王曉燕 梁萍 董艷婷
摘要:支氣管哮喘是呼吸系統(tǒng)的常見病及多發(fā)病之一,其是由嗜酸性粒細(xì)胞、肥大細(xì)胞、T淋巴細(xì)胞、中性粒細(xì)胞等多種細(xì)胞及細(xì)胞組分參與的氣道慢性過敏反應(yīng)炎癥性疾病,在全球范圍內(nèi)的發(fā)病率及死亡率不斷上升,嚴(yán)重影響公眾健康和患者生活質(zhì)量。研究發(fā)現(xiàn),支氣管哮喘的發(fā)病涉及機(jī)體免疫紊亂,Th1/Th2細(xì)胞比例失衡是哮喘發(fā)病的重要機(jī)制,在此基礎(chǔ)上,支氣管哮喘的免疫療法取得一定進(jìn)展,本文基于支氣管哮喘的免疫學(xué)機(jī)制,對非特異性免疫療法在支氣管哮喘治療中的研究及應(yīng)用進(jìn)展進(jìn)行綜述,以期為支氣管哮喘的治療提供新的方向和思路。
關(guān)鍵詞:支氣管哮喘;非特異性免疫療法;IgE單克隆抗體;免疫療法
中圖分類號:R691.3? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)識碼:A? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?DOI:10.3969/j.issn.1006-1959.2019.05.018
文章編號:1006-1959(2019)05-0057-04
Abstract:Bronchial asthma is one of the common and frequently-occurring diseases of the respiratory system. It is an airway chronic allergic reaction involving various cells and cellular components such as eosinophils, mast cells, T lymphocytes, and neutrophils. Diseases, global morbidity and mortality are rising, seriously affecting public health and the quality of life of patients. The study found that the incidence of bronchial asthma involves immune disorders, and the imbalance of Th1/Th2 cells is an important mechanism of asthma. On this basis, the immunotherapy of bronchial asthma has made some progress. Based on the immunological mechanism of bronchial asthma, this paper The research and application progress of heterosexual immunotherapy in the treatment of bronchial asthma are reviewed in order to provide new directions and ideas for the treatment of bronchial asthma.
Key words:Bronchial asthma;Non-specific immunotherapy;IgE monoclonal antibody;Immunotherapy
支氣管哮喘(bronchial asthma,asthma)簡稱哮喘,是由多種細(xì)胞及細(xì)胞組分參與的慢性氣道過敏反應(yīng)炎癥性疾病,長期慢性炎癥導(dǎo)致氣道高反應(yīng)性(airway hyperresponsiveness,AHR)的發(fā)生、可逆性氣流阻塞及氣道重塑。當(dāng)前哮喘全球患病率仍不斷上升,每年因哮喘死亡的人數(shù)不斷增長,嚴(yán)重影響公眾健康及患者生活質(zhì)量,引起了人們的廣泛關(guān)注。目前吸入性糖皮質(zhì)激素加長效β2受體激動(dòng)劑(ICS+LABA)仍為哮喘治療的一線藥物,其它藥物包括茶堿類藥物、抗膽堿藥及白三烯受體拮抗劑等。然而哮喘的治療現(xiàn)狀并不樂觀,有相當(dāng)一部分哮喘患者對ICS+LABA的治療不敏感,因此尋找新的治療策略勢在必行。隨著對哮喘發(fā)病機(jī)制的深入認(rèn)識,哮喘治療理念不斷更新,新的研究發(fā)現(xiàn),哮喘發(fā)病涉及機(jī)體免疫紊亂,Th1/Th2細(xì)胞比例失衡是哮喘發(fā)病的重要機(jī)制[1]。Th1和Th2細(xì)胞由Th0細(xì)胞按一定比例分化而成,Th1細(xì)胞可分泌干擾素γ(IFN-γ)、IL-2、IL-12等細(xì)胞因子,介導(dǎo)細(xì)胞免疫,同時(shí)輔助B淋巴細(xì)胞產(chǎn)生有吞噬作用的IgM、IgA,抑制IgE生成,對機(jī)體起保護(hù)作用;而Th2細(xì)胞分泌IL-4、IL-5、IL-6、IL-10、IL-13等細(xì)胞因子,介導(dǎo)體液免疫,輔助B細(xì)胞合成IgE,促進(jìn)哮喘發(fā)生發(fā)展。如果Th0向Th1分化減少,向Th2過度分化,將會出現(xiàn)Th1/Th2比例失衡,促進(jìn)哮喘發(fā)生發(fā)展[2]?;谙拿庖邔W(xué)機(jī)制,哮喘的免疫治療取得一定研究進(jìn)展,主要包括特異性和非特異性免疫療法。特異性免疫治療(specific immunotherapy,SIT)又叫脫敏療法或減敏療法,該方法是通過確定患者的變應(yīng)原后,逐漸增加特異性變應(yīng)原的量,使機(jī)體對該過敏原耐受,當(dāng)機(jī)體再次接觸相應(yīng)變應(yīng)原時(shí)使過敏反應(yīng)的程度降低或不再產(chǎn)生過敏反應(yīng),從而達(dá)到治療目的[3]。然而由于變應(yīng)原的不確定性及應(yīng)用范圍的局限性,該方法仍受到一定限制。本文主要針對非特異性免疫療法包括抗IgE單克隆抗體及細(xì)胞因子調(diào)控劑在哮喘治療中的研究進(jìn)展進(jìn)行綜述,以期為哮喘治療提供新的方向和思路。
1抗IgE單克隆抗體
IgE在支氣管哮喘發(fā)生、發(fā)展過程中發(fā)揮重要作用,IgE是介導(dǎo)Ⅰ型變態(tài)反應(yīng)的免疫球蛋白,哮喘患者血清中總IgE及特異性IgE水平增高是導(dǎo)致哮喘急性發(fā)病的重要因素,其水平高低對評估哮喘病情輕重具有重要意義[4]。哮喘速發(fā)或遲發(fā)型反應(yīng)均與IgE有關(guān),IgE激活肥大細(xì)胞及嗜酸性粒細(xì)胞,同時(shí)激活樹突狀細(xì)胞及巨噬細(xì)胞等抗原遞呈細(xì)胞,導(dǎo)致炎癥反應(yīng)的發(fā)生[5]???IgE 單克隆抗體與循環(huán)中游離IgE 結(jié)合,可減輕哮喘病情,已廣泛應(yīng)用于臨床上經(jīng)吸入型糖皮質(zhì)激素和長效支氣管擴(kuò)張劑聯(lián)合治療后癥狀仍未控制的嚴(yán)重哮喘患者,并成為全球哮喘防治創(chuàng)議(Global Initiative For Asthma,GINA)分級治療所推薦的方法[6]。目前應(yīng)用較多的是奧馬珠單抗(omalizumab),該藥已在西方國家上市多年,并取得顯著臨床效果。作為抗IgE單克隆抗體,Omalizumab特異性識別并與IgE的CHε3區(qū)段結(jié)合,形成抗體-抗抗體免疫復(fù)合物,中和血清游離IgE,并競爭性抑制IgE的CHε3區(qū)段與FcεRⅠ的結(jié)合[7],從而降低嗜堿性粒細(xì)胞、肥大細(xì)胞表面IgE受體的表達(dá),使肥大細(xì)胞和嗜堿性粒細(xì)胞活性下降,炎癥因子釋放減少,最終延緩或阻止了IgE 介導(dǎo)的炎癥反應(yīng)。一項(xiàng)研究顯示,應(yīng)用omalizumab治療哮喘患者,哮喘患者血液中嗜酸性粒細(xì)胞計(jì)數(shù)比對照組顯著降低[8]。臨床觀察證明[9],使用omalizumab具有良好的安全性和有效性,對于吸入皮質(zhì)激素治療不佳的中重度哮喘患者尤為適合,被認(rèn)為哮喘治療的二線藥物。一項(xiàng)關(guān)于omalizumab 的Ⅰ期臨床試驗(yàn)表明,對12例中、重度哮喘患者進(jìn)行一項(xiàng)單盲、安慰劑對照的實(shí)驗(yàn)研究,將omalizumab 按0.15 mg/kg(皮下注射)或0.5 mg/kg(靜脈注射)給藥,每周1次,共3周,結(jié)果未發(fā)現(xiàn)任何不良反應(yīng)(包括實(shí)驗(yàn)室指標(biāo)異常)。3周末接受低劑量omalizumab治療患者血清IgE水平已降至基線水平的60%,接受高劑量 omalizumab 治療患者的血清 IgE甚至可降至基線水平的20%[10]。此外,使用omalizumab可以明顯降低哮喘急性發(fā)作次數(shù),并改善肺功能,對于中重度哮喘患者,在糖皮質(zhì)激素和支氣管擴(kuò)張劑使用基礎(chǔ)上加用omalizumab是控制哮喘癥狀和急性發(fā)作的有效措施[11, 12]。對280例哮喘癥狀嚴(yán)重且吸入糖皮質(zhì)激素和長效β2-受體激動(dòng)劑后無法緩解的患者,進(jìn)行長達(dá)6個(gè)月的隨訪研究,表明omalizumab耐受性良好,使用omalizumab后患者哮喘病情未出現(xiàn)惡化,急性發(fā)作次數(shù)減少,同時(shí)日常和夜間癥狀減輕[13]。另外一項(xiàng)研究發(fā)現(xiàn),與未應(yīng)用的患者相比,應(yīng)用omalizumab治療的患者住院風(fēng)險(xiǎn)顯著降低[14]。
2細(xì)胞因子調(diào)控劑
2.1 TNF-α? TNF-α是由巨噬細(xì)胞、肥大細(xì)胞、T細(xì)胞產(chǎn)生的多肽調(diào)節(jié)因子,是體內(nèi)一種重要的炎性介質(zhì),參與機(jī)體炎癥反應(yīng)和免疫調(diào)節(jié),同時(shí)也是多種細(xì)胞因子的啟動(dòng)子,參與哮喘的整個(gè)病理生理過程。多項(xiàng)研究發(fā)現(xiàn),TNF-α在難治性重癥哮喘患者氣道中表達(dá)增加,吸入TNF-α可增加氣道高反應(yīng)性,增加氣道中性粒細(xì)胞炎癥反應(yīng)[15]。TNF-α可增加血管通透性,促進(jìn)炎癥細(xì)胞聚集、粘附,誘導(dǎo)產(chǎn)生炎癥因子,進(jìn)而促進(jìn)哮喘發(fā)生發(fā)展。一項(xiàng)關(guān)于兒童哮喘的研究表明,哮喘急性發(fā)作患兒血清TNF-α濃度顯著升高,且與病情嚴(yán)重程度相關(guān)[16]。另一項(xiàng)研究發(fā)現(xiàn),對體內(nèi)TNF-α升高的哮喘患者給予抗TNF-α治療,患者哮喘癥狀和肺功能顯著改善,氣道反應(yīng)性降低[17]。目前,人類可溶性TNF-α受體融合蛋白etanercept已用于哮喘治療的臨床研究之中。Etanercept是細(xì)胞膜上TNF-α的受體拮抗劑。研究表明,etanercept可不同程度改善難治性重度哮喘患者氣道高反應(yīng)性,提高第一秒用力呼氣容積(FEV1),降低最大呼氣流速變異率(PEF)[18]。人源抗TNF-α單克隆抗體golimumab能結(jié)中和TNF-α。一項(xiàng)多中心、隨機(jī)、雙盲、安慰劑對照、劑量相關(guān)的二期臨床試驗(yàn)研究表明,在治療早期,golimumab能減少重型哮喘患者糖皮質(zhì)激素吸入量,緩解哮喘持續(xù)狀態(tài)[19]。以上均表明,拮抗TNF-α對治療哮喘尤其重度哮喘是有一定益處的。
2.2 IL-4? IL-4由Th0細(xì)胞分泌,誘導(dǎo)TH0細(xì)胞向Th2細(xì)胞分泌,并刺激Th2細(xì)胞產(chǎn)生IL-4。后者進(jìn)一步活化B淋巴細(xì)胞,促進(jìn)IgE生成,最新研究發(fā)現(xiàn),哮喘患者外周血中IgE與IL-4水平升高呈正相關(guān)[20]。此外,IL-4對嗜酸性粒細(xì)胞的募集、趨化、浸潤起重要作用,在支氣管哮喘發(fā)生發(fā)展中發(fā)揮重要作用[21]。動(dòng)物實(shí)驗(yàn)研究發(fā)現(xiàn),抗IL-4單抗可阻斷IgE生成[22]。Pascolizumb(SB240683)是目前研究出的可直接抑制IL-4的特異性單克隆抗體,它具有中和IL-4的作用,可阻止Th0細(xì)胞向Th2轉(zhuǎn)化,從而抑制Th2分泌細(xì)胞因子,減少IgE的產(chǎn)生,此外,還可抑制肥大細(xì)胞、嗜酸性粒細(xì)胞在呼吸道上皮的浸潤,減輕哮喘炎癥反應(yīng),且具有較好的耐受性及安全性[23]。另有研究發(fā)現(xiàn),使用可溶性IL-4受體sIL-4R可阻斷IL-4的生物學(xué)效應(yīng),降低血漿IgE水平,作用安全而有效[24]。
2.3 IL-5? IL-5由活化的Th2細(xì)胞和肥大細(xì)胞產(chǎn)生,是嗜酸性粒細(xì)胞分化、聚集、浸潤的重要細(xì)胞因子,在氣道慢性炎癥和氣道高反應(yīng)性形成中發(fā)揮重要作用。研究發(fā)現(xiàn),卵蛋白誘導(dǎo)的支氣管哮喘小鼠模型中IL-5水平顯著升高,用抗IL-5抗體干預(yù)后外周血嗜酸性粒細(xì)胞顯著減少[21, 25],因此阻斷IL-5的生物效應(yīng)可作為哮喘靶向治療的一個(gè)方面。目前人工合成的IL-5單克隆抗體包括SCH-55700、Meplizumab和SB-240563。臨床研究發(fā)現(xiàn),Meplizumab可有效減輕支氣管哮喘急性發(fā)作,降低難治性哮喘患者外周血和痰液中的嗜酸性粒細(xì)胞[26]。另有研究發(fā)現(xiàn),Meplizumab不僅能減少哮喘患者外周血和痰液中的嗜酸性粒細(xì)胞數(shù)量,還能減少患者糖皮質(zhì)激素的用量[27]。
2.4 IL-13? IL-13也是由Th2細(xì)胞分泌產(chǎn)生,它使B淋巴細(xì)胞合成的免疫球蛋白向IgE轉(zhuǎn)化,促進(jìn)血管內(nèi)皮細(xì)胞黏附分子在內(nèi)皮細(xì)胞表達(dá),活化嗜酸性粒細(xì)胞,抑制嗜酸性粒細(xì)胞凋亡,誘導(dǎo)氣道高反應(yīng)性和促進(jìn)黏液大量分泌[28]。IL-13在遲發(fā)型哮喘反應(yīng)及哮喘氣道炎癥反應(yīng)的發(fā)生發(fā)展中均起重要作用,它不僅能引起氣道高反應(yīng)性,而且能顯著減少沙丁胺醇對氣道的保護(hù)作用。在IL-4水平較低時(shí),IL-13是誘導(dǎo)IgE合成的重要細(xì)胞因子[29]。此外,IL-13刺激肺纖維細(xì)胞向成纖維細(xì)胞分化,促進(jìn)產(chǎn)生轉(zhuǎn)化生長因子β及促進(jìn)成纖維細(xì)胞增殖,刺激基質(zhì)蛋白合成,增加細(xì)胞外基質(zhì)受體的表達(dá),參與哮喘氣道重塑[30]。臨床研究表明,抗IL-13抗體CAT354能顯著抑制哮喘患者氣道高反應(yīng)性、嗜酸性粒細(xì)胞浸潤和氣道重塑,并減少血清IgE及致炎因子的產(chǎn)生,對哮喘患者具有較好的耐受性及安全性[31]。同樣,可溶性IL-13R α2-Fc融合蛋白可顯著抑制哮喘小鼠IL-13的功能,同時(shí)抑制嗜酸粒細(xì)胞炎癥、氣道高反應(yīng)性及氣道黏液分泌[32]。
2.5 IL-10、IL-12? IL-10、IL-12具有內(nèi)在抗炎作用,在重度哮喘患者中,IL-10、IL-12水平降低。實(shí)驗(yàn)證明,抗炎細(xì)胞因子尤其是IL-10具有潛在的緩解支氣管哮喘氣道炎癥的能力[33]。IL-10抑制Th2細(xì)胞分泌促炎因子如TNF-α、IL-5并降低IgE水平,減輕氣道炎癥和氣道高反應(yīng)性[44]。哮喘患者支氣管肺泡灌洗液中IL-10的含量較正常對照組明顯降低[35]。IL-10的選擇性免疫調(diào)節(jié)劑可作為有效治療支氣管哮喘的研究與發(fā)展方向,關(guān)于增強(qiáng)內(nèi)源性IL-10或激活I(lǐng)L-10受體相關(guān)信號通路的藥物目前尚在研究之中。研究發(fā)現(xiàn),對哮喘患者進(jìn)行特殊過敏源免疫治療,局部IL-10相關(guān)產(chǎn)物水平增加,表明特殊過敏源治療可能通過激活I(lǐng)L-10相關(guān)信號通路發(fā)揮作用[36]。IL-12由單核細(xì)胞、巨噬細(xì)胞、DC和其他抗原提呈細(xì)胞分泌,其誘導(dǎo)Th1細(xì)胞分化,可以調(diào)節(jié)Th1細(xì)胞和Th2細(xì)胞之間的平衡,增加INF-γ表達(dá),抑制Th2細(xì)胞分泌IL-4、IL-5、IL-13,緩解氣道炎癥。研究發(fā)現(xiàn),腹腔注射重組IL-12能抑制抗原誘發(fā)的小鼠嗜酸性粒細(xì)胞氣道內(nèi)浸潤,然而同時(shí)可出現(xiàn)一些副作用。在臨床研究中發(fā)現(xiàn),這些副作用可通過調(diào)整劑量來避免[37]。
2.6其它細(xì)胞因子? 調(diào)控劑 NF-κB是一種重要的轉(zhuǎn)錄因子,屬于NF-κB/Rel蛋白家族,在過敏性呼吸系統(tǒng)疾病多種炎癥因子的基因表達(dá)中發(fā)揮重要作用。研究發(fā)現(xiàn),在嚴(yán)重未控制哮喘患者中,NF-κB通路被持續(xù)激活。NF-κB通路也是糖皮質(zhì)激素發(fā)揮抗炎作用的重要通路[38]。用腺病毒介導(dǎo)的NF-κB抑制蛋白ABIN-1轉(zhuǎn)導(dǎo)哮喘小鼠的肺上皮細(xì)胞,嗜酸性粒細(xì)胞進(jìn)入肺的數(shù)量及血漿中IgE水平、肺泡灌洗液中嗜酸性粒細(xì)胞趨化因子及IL-4均顯著降低[39]。STAT6是調(diào)節(jié)Th2細(xì)胞分化的重要轉(zhuǎn)錄因子。STAT6在T淋巴細(xì)胞的分化、增殖中起重要作用。研究發(fā)現(xiàn)[40],STAT6缺失的小鼠T淋巴細(xì)胞失去增殖能力,B淋巴細(xì)胞產(chǎn)生抗體的能力也受到顯著抑制。研究發(fā)現(xiàn),STAT6抑制劑(StataBP)可顯著抑制人及鼠細(xì)胞系IL-4依賴的STAT6磷酸化激活[41]。GATA-3轉(zhuǎn)錄因子在CD4+ T淋巴細(xì)胞分化為Th2細(xì)胞過程中發(fā)揮重要作用,也是IL-4、IL-5、IL-13表達(dá)不可缺少的轉(zhuǎn)錄因子。研究發(fā)現(xiàn),哮喘患者T淋巴細(xì)胞、支氣管活檢組織及肺泡灌洗液中GATA-3表達(dá)顯著增高[42]。通過小干擾RNA抑制GATA-3的表達(dá),CD3/CD28介導(dǎo)的Th2相關(guān)細(xì)胞因子表達(dá)顯著降低。
3展望
Th1/Th2細(xì)胞免疫失衡是哮喘發(fā)病的重要機(jī)制,在此基礎(chǔ)上,哮喘免疫治療成為新一代哮喘治療的重要手段,本文主要針對支氣管哮喘非特異免疫療法包括抗IgE單克隆抗體和細(xì)胞因子調(diào)控劑在哮喘治療中的應(yīng)用進(jìn)行綜述,該療法在臨床治療哮喘中已取得顯著成效,其中,抗IgE療法早已列入GINA哮喘防治指南,一些細(xì)胞因子調(diào)控劑也已上市,為哮喘尤其中重度哮喘控制提供了更多選擇和治療策略。然而,由于哮喘發(fā)病機(jī)制復(fù)雜,哮喘炎癥反應(yīng)過程中仍有多個(gè)靶點(diǎn)需要探索與發(fā)現(xiàn),相關(guān)藥物的臨床效果及安全性仍需進(jìn)一步研究。
參考文獻(xiàn):
[1]Holgate ST.Immune circuits in asthma[J].Curr Opin Pharmacol,2013,13(3):345-350.
[2]Kim Y,Lee S,Kim YS,et al.Regulation of Th1/Th2 cellsin asthma development:a mathematical model[J].Math Biosci Eng,2013,10(4):1095-1133.
[3]Passalacqua G,Bagnasco D,F(xiàn)errando M,et al.Current insights in allergen immunotherapy[J].Ann Allergy Asthma Immunol,2018,120(2):152-154.
[4]Froidure A,Mouthuy J,Durham SR,et al.Asthma phenotypes and IgE responses[J].Eur Respir J,2016,47(1):304-319.
[5]Kuhl K,Hanania NA.Targeting IgE in asthma[J].Curr Opin Pulm Med,2012,18(1):1-5.
[6]Chen S,Golam S,Myers J,et al.Systematic literature review of the clinical,humanistic,and economic burden associated with asthma uncontrolled by GINA Steps 4 or 5 treatment[J].Curr Med Res,2018,34(12):2075-2088.
[7]Pelaia G,Canonica GW,Matucci A,et al.Targeted therapy in severe asthma today:focus on immunoglobulin E[J].Drug Des Devel Ther,2017(11):1979-1987.
[8]Minami D,Kayatani H,Sato K,et al.Effectiveness of benralizumab for allergic and eosinophilic predominant asthma following negative initial results with omalizumab[J].Respirol Case Rep,2019,7(1):e00388.
[9]Corren J,Kavati A,Ortiz B,et al.Efficacy and safety of omalizumab in children and adolescents with moderate-to-severe asthma:A systematic literature review[J].Allergy Asthma Proc,2017,38(4):250-263.
[10]王剛,王曾禮.哮喘發(fā)病機(jī)制中IgE調(diào)控及重組人抗IgE單克隆抗體的應(yīng)用[J].中華結(jié)核與呼吸雜志,2003,26(7):427-430.
[11]Pilon D,Kavati A,Ortiz B,et al.Asthma control,lung function,symptoms,and corticosteroid sparing after omalizumab?initiation in patients with allergic asthma[J].Allergy Asthma Proc,2018,39(2):127-135.
[12]Di DB,F(xiàn)iorino I,Taurino M,et al.Long-term"real-life"safety of omalizumab in patients with severe uncontrolled asthma:A nine-year study[J].Respiratory Medicine,2017(130):55.
[13]Korn S,Thielen A,Seyfried S,et al.Omalizumab in patients with severe persistent allergic asthma in a real-life setting in Germany[J].Respiratory Medicine,2009,103(11):1725-1731.
[14]Grimaldi-Bensouda L,Zureik M,Aubier M,et al.Does omalizumab make a difference to the real-life treatment of asthma exacerbations?Results from a large cohort of patients with severe uncontrolled asthma[J].Chest,2013,143(2):398-405.
[15]Jiang XG,Yang XD,Lv Z,et al.Elevated serum levels of TNF-α,IL-8,and ECP can be involved in the development and progression of bronchial asthma[J].Asthma,2018,55(2):111-118.
[16]Brown SD.Brown LA.Stephenson S,et al.Characterization of a high TNF-α phenotype in children with moderate-to-severe asthma[J].J Allergy Clin Immunol,2015,135(6):1651-1654.
[17]Taillé C,Poulet C,Marchand-Adam S,et al.Monoclonal Anti-TNF-αAntibodies for Severe Steroid-Dependent Asthma:A Case Series[J].Open Respir Med J,2013(7): 21-25.
[18]Huang H,Nie W,Qian J,et al.Effects of TNF-α polymorphisms on asthma risk:a systematic review and meta-analysis[J].Investig Allergol Clin Immunol,2014,24(6):406-417.
[19]Menzella F,Lusuardi M,Galeone C,et al.Tailored therapy for severe asthma[J].Multidiscip Respir Med,2015,10(1):1-8.
[20]Patel SS,Casale TB,Cardet JC.Biological therapies for eosinophilic asthma[J].Expert Opin Biol Ther,2018,18(7):747-754. [21]Barnes PJ.Targeting cytokines to treat asthma and chronic obstructive pulmonary disease[J].Nat Rev Immunol,2018,18(7):454-466.
[22]Bagnasco D,F(xiàn)errando M,Varricchi G,et al.A Critical Evaluation of Anti-IL-13 and Anti-IL-4 Strategies in Severe Asthma[J].Int Arch Allergy Immunol,2016,170(2):122-131.
[23]Majumdar S,Ghosh A,Saha S.Modulating Interleukins and their receptors interactions with small chemicals using in silico approach for asthma[J].Curr Top Med Chem,2018,18(13):1123-1134.
[24]Walsh GM.Anti-IL-4/-13 based therapy in asthma[J].Expert Opin Emerg Drugs,2015,20(3):349-352.
[25]Lim HF,Nair P.Airway inflammation and inflammatory biomarkers[J].Semin Respir Crit Care Med,2018,39(1):56-63.
[26]Strauss RA,Jawhari N.Mepolizumab in the treatment of severe eosinophilic asthma:"results from a physician in the field"[J].Ann Allergy Asthma Immunol,2018,121(1):121-123.
[27]He LL,Zhang L,Jiang L.Efficacy and safety of anti-interleukin-5 therapy in patients with asthma:A pairwise and Bayesian network meta-analysis[J].Int Immunopharmacol,2018(64):223-231.
[28]Tung HY,Li E,Landers C,et al.Advances and Evolving Concepts in Allergic Asthma[J].Semin Respir Crit Care Med,2018,39(1):64-81.
[29]Parulekar AD,Kao CC,Diamant Z,et al.Targeting the interleukin-4 and interleukin-13 pathways in severe asthma:current knowledge and future needs[J].Curr Opin Pulm Med,2018,24(1):50-55.
[30]Seibold MA.Interleukin-13 Stimulation Reveals the Cellular and Functional Plasticity of the Airway Epithelium[J].Ann Am Thorac Soc,2018,15(Supplement_2): S98-S102.
[31]Devos FC,Pollaris L,Cremer J,et al.IL-13 is a central mediator of chemical-induced airway hyperreactivity in mice[J].PLoS One,2017,12(7):e0180690.
[32]Lamour S,Bourne T,Shaw S,et al.Efficacy of an Inhaled IL-13 antibody fragment in a model of chronic asthma[J].Am J Respir Crit Care Med,2018,198(5):610-619.
[33]Bopp T,Taube C.IL-10 and regulatory T cells cooperate in allergen-specific immunotherapy to ameliorate allergic asthma[J].J Immunol,2015,194(3): 887-897.
[34]B?觟hm L,Maxeiner J,Meyer-Martin H,et al.IL-10?and regulatory T cells cooperate in allergen-specific immunotherapy to ameliorate allergic asthma[J].J Immunol,2015,194(3):887-97.
[35]Girodet PO,Nguyen D,Mancini JD,et al.Alternative Macrophage Activation Is Increased in Asthma[J].Am J Respir Cell Mol Biol,2016,55(4):467-475.
[36]Vissers JL,van Esch BC,Hofman GA,et al.Allergen immunotherapy induces a suppressive memory response mediated by IL-10 in a mouse asthma model[J].J Allergy Clin Immunol,2004,113(6):1204-1210.
[37]Kuribayashi K,Kodama T,Okamara H,et al.Effects of post-inhalation treatment with interleukin-12 on airway hyper-reactivity,eosinophilia and interleukin-18 receptor expression ina mouse model of asthma[J].Clin Exp Allergy,2002(32):641-649.
[38]Zhou E,F(xiàn)u Y,Wei Z,et al.Inhibition of allergic airway inflammation through the blockage of NF-κB activation by ellagic acid in an ovalbumin-induced mouse asthma model[J].Food Funct,2014,5(9):2106-2112.
[39]Bakkourik E,Wullaert A,Haegman M,et al.Adenoviral gene? transfer of the NF-κB inhibitory protein abin-1 decreases allergic airway inflammation in a murine asthma model[J].J Biol Chem,2005,280(18):17938-17944.
[40]Krishnamurthy P,Kaplan MH.STAT6 and PARP Family Members in the Development of T Cell-dependent Allergic Inflammation[J].Immune Netw,2016,16(4):201-210.
[41]Mc Cracken JL,Veeranki SP,Ameredes BT,et al.Diagnosis and Management of Asthma in Adults: A Review [J].JAMA,2017,318(3):279-290.
[42]Rayees S,Malik F,Bukhari SI,et al.Linking GATA-3 and interleukin-13:implications in asthma[J].Inflamm Res,2014,63(4):255-265.
收稿日期:2018-12-17;修回日期:2018-12-28
編輯/王朵梅