nóng)業(yè)工程學(xué)報(bào),2005,21(12):12-15.Zhou Zhongren, Wu Wenliang. Status quo and prospects of biomass energy[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(12): 12-15. (in Chinese with English abstract)
[16] Lopamudra Devi, Krzysztof J Ptasinski. A review of the primary measures for tar elimination in biomass gasification processes[J]. Biomass and Bioenergy, 2003, 24(2): l25-140.
[17] 劉殊遠(yuǎn),汪印,武榮成,等. 熱態(tài)半焦和冷態(tài)半焦催化裂解煤焦油研究[J]. 燃料化學(xué)學(xué)報(bào),2013,41(9):1041-1049. Liu Shuyuan, Wang Yin, Wu Rongcheng, et al. Research on coal tar catalytic cracking over hot in-situ chars[J].Journal of Fuel Chemistry and Technology, 2013, 41(9):1041-1049. (in Chinese with English abstract)
[18] 李歡歡. 典型熱解焦炭對(duì)熱解氣中焦油?;锏拇呋呀庋芯縖D]. 杭州:浙江大學(xué),2018. Li Huanhuan. Study on Catalytic Cracking of Model tar Species in Pyrolysis Gas by Typical Pyrolysis Char[D]. Hangzhou: Zhejiang University, 2018. (in Chinese with English abstract)
[19] 孟凡彬,孟軍. 玉米秸稈炭和木屑炭催化裂解焦油的試驗(yàn)研究[J]. 沈陽農(nóng)業(yè)大學(xué)學(xué)報(bào),2017,48(4): 472-476. Meng Fanbin, Meng Jun. Experimental study on catalytic cracking of tar with corn stalk charcoal and sawdust charcoal[J]. Journal of Shenyang Agricultural University, 2017, 48(4): 472-476. (in Chinese with English abstract)
[20] 陳宗定,張書,王芳杰,等. 活化前后半焦原位催化重整褐煤熱解焦油研究[J]. 煤炭科學(xué)技術(shù),2014,42(11):105-110. Chen Zongding, Zhang Shu, Wang Fangjie, et al. Study on in-situ catalytic reforming of coal tar from pyrolysis of brown coal by activated and inactivated char[J]. Coal Science and Technology, 2014, 42(11): 105-110. (in Chinese with English abstract)
[21] 馬欣欣. 預(yù)處理和焦油催化重整對(duì)生物質(zhì)熱解制氣性能的影響研究[D]. 北京:北京化工大學(xué),2016. Ma Xinxin. Effect of Impregnation and Catalytic tar Conversion on Biomass Pyrolysis for Gas Production[D]. Beijing: Beijing University Chemical Technology, 2016. (in Chinese with English abstract)
[22] 王敬茹,馬騰,叢宏斌,等. 生物質(zhì)熱解氣重整試驗(yàn)平臺(tái)設(shè)計(jì)與試驗(yàn)[J]. 可再生能源,2019,37(4): 482-487. Wang Jingru, Ma Teng, Cong Hongbin, et al. Design and experimental test for a biomass pyrolysis gas reforming reactor[J]. Renewable Energy Resources, 2019, 37(4): 482-487. (in Chinese with English abstract)
[23] 叢宏斌,趙立欣,姚宗路,等. 玉米秸稈連續(xù)干餾條件下能量平衡分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(7): 206-212. Cong Hongbin, Zhao Lixin, Yao Zonglu, et al. Energy balance analysis of corn straw continuous distillation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE)), 2017, 33(7): 206-212. (in Chinese with English abstract)
[24] 張丹陽. 多孔泡沫陶瓷對(duì)生物質(zhì)氣化焦油裂解轉(zhuǎn)化的影響研究[D]. 合肥:合肥工業(yè)大學(xué),2017. Zhang Danyang. Study on the Effect of Porous Foam Ceramic on Pyrolysis of Biomass Gasification[D]. Hefei: Hefei University of Technology, 2017. (in Chinese with English abstract)
[25] 王晨光,王鐵軍,呂鵬梅,等. 整體式催化劑催化重整凈化生物質(zhì)粗燃?xì)庑阅苎芯縖J].燃料化學(xué)學(xué)報(bào),2007(3):285-288. Wang Chenguang, Wang Tiejun, Lu Pengmei, et al. Reforming of raw biomass fuel gas over monolith catalyst[J]. Journal of Fuel Chemistry and Technology, 2007(3): 285-288. (in Chinese with English abstract)
[26] 王芳,曾璽,孫延林,等. 兩段流化床中半焦催化脫除焦油特性[J]. 化工學(xué)報(bào),2017,68(10):3762-3769. Wang Fang, Zeng Xi, Sun Yanlin, et al. Characteristics of char catalytic reforming of tar in two-stage fuuidized bed[J]. CIESC Journal, 2017, 68(10): 3762-3769. (in Chinese with English abstract)
[27] Saxena R C, Goyal H B. Thermo-chemical routes for hydrogen rich gas from biomass: A review[J]. Renewable and Sustainable Energy Reviews, 2008, 12(7): 1909-1927.
[28] 謝玉榮,肖軍,沈來宏. 生物質(zhì)催化氣化制取富氫氣體實(shí)驗(yàn)研究[J]. 太陽能學(xué)報(bào),2008,29(7):888-893. Xie Yurong, Xiao Jun, Shen Laihong. Research on biomass catalytic gasification to produce hydrogen-rich gas[J]. Acta Energiae Solaris Sinica, 2008, 29(7): 888-893. (in Chinese with English abstract)
[29] 敦啟孟,陳兆輝,皇甫林,等. 溫度和停留時(shí)間對(duì)煤熱解揮發(fā)分二次反應(yīng)的影響[J]. 過程工程學(xué)報(bào),2018,18(1): 140-147. Dun Qimeng, Chen Zhaohui, Huang Pulin, et al. Influences of Temperature and residence time on secondary reactions of volatiles from coal pyrolysis[J]. The Chinese Journal of Process Engineering, 2018, 18(1): 140-147. (in Chinese with English abstract)
[30] 孫海權(quán),張曉東,陳雷,等. 生物質(zhì)焦油模型化合物的催化轉(zhuǎn)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(07):201-203. Sun Haiquan, Zhang Xiaodong, Chen Lei, et al. Catalytic conversion of biomass pyrolysis tar model compound[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(7): 201-203.(in Chinese with English abstract)
[31] 尤占平,由世俊,李憲莉,等. 生物質(zhì)炭催化裂解焦油的實(shí)驗(yàn)研究[J]. 太陽能學(xué)報(bào),2011,32(5):718-723. Yu Zhanping, You Shijun, Li Xianli, et al. experimental research on tar catalytic cracking over biomass char[J]. Acta Energiae Solaris Sinica, 2011, 32(5): 718-723. (in Chinese with English abstract)
[32] 王磊,吳創(chuàng)之,趙增立. 熱解焦對(duì)生物質(zhì)焦油催化裂解的影響[J]. 太陽能學(xué)報(bào),2006(5):514-518. Wang Lei, Wu Chuangzhi, Zhao Zengli. Effect of char on catalytic cracking of tar from biomass gasification gas with toluene as a model compound[J]. Acta Energiae Solaris Sinica, 2006(5): 514-518. (in Chinese with English abstract)
[33] 李旭,由世俊,張歡,等. 生物質(zhì)炭催化重整焦油的動(dòng)力學(xué)模型研究[J]. 太陽能學(xué)報(bào),2014,35(6):949-954. Li Xu, You Shijun, Zhang Huan, et al. Study on kinetic model of tar catalytic reforming reaction over biomass char[J]. Acta Energiae Solaris Sinica, 2014, 35(6): 949-954. (in Chinese with English abstract)
[34] 吳小飛,巴玉鑫,王惠惠,等. 無熱載體蓄熱式旋轉(zhuǎn)床生活污泥熱解技術(shù)研究[J]. 環(huán)境工程,2016,34(S1):707-710,714. Wu Xiaofei, Ba Yuxin, Wang Huihui, et al. Pyrolysis technology of sewage sludge in regenerative heat -carrier- free rotating bed [J]. Environmental Engineering, 2016, 34(S1): 707-710, 714. (in Chinese with English abstract)
Upgrading biomass pyrolysis gas from corn stalk by charcoal catalytic reforming
Wang Jingru1,2, Yao Zonglu1, Cong Hongbin1, Zhao Lixin1,2※, Ma Teng1, Huo Lili1, Yuan Yanwen1
(1.,,,100125; 2.,,163319,)
Biomass pyrolysis technology is a thermochemical conversion technique. Through the pyrolysis technology, straw recycling can be realized, and high value-added energy products such as biochar and pyrolysis gas can be obtained. However, the tar produced in the pyrolysis process contains heavy poisonous components, and the low temperature viscosity is high, which easily causes pipeline blockage. In order to study the effect of biochar as catalyst for reducing tar and improving pyrolysis gas quality, taking corn stalk as raw material, the tar conversion rate, pyrolysis gas yield and pyrolysis gas heat value were selected as index. The effects of reforming temperature (550, 600, 650, 700, 750, 800 ℃), residence time (0.2, 0.6, 1.0, 1.4, 1.8 s) and biochar characteristics (corn straw charcoal, rice husk, wood charcoal) on pyrolysis gas quality were studied. The changes of specific surface area of biochar catalysts before and after reforming were analyzed. The results showed that at high temperature cracking, the pyrolysis gas yield was 33.8%, and the pyrolysis gas heat value was 18.0 MJ/m3, biochar had better catalytic properties than quartz sand (high temperature cracking), and its catalytic properties were: rice husk charcoal > wood charcoal > corn straw charcoal, indicating that the catalytic properties of rice hull carbon were better. The pyrolysis gas yields of rice husk charcoal, wood charcoal and corn straw charcoal were 39.7%, 38.6%, and 37.9%, respectively, and the tar conversion rates were 79.8%, 78.6% and 72.6%, the calorific values were 17.8, 17.7 and 17.6 MJ/m3, respectively. When the reforming temperature was increased from 550 to 800 ℃, the pyrolysis gas yield increased from 21.0% to 37.9%, the tar conversion rate increased from 23.8% to 72.6%, and the pyrolysis gas calorific value increased from 13.0 to 17.6 MJ/m3, which was due to the increase of temperature to promote the cracking reaction of tar. The tar heavy components were partially converted into light components and non-condensable gases. As the residence time increased from 0.2 to 1.8 s, the pyrolysis gas yield increased from 37.9% to 54.3%, and the tar conversion rate increased from 72.6% to 79.8%. The pyrolysis gas heat value was reduced from 17.6 to 16.8 MJ/m3. It was due to the increase in residence time, which promoted the catalytic conversion of the tar component on the active site of the mineral component on the surface of the biochar, resulting in an increase in the yield of the pyrolysis gas. At 800 ℃, the specific surface area of biochar after catalytic cracking was 79.81 m2/g, which was higher than the specific surface area of pyrolysis biochar of 37.96 m2/g. In summary, as the reforming temperature and residence time increased, the pyrolysis gas yield and tar conversion rate increased, and the pyrolysis gas heat value increased only as the reforming temperature increased. Although biochar can increase pyrolysis gas yield and tar conversion rate, the calorific value was low. Biochar can not only improve the quality of pyrolysis gas, but also increase the specific surface area of biochar at 800 ℃, indicating that the interaction between biochar and pyrolysis gas can not only improve the quality of pyrolysis gas, but also increase the specific surface area of biochar.
straw; pyrolysis; catalyzation; pyrolysis gas; biochar; coupling; tar; catalytic reforming
2019-03-19
2019-07-30
國家玉米產(chǎn)業(yè)技術(shù)體系任務(wù)委托協(xié)議資助項(xiàng)目(CARS-02-31)和農(nóng)業(yè)農(nóng)村部規(guī)劃設(shè)計(jì)研究院自主研發(fā)項(xiàng)目(2018ZZYF0203)
王敬茹,研究方向?yàn)樯镔|(zhì)熱解。Email:807838914@qq.com
趙立欣,研究員,主要從事生物質(zhì)能資源開發(fā)利用技術(shù)與政策研究。Email:zhaolixin5092@163.com
10.11975/j.issn.1002-6819.2019.16.029
TK6
A
1002-6819(2019)-16-0258-07
王敬茹,姚宗路,叢宏斌,趙立欣,馬 騰,霍麗麗,袁艷文.生物質(zhì)炭催化玉米秸稈熱解氣重整提質(zhì)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(16):258-264. doi:10.11975/j.issn.1002-6819.2019.16.029 http://www.tcsae.org
Wang Jingru, Yao Zonglu, Cong Hongbin, Zhao Lixin, Ma Teng, Huo Lili, Yuan Yanwen. Upgrading biomass pyrolysis gas from corn stalk by charcoal catalytic reforming[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(16): 258-264. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.16.029 http://www.tcsae.org