邢 丹,肖玖軍,韓世玉,蓬桂華,付文婷,賈彥龍
基于穩(wěn)定同位素的石漠化地區(qū)桑樹(shù)根系水來(lái)源研究
邢 丹1,肖玖軍2,韓世玉1,蓬桂華1,付文婷1,賈彥龍3※
(1. 貴州省農(nóng)科院蠶業(yè)研究所,貴陽(yáng) 550006;2. 貴州省山地資源研究所,貴陽(yáng) 550001;3. 貴州理工學(xué)院,貴陽(yáng) 550003)
土壤水分虧缺是阻礙石漠化地區(qū)植被恢復(fù)重建的主要生態(tài)因子之一。然而,桑樹(shù)(L.)用于石漠化治理已取得良好效果,但其水分利用策略尚不清楚。該文基于氫、氧穩(wěn)定同位素技術(shù)研究石漠化地區(qū)桑樹(shù)根系在生長(zhǎng)期內(nèi)對(duì)不同深度土壤水分的利用程度,反映桑樹(shù)根系在不同季節(jié)的吸水能力變化,揭示桑樹(shù)生長(zhǎng)期內(nèi)水分利用策略。結(jié)果發(fā)現(xiàn):桑樹(shù)生長(zhǎng)前期(春季,4-6月)降水中氫氧穩(wěn)定同位素豐度較為偏正,比生長(zhǎng)后期(秋季,9-11月)降水富集氫氧穩(wěn)定同位素。土壤水氫氧穩(wěn)定同位素隨春季、秋季降雨的季節(jié)變化呈現(xiàn)下降趨勢(shì),并且受降雨、蒸發(fā)等影響,表現(xiàn)出不同的剖面垂直變化規(guī)律。桑樹(shù)水與土壤水氫、氧穩(wěn)定同位素變化相似,說(shuō)明桑樹(shù)生長(zhǎng)所需的水分主要靠土壤水分提供。通過(guò)直觀相關(guān)法和多元線性混合模型法判斷出桑樹(shù)在不同季節(jié)對(duì)土壤水分的吸收利用策略不同,其中春季先主要吸收10~30 cm土層水,隨著降雨增多開(kāi)始主要吸收利用50~60 cm深層水;進(jìn)入秋季降雨量較大時(shí)亦是主要吸收利用50~60 cm的深層水,而降雨減少時(shí)轉(zhuǎn)變?yōu)橹饕绽?~10 cm的土壤水。研究可為桑樹(shù)在石漠化治理中的應(yīng)用提供依據(jù)。
干旱;水分;同位素;氫;氧;季節(jié)變化
中國(guó)西南喀斯特地區(qū)雖然地處亞熱帶季風(fēng)性濕潤(rùn)氣候區(qū),但由于喀斯特充分發(fā)育,土層淺薄,土被不連續(xù),地表保水能力差,加之降水時(shí)空分布不均,屬季節(jié)性干旱地區(qū),不同功能型植物對(duì)水分吸收利用存在差異[1-2]。聶云鵬等[3]發(fā)現(xiàn)落葉植物菜豆樹(shù)(),在降水豐沛的夏季主要吸收儲(chǔ)存在淺層裂隙中近期雨水,在旱季主要利用表層巖溶帶水;而常綠植物鵝掌柴()無(wú)水分來(lái)源的變遷。McCole等[4]研究結(jié)果卻發(fā)現(xiàn)常綠植物杉木()在雨季主要利用淺層土壤水,在旱季轉(zhuǎn)而利用地下水。一般而言,喀斯特地區(qū)淺根系植物主要吸收利用來(lái)自近期降水的淺層土壤水,而深根系植物常常同時(shí)吸收利用不同深度的水源[5-7],如喀斯特坡地尾巨桉()水分吸收利用在雨季上坡以淺層土壤水為主,雨季下坡對(duì)深層土壤水利用比例明顯增加,而旱季上坡主要利用較深層水分,旱季下坡依賴淺層土壤水[8]。
研究表明,植物根系在吸收土壤水分及沿導(dǎo)管向上運(yùn)輸過(guò)程中不發(fā)生氫和氧穩(wěn)定同位素分餾,通過(guò)分析比較植物莖木質(zhì)部與植物利用的不同水源的同位素組成,結(jié)合同位素混合模型,可以確定不同水源對(duì)植物組織水分的相對(duì)貢獻(xiàn)率,或估算出植物對(duì)不同水源的相對(duì)使用量[9-12]。土壤水是植物根系水分吸收的主要來(lái)源,但水分虧缺限制植物生存和生態(tài)適應(yīng)性[13]。桑樹(shù)()作為生態(tài)治理的一種優(yōu)良落葉樹(shù)種,根系發(fā)達(dá),在石漠化生境條件下,尚不清楚桑樹(shù)對(duì)土壤水分吸收利用是否具有季節(jié)性差異,不清楚主要吸收淺層土壤水還是以深層土壤水為主。為此,本文以畢節(jié)市七星關(guān)區(qū)清水鋪鎮(zhèn)的桑園為研究對(duì)象,采集不同時(shí)期雨水、剖面土壤和桑樹(shù)木質(zhì)化枝條樣品進(jìn)行氫和氧穩(wěn)定同位素分析,研究各水體中氫和氧同位素組成季節(jié)變化特征,探索雨水較少時(shí)期桑樹(shù)根系的吸水策略,為石漠化桑園可持續(xù)管理提供理論依據(jù)。
研究區(qū)位于畢節(jié)市七星關(guān)區(qū)清水鋪鎮(zhèn)(105°35′02′′E,27°41′19′′N(xiāo)),屬亞熱帶季風(fēng)性濕潤(rùn)氣候區(qū),夏無(wú)酷暑,冬無(wú)嚴(yán)寒,氣候溫和,年均氣溫14.4 ℃,雨量充沛,年均降雨量900 mm。2014年全年降雨量為1 098.3 mm(圖1),但降雨分布不均,主要集中于6-9月(595.5 mm)。研究區(qū)域的面積1 018.4 m2,海拔1 147 m,所種植的桑樹(shù)品種為浙江省農(nóng)業(yè)科學(xué)院蠶桑研究所選育的農(nóng)桑14號(hào),屬于農(nóng)桑系列。當(dāng)?shù)貫轫憫?yīng)國(guó)家退耕還林政策于2006年引進(jìn)桑苗移栽于石漠化區(qū)域,分別于立春前后和7月初左右對(duì)桑樹(shù)進(jìn)行春伐和夏伐,即桑樹(shù)年生長(zhǎng)有2季,分別為4-6月和9-11月2個(gè)階段。該桑樹(shù)品種樹(shù)形直立稍開(kāi)展,發(fā)條數(shù)多,枝條粗長(zhǎng)而直,無(wú)側(cè)枝,在土壤水分含量適宜、高光照強(qiáng)度下蒸騰較大[14]。種植土壤為石灰性土,最高土壤厚度50~80 cm、容重1.23 g/cm3、總孔隙度53.36%、全氮2.32 g/kg、全磷0.34 g/kg、全鉀10.25 g/kg。
圖1 研究區(qū)2014年降雨情況
2014年4月-11月根據(jù)桑樹(shù)生長(zhǎng)特性,在夏伐前后對(duì)畢節(jié)市七星關(guān)區(qū)清水鋪鎮(zhèn)降雨、桑園土壤與植株進(jìn)行調(diào)查取樣。
降雨的采集:2014年4月-11月,在桑園附近農(nóng)戶家設(shè)置采樣點(diǎn),遇降雨時(shí)采集2 mL雨水至密封管,共采集68份雨水樣品,并保存于?20 ℃冷凍室用于測(cè)試水中氫氧同位素組成。
土樣的采集:桑樹(shù)2個(gè)生長(zhǎng)期內(nèi),按每10 cm 1層采集桑樹(shù)根系附近0~60 cm土層內(nèi)土壤樣品,每層土壤取3個(gè)重復(fù)樣,共采集106份有效土壤樣品,并將其立即放入特制玻璃瓶并密封以防蒸發(fā),4 ℃條件帶回實(shí)驗(yàn)室后立即保存于?20 ℃冷凍室用于測(cè)試土壤水中氫氧同位素組成。
植物樣采集:以能夠提取0.1~0.3 mL水為宜,為避免葉片水分干擾,采集完全木質(zhì)化、沒(méi)有葉片的桑樹(shù)枝條,并立即剝離韌皮部后放入特制玻璃瓶并密封,共采集36份桑枝樣品,4 ℃條件帶回實(shí)驗(yàn)室后立即保存于?20 ℃冷凍室用于測(cè)試桑枝水中氫氧同位素組成。
1.3.1 土壤水和植物水的萃取
土壤水和植物水的萃取采用真空冷凍蒸餾法[15]。先讓樣品在冰箱冷凍柜中?20 ℃時(shí)過(guò)夜完全結(jié)冰冷凍,然后取出將瓶體頸部以下在液氮中浸泡5 min完全冷凍后,保持液氮不拿走接入真空線刺穿抽真空,真空達(dá)到8 Pa時(shí),換上?80 ℃酒精液氮,抽真空2 min,關(guān)閉相關(guān)真空活塞,在真空線的冷阱處套上裝有液氮的液氮杯,移去樣品處的酒精液氮,換上沸水系統(tǒng)加熱樣品,萃取過(guò)程持續(xù)5 h,此過(guò)程中適時(shí)給液氮杯添加液氮和給沸水系統(tǒng)添加熱水。萃取結(jié)束后,將冷阱處的水分轉(zhuǎn)移到玻璃管中,從真空線上卸下后用Parafilm膜封好,室溫融化后轉(zhuǎn)移到樣品瓶中密封,放在冰箱冷藏室中4 ℃保存。
1.3.2 水的氫同位素分析
采用印第安納鋅(Indiana Zinc)還原法[16]。將大約3L水樣品封入玻璃毛細(xì)管中,然后在真空線上破碎,將水純化后收集在外徑6 mm厚1 mm長(zhǎng)200 mm預(yù)先裝入250 mg印第安納鋅的石英管中,抽好真空后用火焰槍熔封石英管。然后放在馬弗爐中在500 ℃加熱1 h,以使水和鋅反應(yīng)生成氫氣,冷卻后在MAT253質(zhì)譜儀上測(cè)定氫同位素比值。本分析工作中用到的所有石英管在使用前均在850 ℃時(shí)灼燒1 h,冷卻后備用。
1.3.3 水的氧同位素分析
采用CO2-H2O平衡交換法[17-18]。先將5.9 mL帶橡膠墊旋轉(zhuǎn)密封的安瓿瓶在真空線上抽好真空后導(dǎo)入約50 kPa純CO2氣體,記錄CO2氣體的實(shí)際壓力和溫度,并收集CO2氣體測(cè)定其氧同位素比值。將安瓿瓶從真空線卸下后,用1 mL注射器注入0.5 mL水樣品,立即放入水浴恒溫振蕩搖床中26 ℃時(shí)振蕩過(guò)夜,然后在真空線上純化收集CO2氣體,在MAT253上測(cè)定其氧同位素比值。利用CO2交換前后的氧同位素比值和CO2氣體的壓力、溫度、體積,水的質(zhì)量和26 ℃ CO2-H2O之間氧同位素分餾系數(shù)[19]計(jì)算水的氧同位素比值。
1.3.4 質(zhì)量控制
1)數(shù)據(jù)標(biāo)準(zhǔn)化:按照國(guó)際通用的數(shù)據(jù)標(biāo)準(zhǔn)化方法[20]對(duì)氫、氧同位素?cái)?shù)據(jù)標(biāo)準(zhǔn)化,即所有數(shù)據(jù)均相對(duì)于國(guó)際標(biāo)準(zhǔn)物平均海洋水(Vienna standard mean ocean water,VSMOW)報(bào)道,并且所有數(shù)據(jù)要用國(guó)際標(biāo)樣南極融冰水(standard light antarctic precipitation, SLAP)的氫同位素比值?428‰或氧同位素比值?55.5‰進(jìn)行標(biāo)準(zhǔn)化。公式是:
δ樣品=
f
(δ樣品實(shí)測(cè)值–δVSMOW實(shí)測(cè)值) (2)
式中δSLAP和δVSMOW的比值就是國(guó)際原子能機(jī)構(gòu)(international atomic energy agency,IAEA)推薦的參考值,其氫、氧同位素比值分別為?428‰和?55.5‰,或均為0。
2)平行樣測(cè)試:每隔若干樣品,對(duì)前面已經(jīng)測(cè)過(guò)的樣品進(jìn)行重復(fù)測(cè)試。
3)國(guó)際標(biāo)準(zhǔn)測(cè)試:IAEA推薦的國(guó)際標(biāo)樣格陵蘭冰蓋降水(greenland ice sheet precipitation, GISP)的氫、氧同位素比值分別為?189.5‰±1.2‰,?24.8‰±0.09‰,分別進(jìn)行了5次測(cè)試,其δD值分別為?188.4‰、?189.4‰、?188.6‰、?188.5‰、?189.7‰,平均值為?188.6‰±0.6‰。δ18O值分別為?24.73‰、?24.84‰、?24.82‰、?24.79‰、?24.78‰,平均值為?24.79‰±0.04‰。因此,準(zhǔn)確度和精度均達(dá)到了國(guó)際標(biāo)準(zhǔn)。
4)測(cè)試精度:氫、氧同位素測(cè)試總精度分別好于2‰和0.1‰。
1.4.1 直觀相關(guān)法
將桑樹(shù)莖水與不同潛在水源的δD和δ18O進(jìn)行直接對(duì)比,當(dāng)其與某潛在水源δD和δ18O交叉或者相近時(shí),則定性判斷出桑樹(shù)利用了該水源[21]。
1.4.2 多源線性混合模型法
根據(jù)同位素質(zhì)量守恒原理,Phillips等[22]提出多源線性混合模型法確定植物對(duì)各潛在水源的利用比例,基于IsoSource軟件運(yùn)行該模型。運(yùn)行前設(shè)置2個(gè)參數(shù),即對(duì)來(lái)源增量(source increment)和質(zhì)量平衡公差(mass balance tolerance)分別賦值1 %和0.1 ‰;隨后將測(cè)定的各水分樣品δD和δ18O代入模型運(yùn)行即可[23],則定量判斷出桑樹(shù)對(duì)某層土壤水的利用率。
運(yùn)用SPSS 23.0對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行單因素統(tǒng)計(jì)分析,5%水平下最小顯著差異(least significance difference,LSD)多重比較檢驗(yàn)δD和δ18O平均值之間的差異顯著。采用IsoSource軟件判斷桑樹(shù)水源,利用SigmaPlot 13.0作圖。
圖2所示,研究區(qū)4-11月降水中δD值介于?161.2‰~34.9‰之間,平均值為?25.9‰,δ18O值介于?21.08‰~6.33‰之間,平均值為?4.82‰。其中,桑樹(shù)生長(zhǎng)前期(春季,4-6月)降水中δD、δ18O變化范圍分別為?36.4‰~34.9‰和?6.2‰~6.33‰,平均值分別為?0.24‰和?1.68‰;生長(zhǎng)后期(秋季,9-11月)降水中δD、δ18O變化范圍分別為(?97.5‰~?7.4‰和?13.41‰~3.14‰,平均值分別為?60.0‰和?8.17‰。
圖2 研究區(qū)雨水、土壤水和桑樹(shù)水氫氧同位素豐度的變化特征
土壤水及桑樹(shù)水δD、δ18O表現(xiàn)出一定的季節(jié)變化特征。春季,土壤水中δD、δ18O變化范圍分別為?65.2‰~?5.9‰和?9.29‰~?1.25‰,平均值分別為?29.4‰和?4.77‰;桑樹(shù)水δD、δ18O變化范圍分別為?54.2‰~?20.0‰和?6.86‰~?3.92‰,平均值分別為?33.2‰和?5.39‰。秋季,土壤水中δD、δ18O變化范圍分別為?88.9‰~?39.3‰和?11.3‰~?5.43‰,平均值分別為?70.1‰和?9.27‰;桑樹(shù)水δD、δ18O變化范圍分別為?62.8‰~?50.9‰和?9.02‰~?6.99 ‰,平均值分別為?55.7‰和?7.92‰。同時(shí),季節(jié)變化上,土壤水與桑樹(shù)水δD、δ18O基本位于雨水δD、δ18O下方,而且桑樹(shù)水δD、δ18O融于土壤水在δD、δ18O中間。從這些δD、δ18O組成初步看出,桑樹(shù)水與土壤水同位素豐度相近,推斷桑樹(shù)主要利用土壤水。
圖3所示,基于研究區(qū)雨水中δD和δ18O數(shù)據(jù)資料,建立了該區(qū)雨水線方程,發(fā)現(xiàn)δD和δ18O均存在顯著的線性關(guān)系,4-11月2=0.97(<0.01),其中春季2=0.90,(<0.01),秋季2=0.98(<0.01)。春季,土壤水δD和δ18O間線性關(guān)系顯著2=0.91(<0.01)。秋季,土壤及桑樹(shù)莖水δD和δ18O間線性關(guān)系較春季弱(2=0.35和0.36)。
圖4所示,春季和秋季土壤水δD和δ18O表現(xiàn)出明顯的季節(jié)變化差異,而同季節(jié)中不同月份表現(xiàn)出相似的變化趨勢(shì)。春季,土壤水δD和δ18O隨土壤剖面深度增加呈現(xiàn)持續(xù)遞減趨勢(shì)。其中,4月δD值由0~10 cm的?20.1‰減少至50~60 cm的?56.35‰,δ18O值由?3.67‰減少至?8.36‰;5月δD值由?12.5‰減少至的?54.1‰,δ18O值由?2.15‰減少至?6.95‰;6月δD值由?17.4‰減少至?42.8‰,δ18O值由?3.21‰減少至?6.35‰。利用LSD方法對(duì)同一月份不同土層δD和δ18O值進(jìn)行顯著分析,結(jié)果表明:4月,0~30 cm土壤水δD和δ18O差異均不顯著(>0.05),>30~60 cm δD和δ18O之間不顯著(>0.05),但δD和δ18O分別與0~30 cm的土壤水δD和δ18O差異顯著(<0.05);5月,0~30 cm土壤水δD和δ18O差異均不顯著(>0.05),但>30~60 cm之間差異顯著(<0.05),且與0~30 cm間差異顯著(<0.05);6月,0~40 cm之間土壤水δD和δ18O差異不顯著(>0.05),但>40~60 cm之間差異顯著且顯著低于0~40 cm(<0.05)。
秋季,土壤水δD和δ18O隨土壤剖面深度增加呈現(xiàn)降-升的變化趨勢(shì)。其中,9月0~20 cm土壤水δD和δ18O呈下降趨勢(shì),隨后>20~60 cm呈遞增趨勢(shì),并且50~60 cm土層數(shù)值(δD和δ18O分別為?61.8‰和?8.38‰)略高于0~10 cm(?72.3‰和?8.86‰);10月δD和δ18O變化拐點(diǎn)位于20~30 cm土層,但50~60 cm土層數(shù)值(δD和δ18O分別為?65.7‰和?9.09‰)仍低于0~10 cm(?59.3‰和?7.54‰);11月時(shí),土壤水δD和δ18O在30~40 cm土層位置略有拐點(diǎn)(δD和δ18O分別為?75.0‰和?10.3‰),但整體呈現(xiàn)降低趨勢(shì),δD值由0~10 cm的?43.8‰減少至>50~60 cm的?74.9‰,δ18O值由?6.86‰減少至?10.2‰。利用LSD對(duì)同一月份不同土層層δD和δ18O值比較,結(jié)果表明拐點(diǎn)上下差異顯著(<0.05)。
圖3 研究區(qū)雨水、土壤水和桑樹(shù)莖水δD、δ18O關(guān)系變化
圖4 桑樹(shù)各生長(zhǎng)期不同剖面深度土壤水與莖稈水δD及δ18O
利用直觀相關(guān)法對(duì)不同月份桑樹(shù)莖水δD、δ18O與土壤水源δD、δ18O進(jìn)行對(duì)比,若與桑樹(shù)莖水值接近或相交即為桑樹(shù)吸水來(lái)源區(qū)域。圖4所示,不同月份桑樹(shù)莖水δD、δ18O與土壤水δD、δ18O均有交叉,初步判斷不同季節(jié)桑樹(shù)水分來(lái)源明顯不同。春季,桑樹(shù)根系吸水的區(qū)域?yàn)?0 cm以下的土壤水;秋季,桑樹(shù)吸水區(qū)域?yàn)?0 cm以上,即表層土壤水,其中9月50~60 cm區(qū)域亦為其吸水區(qū)。同時(shí)發(fā)現(xiàn),利用直觀相關(guān)法進(jìn)行分析時(shí)精確性欠佳,尚需借助定量計(jì)算法進(jìn)一步明確主要吸水來(lái)源及其貢獻(xiàn)率。
圖5為利用多元線性混合模型(借助IsoSource軟件)計(jì)算桑樹(shù)吸水來(lái)源及貢獻(xiàn)率的結(jié)果。在應(yīng)用模型軟件定量計(jì)算過(guò)程中以δ18O值的分析結(jié)果為主。由圖看出,桑樹(shù)生長(zhǎng)前期時(shí),4月0~10、>10~20、>20~30、>30~40、>40~50和>50~60 cm的土壤水對(duì)桑樹(shù)吸水的貢獻(xiàn)率分別為3.1%、32.5%、36.6%、4.1%、1.6%和22.1%;5月,相應(yīng)的不同土層水貢獻(xiàn)率分別為7.9%、8.3%、10.9%、14.4%、26.6%和31.8%;6月,不同土層水貢獻(xiàn)率分別為24%、4.5%、1.9%、1.6%、2.1%和66%。表明桑樹(shù)在春季先吸收利用10~30 cm中層水(利用率達(dá)69.1%),隨后開(kāi)始主要吸收利用50~60 cm深層水(5月和6月利用率分別達(dá)31.8%和66%)。桑樹(shù)生長(zhǎng)后期,對(duì)土壤水分的吸收利用發(fā)生相反變化。9月,0~10 cm土壤水對(duì)桑樹(shù)根系吸水的貢獻(xiàn)率為11%,而>50~60 cm土壤水的貢獻(xiàn)率達(dá)70.2%;10月和11月,0~10 cm土壤水貢獻(xiàn)最大,貢獻(xiàn)率分別為94.3%和71.9%。由此看出,秋季時(shí),桑樹(shù)先主要吸收利用50~60 cm的深層水,隨后主要吸收利用0~10 cm的土壤水。
圖5 不同深度土壤水對(duì)桑樹(shù)根系水分利用的貢獻(xiàn)率
研究區(qū)降水δD、δ18O變化范圍(圖2)與全球雨水中δD(?300‰~131‰)、δ18O(?54‰~31‰)變化范圍[24],和中國(guó)雨水δD(190‰~20‰)、δ18O(?24‰~2.0‰)變化范圍[25]相比,其落在全球雨水變化δD、δ18O變化范圍中,并與中國(guó)雨水δD、δ18O變化范圍較為接近。然而,研究區(qū)雨水中δD、δ18O平均值比全球雨水δD(?22‰)、δ18O(?4‰)平均值偏小,比中國(guó)雨水δD(?50‰)、δ18O(?8‰)平均值偏大,說(shuō)明降水氣團(tuán)在到達(dá)研究區(qū)之前已經(jīng)歷一定程度的貧化、富集過(guò)程。進(jìn)一步分析發(fā)現(xiàn)(圖3),與全球降水線(δD=8 δ18O +10)和中國(guó)雨水線(δD=7.48 δ18O+1.01)相比,研究區(qū)雨水線的斜率相對(duì)有大、有小,但截距相對(duì)均較大,這可能是受水蒸氣壓力、降雨量、地理緯度、氣候環(huán)境等影響,降水過(guò)程存在一定程度二次蒸發(fā)的結(jié)果[26-27]。在本研究中,土壤水δD、δ18O隨季節(jié)變化呈現(xiàn)下降趨勢(shì)(圖2),同時(shí)受降雨、蒸發(fā)等影響[28],土壤水δD、δ18O表現(xiàn)出不同的垂直變化(圖4),這為進(jìn)一步探索桑樹(shù)根系吸水奠定基礎(chǔ)。
桑樹(shù)是多年生高耗水型木本植物,年需水量為7 000~12 000 m3/hm2(700~1 200 mm),在生長(zhǎng)季節(jié)對(duì)水分需求隨季節(jié)發(fā)生變化[29-30]。但本研究區(qū)年降水量900 mm,基本滿足桑樹(shù)的需水量。同時(shí),桑樹(shù)莖水δD、δ18O值隨季節(jié)變化(圖2),表明桑樹(shù)根系吸水在不同季節(jié)隨降雨供應(yīng)而發(fā)生變化,而根系吸水與降雨之間是否存在顯性相關(guān)或具有何種根系吸水模型尚需進(jìn)一步探索。植物吸收的水分主要來(lái)自降水或地下水等“初始”水源轉(zhuǎn)化而來(lái)的土壤水[31-32]。容麗等[13]研究發(fā)現(xiàn),喀斯特地區(qū)植物水分的主要來(lái)源于土壤水。在本研究結(jié)果中,桑樹(shù)水δD、δ18O與土壤水δD、δ18O組成變化相似,從而說(shuō)明桑樹(shù)也主要吸收利用土壤水,與張建華等[29]在川南山區(qū)非喀斯特地區(qū)的結(jié)果相似,即桑樹(shù)生長(zhǎng)所需的水分靠土壤水庫(kù)容提供。通過(guò)直觀相關(guān)法初步判斷出在春季,桑樹(shù)根系吸水的區(qū)域?yàn)?0 cm以下的土壤水;秋季,桑樹(shù)吸水區(qū)域?yàn)?0 cm以上,即表層土壤水,但9月份對(duì)50~60 cm土層水有需求。利用多元線性混合模型定量判斷出桑樹(shù)在不同季節(jié)對(duì)土壤水分的吸收利用策略(圖5),研究表明春季3-4月份主要吸收10~30 cm土層水,5月與6月時(shí)主要吸收利用50~60 cm深層水,而進(jìn)入秋季生長(zhǎng)期9月份主要吸收利用50~60 cm的深層水,隨后10-11月份主要吸收利用0~10 cm的土壤水。這與植物的二態(tài)根系及降雨等有一定的關(guān)系。
植物的二態(tài)根系系統(tǒng)會(huì)使其在雨季和旱季利用不同深度層次的土壤水分[33-34]。McCole等[4]研究發(fā)現(xiàn)常綠植物杉木在雨季主要利用淺層土壤水,在旱季轉(zhuǎn)而利用地下水。而容麗等[13]研究指出,貴州喀斯特地區(qū)植物生長(zhǎng)旺季(8月),土壤下層水的貢獻(xiàn)較大,而雨水減少的10月,灌木林主要利用土壤表層水。本研究中,2014年全年降雨量為1 098.3 mm,但降水分配不均(圖1),其中6月和9月降雨較多,分別為117.6和138.2 mm,水分供應(yīng)充足并向下層土壤入滲,因而桑樹(shù)主要吸收利用深層土壤水。在降雨較少的月份(如降雨不足80 mm的10月和11月),桑樹(shù)主要利用表層土壤水,這可能與其根系形態(tài)、表層土壤水分有效性高有關(guān)[3,35]。一方面,桑樹(shù)根系發(fā)達(dá)可伸展到深層土壤,可能通過(guò)水力提升作用將水分提升并分配到表層土壤和根系周?chē)?,從而供表層土壤中根系吸收利用。另一方面,即使雨水少,但表層有桑?shù)落葉和一些雜草可攔截雨水并下滲于表層,而又難以滲入下層,從而雨水聚集于表層并使桑樹(shù)萌發(fā)出新的根系,加上桑樹(shù)根系與土壤中某些真菌共生,在共生菌的促進(jìn)作用下,導(dǎo)致桑樹(shù)水分吸收利用以表層水為主。有趣的是,Schwinning[36]研究發(fā)現(xiàn)菌根真菌能為植物根系吸收水分提供通道,增強(qiáng)植物適應(yīng)巖溶干旱環(huán)境脅迫能力。而桑樹(shù)是典型的叢枝菌根植物,對(duì)AM真菌依賴性較高[37-38]。本研究推測(cè)干旱時(shí),桑樹(shù)可能依靠AM真菌而主要吸收表層土壤水。在后期研究工作中,通過(guò)觀測(cè)分析不同剖面AM真菌多樣性發(fā)現(xiàn)10月AM真菌的分子種較多[39],但尚需通過(guò)對(duì)桑樹(shù)接種AM真菌探索其是否顯著促進(jìn)桑樹(shù)水分吸收利用而驗(yàn)證此推測(cè)。
桑樹(shù)生長(zhǎng)過(guò)程,雨水中δD、δ18O在春季富集而秋季貧化,土壤水δD、δ18O隨降雨的季節(jié)變化呈現(xiàn)下降趨勢(shì),并且受降雨、蒸發(fā)等影響表現(xiàn)出不同的剖面垂直變化。通過(guò)直觀相關(guān)法和多元線性混合模型法判斷出桑樹(shù)在春季雨水少時(shí)主要吸收10~30 cm土層水,隨降雨增多改為吸收利用50~60 cm深層水;進(jìn)入秋季降雨量較大時(shí)亦是主要吸收利用50~60 cm的深層水,而降雨減少時(shí)轉(zhuǎn)變?yōu)橹饕绽?~10 cm的土壤水。
[1] 王世杰,容麗,杜雪蓮,等. 基于穩(wěn)定同位素的喀斯特植物水分利用策略[J]. 礦物巖石地球化學(xué)通報(bào),2008,27(Z1):513-514.
Wang Shijie, Rong Li, Du Xuelian, et al. Plant water use strategy in rocky desertification area using deuterium and oxygen-18 isotopes[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2008, 27(Z1): 513-514. (in Chinese with English abstract)
[2] 陳洪松,王克林. 西南喀斯特山區(qū)土壤水分研究[J]. 農(nóng)業(yè)現(xiàn)代化研究,2008,29(6):734-738.
Chen Hongsong, Wang Kelin. Soil water research in karst mountain areas of Southwest China[J]. Research of Agricultural Modernization, 2008, 29(6): 734-738. (in Chinese with English abstract)
[3] 聶云鵬,陳洪松,王克林. 石灰?guī)r地區(qū)連片出露石叢生境植物水分來(lái)源的季節(jié)性差異[J]. 植物生態(tài)學(xué)報(bào),2011,35(10):1029-1037.
Nie Yunpeng, Chen Hongsong, Wang Kelin. Seasonal variation of water sources for plants growing on continuous rock outcrops in limestone area of Southwest China[J]. Chinese Journal of Plant Ecology, 2011, 35(10): 1029-1037. (in Chinese with English abstract)
[4] McCole A A, Stern L A. Seasonal water use patterns of Juniperus ashei on the Edwards Plateau, Texas, based on stable isotopes in water[J]. Journal of Hydrology, 2007, 342(3/4): 238-248.
[5] Williams P W. The role of the epikarst in karst and cave hydrogeology: A review[J]. International Journal of Speleology, 2008, 37(1): 1-10.
[6] Schwinning S. The water relations of two evergreen tree species in a karst savanna[J]. Oecologia, 2008, 158(3): 373-383.
[7] 陳洪松,聶云鵬,王克林. 巖溶山區(qū)水分時(shí)空異質(zhì)性及植物適應(yīng)機(jī)理研究進(jìn)展[J]. 生態(tài)學(xué)報(bào),2013,33(2):317-326.
Chen Hongsong, Nie Yunpeng, Wang Kelin. Spatio-temporal heterogeneity of water and plant adaptation mechanisms in karst regions: a review[J]. Acta Ecologica Sinica, 2013, 33(2): 317-326. (in Chinese with English abstract)
[8] 丁亞麗,陳洪松,聶云鵬,等. 基于穩(wěn)定同位素的喀斯特坡地尾巨桉水分利用特征[J]. 應(yīng)用生態(tài)學(xué)報(bào),2016,27(9):2729-2736. Ding Yali, Chen Hongsong, Nie Yunpeng, et al. Water use strategy of×on karst hillslope based on isotope analysis[J]. Chinese Journal of Applied Ecology, 2016, 27(9): 2729-2736. (in Chinese with English abstract)
[9] Yakir D, da S L Sternberg L. The use of stable isotopes to study ecosystem gas exchange[J]. Oecologia, 2000, 123(3): 297-311.
[10] Dawson T E, Mambelli S, Plamboeck A H, et al. Stable isotopes in plant ecology[J]. Annual Review of Ecology and Systematics, 2002, 33(1): 507-559.
[11] Ewe S M L, da S L Sternberg L, Childers D L. Seasonal plant water uptake patterns in the saline southeast Everglades ecotone[J]. Oecologia, 2007, 152(4): 607-616.
[12] Greaver T L, Sternberg L S L. Decreased precipitation exacerbates the effects of sea level on coastal dune ecosystems in open ocean islands[J]. Global Change Biology, 2010, 16(6): 1860-1869.
[13] 容麗,王世杰,俞國(guó)松,等. 荔波喀斯特森林4種木本植物水分來(lái)源的穩(wěn)定同位素分析[J]. 林業(yè)科學(xué),2012,48(7):14-22.
Rong Li, Wang Shijie, Yu Guosong, et al. Stable isotope analysis of water sources of four woody species in the Libo karst forest[J]. Scientia Silvae Sinicae, 2012, 48(7): 14-22. (in Chinese with English abstract)
[14] 陳志成,王志偉,王榮榮,等. 桑樹(shù)葉片光合生理性狀對(duì)土壤水分含量和光照強(qiáng)度的響應(yīng)[J]. 蠶業(yè)科學(xué),2012,38(3):375-380.
Chen Zhicheng, Wang Zhiwei, Wang Rongrong, et al. Responses of photosynthetic physiological characteristics of mulberry leaf to soil moisture and light intensity[J]. Science of Sericulture, 2012, 38(3): 375-380. (in Chinese with English abstract)
[15] Sternberg L D S L, Deniro M J, Sloan M E, et al. Compensation point and isotopic characteristics of C3/C4 intermediates and hybrids in Panicum[J]. Plant Physiology, 1986, 80(1): 242-245.
[16] Coleman M L, Shepherd T J, Durham J J, et al. Reduction of water with zinc for hydrogen isotope analysis[J]. Analytical Chemistry, 1982, 54(6): 993-995.
[17] Epstein S, Mayeda T. Variation of O18 content of waters from natural sources[J]. Geochimica Et Cosmochimica Acta, 1953, 4(5): 213-224.
[18] Socki R A, Karlsson H R, Gibson E K. Extraction technique for the determination of oxygen-18 in water using preevacuated glass vials[J]. Analytical Chemistry, 1992, 64(7): 829-831.
[19] Bottinga Y. Calculation of fractionation factors for carbon and oxygen isotopic exchange in the system calcite-carbon dioxide-water[J]. The Journal of Physical Chemistry, 1968, 72(3): 800-808.
[20] Coplen T B. New guidelines for reporting stable hydrogen, carbon, and oxygen isotope-ratio data[J]. Geochimica et Cosmochimica Acta, 1996, 60: 3359-3360.
[21] 王鵬,宋獻(xiàn)方,袁瑞強(qiáng),等. 基于氫氧穩(wěn)定同位素的華北農(nóng)田夏玉米耗水規(guī)律研究[J]. 自然資源學(xué)報(bào),2013(3):481-491.
Wang Peng, Song Xianfang, Yuan Ruiqiang, et al. Study on water consumption law of summer corn in North China using deuterium and oxygen-18 isotopes[J]. Journal of Natural Resources, 2013(3): 481-491. (in Chinese with English abstract)
[22] Phillips D L, Gregg J W. Source partitioning using stable isotopes: Coping with too many sources[J]. Oecologia, 2003, 136: 261-269.
[23] 聶云鵬,陳洪松,王克林. 土層淺薄地區(qū)植物水分來(lái)源研究方法[J]. 應(yīng)用生態(tài)學(xué)報(bào),2010,21(9):2427-2433.
Nie Yunpeng, Chen Hongsong, Wang Kelin. Methods for determining plant water source in thin soil region: A review[J]. Chinese Journal of Applied Ecology, 2010, 21(9): 2427-2433. (in Chinese with English abstract)
[24] Craig H. Isotopic variations in meteoric waters[J]. Science, 1961, 133(3465): 1702-1703.
[25] 鄭淑蕙,侯發(fā)高,倪葆齡. 我國(guó)大氣降水的氫氧穩(wěn)定同位素研究[J]. 科學(xué)通報(bào),1983,28(13):801.
Zheng Shuhui, Hou Fagao, Ni Baoling. Study on deuterium and oxygen-18 isotopes of precipitation in China[J]. Chinese Science Bulletin, 1983, 28(13): 801. (in Chinese with English abstract)
[26] 胡可,陳洪,聶云鵬,等. 桂西北喀斯特峰叢洼地降水氫氧穩(wěn)定同位素的季節(jié)變化特征[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(5):53-62.
Hu Ke, Chen Hong, Nie Yunpeng, et al. Characteristics of seasonal variation of deuterium and oxygen-18 isotope composition of precipitation in karst peak-cluster depression area, northwest Guangxi of China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(5): 53-62. (in Chinese with English abstract)
[27] 李維杰,王建力,王家錄. 西南地區(qū)不同地形降水穩(wěn)定同位素特征及其水汽來(lái)源[J]. 長(zhǎng)江流域資源與環(huán)境,2018,27(5):1132-1142.
Li Weijie, Wang Jianli, Wang Jialu. Characteristics of the stable isotopes in precipitation and the source of water vapor in different terrain in the southwest region[J]. Resources and Environment in the Yangtze Basin, 2018, 27(5): 1132-1142. (in Chinese with English abstract)
[28] Xu Q, Liu S, Wan X, et al. Effects of rainfall on soil moisture and water movement in a subalpine dark coniferous forest in southwestern China[J]. Hydrological Processes, 2012, 26(25): 3800-3809.
[29] 張建華,羅春燕,龐良玉,等. 川南山區(qū)雨養(yǎng)桑園水分供需狀況分析[J]. 蠶業(yè)科學(xué),2012,38(6):988-993.
Zhang Jianhua, Luo Chunyan, Pang Liangyu, et al. An analysis on water supply and demand of rainfed mulberry filed in Southern Mountain Areas of Sichuan Province[J]. Science of Sericulture, 2012, 38(6): 988-993. (in Chinese with English abstract)
[30] 鄭松州. 科爾沁沙地幾種經(jīng)濟(jì)植物耗水特征及其栽植技術(shù)研究[D]. 呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學(xué),2013.
Zheng Songzhou. The Studies on Water Consumption Characteristics and Cultivation Techniques of Several Economic Plants in Horqin Sandy Land[D]. Hohhot: Inner Mongolia Agricultural University, 2013. (in Chinese with English abstract)
[31] Asbjornsen H, Mora G, Helmers M J. Variation in water uptake dynamics among contrasting agricultural and native plant communities in the Midwestern US[J]. Agriculture, Ecosystems & Environment, 2007, 121(4): 343-356.
[32] Ma Y, Song X. Using stable isotopes to determine seasonal variations in water uptake of summer maize under different fertilization treatments[J]. Science of the Total Environment, 2016, 550: 471-483.
[33] Dawson T E, Pate J S. Seasonal water uptake and movement in root systems of Australian phraeatophytic plants of dimorphic root morphology: A stable isotope investigation[J]. Oecologia, 1996, 107(1): 13-20.
[34] Williams D G, Ehleringer J R. Intra‐and interspecific variation for summer precipitation use in pinyon–juniper woodlands[J]. Ecological Monographs, 2000, 70(4): 517-537.
[35] 李暉,周宏飛. 穩(wěn)定性同位素在干旱區(qū)生態(tài)水文過(guò)程中的應(yīng)用特征及機(jī)理研究[J]. 干旱區(qū)地理,2006,29(6):810-816.
Li Hui, Zhou Hongfei. Application characteristic sand mechanis of stable isotope techniques in the study of eco-hydrological progresses in arid regions[J]. Arid Land Geography, 2006, 29(6): 810-816. (in Chinese with English abstract)
[36] Schwinning S. The ecohydrology of roots in rocks[J]. Ecohydrogy, 2010, 3(2): 238-245.
[37] Kim J C, Choi Y H, Moon J Y, et al. Growth stimulation of mulberry trees in unsterilized soil under field conditions with VA mycorrhizal inoculation[J]. Korean Journal of Sericultural Science (Korea R), 1984, 26(2): 7-10.
[38] Shi S M, Chen K, Gao Y, et al. Arbuscular mycorrhizal fungus species dependency governs better plant physiological characteristics and leaf quality of mulberry (L.) seedlings[J]. Frontiers in Microbiology, 2016, 7: 1030.
[39] Xing Dan, Wang Zhenhong, Xiao Jiujun, et al. The composition and diversity of arbuscular mycorrhizal fungi in karst soils and roots collected from mulberry of different ages[J]. Ciência Rural, 2018, 48(10): 1-14.
Water absorption source analysis of mulberry roots based on stable isotopes in rocky desertification area
Xing Dan1, Xiao Jiujun2, Han Shiyu1, Peng Guihua1, Fu Wenting1, Jia Yanlong3※
(1.,,550006,; 2.,,550001,; 3.,550003,)
Soil water deficit is the main obstacle factor of plant reconstruction in rocky desertification area of Southwest China. Mycorrhizal mulberry (L.) can cope with the main ecological barriers during the seasonal drought in the rocky desertification area. However, it is unclear the water resource of mulberry. In this study, we studied the water use strategy of mulberry root in different seasons by hydrogen and oxygen stable isotope technique. The mulberry was grown in typical rocky desertification area in Qingshuipu town, Qixingguan district, Bijie city (105°35′02′′E, 27°41′19′′N(xiāo)) in Guizhou Province. The precipitation was mainly concentrated in June-September. The mulberry was not irrigated. The annual growth of mulberry was in 2 seasons: from April to June and from September to November. The samples of rainfall water, soil and plant branch were collected from April to November of 2014. Soil was sampled at 0-60 cm depth with 10 cm as a sampling layer. The abundance of deuterium and oxygen stable isotope were measured. The correction analysis method was used to preliminarily evaluate water sources of mulberry. The contribution rate of water at each soil layer was also calculated. The results showed that in rainfall water, the abundance of deuterium from April to November averaged -25.9‰ and the oxygen stable isotope abundance averaged -4.82‰. In spring from April to June, the abundance of deuterium and oxygen stable isotope in rainfall water averaged -0.24‰ and -1.68‰, respectively. In autumn from September to November, the abundance of deuterium and oxygen stable isotope in rainfall water averaged -60.0‰ and -8.17‰, respectively. In spring, the abundance of deuterium and oxygen stable isotope in soil water averaged -29.4‰ and -4.77‰, respectively while the abundance of deuterium and oxygen stable isotope in xylem water averaged -33.2‰ and -5.39‰, respectively. In autumn, the abundance of deuterium and oxygen stable isotope in soil water averaged -70.1‰ and -9.27‰, respectively while the abundance of deuterium and oxygen stable isotope in xylem water averaged -55.7‰ and -7.92‰, respectively. The abundance of both stable isotopes in soil water and xylem water were below that in the rainfall water and that of xylem water were between soil water and rainfall water. It indicated that the mulberry mainly used soil water. Both isotopes in rainwater were more enriched in the early stage of mulberry growth (spring, from April to June) than in the late growth stages (autumn, from September to November). With the seasonal variation of rainfall, the both isotopes of soil water showed a downward trend. According to rainfall water equations, the mulberry absorbed mainly soil water. Both isotopes had clear seasonal trend. In spring, the isotopes in soil water decreased with the increase of soil depth. In autumn, isotopes in soil water decreased then increased with soil depth. Based on the correlation method, the mulberry absorbed water from different soil depth. In spring, it absorbed water from soil below 20 cm while it absorbed water from soil 0-20 cm. In September, it also absorbed water from 50-60 cm soil layer. Based on results from the IsoSource software, in spring, mulberry mainly used soil water from soil layers of 10-30 to 50-60 cm. In autumn, it mainly used soil water from soil layers of 50-60 to 0-10 cm. In spring, the contribution rate was 69.1% by 10-30 cm in soil, 31.8% and 66% by 50-60 cm layer in May and June, 70.2% by 50-60 cm in September and 94.3% and 71.9% by 0-10 cm in October and November, respectively. The study will be helpful to mulberry manage and application in rocky desertification area.
drought; water content; isotopes; deuterium; oxygen; seasonal change
10.11975/j.issn.1002-6819.2019.15.011
S273; S888
A
1002-6819(2019)-15-0077-08
2018-12-15
2019-07-10
國(guó)家自然科學(xué)基金項(xiàng)目(31460225);貴州省林業(yè)廳項(xiàng)目(黔林科合[2017])
邢 丹,博士,副研究員,主要從事石漠化生態(tài)治理與穩(wěn)定同位素生態(tài)應(yīng)用研究。Email:2004xingdan@163.com
賈彥龍,博士,副研究員,主要從事退化生態(tài)系統(tǒng)治理研究。Email:jia-yanlong@163.com
邢 丹,肖玖軍,韓世玉,蓬桂華,付文婷,賈彥龍. 基于穩(wěn)定同位素的石漠化地區(qū)桑樹(shù)根系水來(lái)源研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(15):77-84. doi:10.11975/j.issn.1002-6819.2019.15.011 http://www.tcsae.org
Xing Dan, Xiao Jiujun, Han Shiyu, Peng Guihua, Fu Wenting, Jia Yanlong. Water absorption source analysis of mulberry roots based on stable isotopes in rocky desertification area[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(15): 77-84. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.15.011 http://www.tcsae.org