楊子涵,宋正河,尹宜勇,趙雪彥,劉江輝,韓建剛
基于POT模型的大功率拖拉機(jī)傳動(dòng)軸載荷時(shí)域外推方法
楊子涵1,宋正河1※,尹宜勇1,趙雪彥1,劉江輝2,韓建剛2
(1. 中國(guó)農(nóng)業(yè)大學(xué)現(xiàn)代農(nóng)業(yè)裝備優(yōu)化設(shè)計(jì)北京市重點(diǎn)實(shí)驗(yàn)室,北京 100083; 2. 洛陽西苑車輛與動(dòng)力檢驗(yàn)所有限公司,洛陽 471000)
為得到大功率拖拉機(jī)傳動(dòng)軸在田間作業(yè)工況下的載荷譜,該文針對(duì)傳統(tǒng)傳動(dòng)系載荷譜編制過程中雨流計(jì)數(shù)及雨流域外推方法的局限性,提出基于POT(peak over threshold)模型的大功率拖拉機(jī)傳動(dòng)軸載荷時(shí)域外推方法。首先搭建了拖拉機(jī)傳動(dòng)軸扭矩測(cè)試系統(tǒng),利用無線扭矩傳感器采集大功率拖拉機(jī)傳動(dòng)軸在田間犁耕作業(yè)工況下的載荷數(shù)據(jù);基于極值理論建立POT模型,利用灰色關(guān)聯(lián)度分析方法選取最優(yōu)閾值,確定時(shí)域載荷數(shù)據(jù)中上限、下限閾值分別為497和333 N·m。對(duì)超越閾值的極值載荷進(jìn)行提取并利用廣義帕累托分布(generalized pareto distribution,GPD)對(duì)極值載荷的分布進(jìn)行擬合,擬合結(jié)果與極值載荷樣本之間的相關(guān)系數(shù)均大于0.99,將生成服從GPD的新極值點(diǎn)取代原樣本中的極值點(diǎn)從而實(shí)現(xiàn)時(shí)域載荷數(shù)據(jù)的外推。結(jié)果表明,GPD能夠準(zhǔn)確描述大功率拖拉機(jī)傳動(dòng)軸載荷超越閾值的分布情況,與雨流域外推方法相比,基于POT模型的載荷時(shí)域外推方法不僅可以獲得任意里程的載荷時(shí)域序列,還能夠極大程度保留實(shí)測(cè)載荷循環(huán)的次序,為今后大功率拖拉機(jī)傳動(dòng)系的室內(nèi)載荷譜加載試驗(yàn)提供更加真實(shí)可靠的數(shù)據(jù)支持。
農(nóng)業(yè)機(jī)械;參數(shù)估計(jì);模型;POT;載荷;時(shí)域外推;廣義帕累托分布;傳動(dòng)軸
載荷譜編制是疲勞壽命分析和疲勞可靠性試驗(yàn)的關(guān)鍵環(huán)節(jié)[1-2],載荷譜即反映整機(jī)結(jié)構(gòu)或關(guān)鍵零部件受載情況的載荷時(shí)間歷程[3-4],由于受到時(shí)間和測(cè)試成本的限制,往往通過對(duì)有限測(cè)量時(shí)長(zhǎng)的載荷譜進(jìn)行外推來獲得全壽命周期的載荷譜[5-6]。載荷譜的概念自20世紀(jì)30年代被首次提出,目前已經(jīng)在航空航天、車輛以及橋梁建筑等領(lǐng)域得到廣泛應(yīng)用[7],然而中國(guó)針對(duì)農(nóng)業(yè)機(jī)械田間作業(yè)工況下的載荷譜研究仍然處于起步階段。拖拉機(jī)傳動(dòng)軸是拖拉機(jī)底盤的重要組成部分,起到了在拖拉機(jī)田間工作時(shí)向前轉(zhuǎn)向驅(qū)動(dòng)橋傳遞動(dòng)力的作用,是影響拖拉機(jī)整機(jī)性能的重要因素[8]。因此針對(duì)大功率拖拉機(jī)傳動(dòng)軸,編制其在田間作業(yè)工況下的載荷譜對(duì)于提高拖拉機(jī)整機(jī)可靠性具有重要意義。
載荷譜的獲取理論上可以通過加裝傳感器采集整個(gè)使用壽命過程中的載荷數(shù)據(jù)來實(shí)現(xiàn),但是很多情況下由于測(cè)試成本的限制,使得載荷時(shí)間歷程只能實(shí)現(xiàn)相對(duì)短時(shí)間內(nèi)的測(cè)量,然后采用外推的方式來獲得全壽命載荷譜預(yù)測(cè)。農(nóng)業(yè)生產(chǎn)受自然因素影響具有很強(qiáng)的季節(jié)性[9-10],使得針對(duì)農(nóng)業(yè)機(jī)械關(guān)鍵零部件的全壽命載荷譜的直接獲取變得更加困難,因此急需探尋一種能夠適用于中國(guó)農(nóng)業(yè)機(jī)械田間作業(yè)載荷分布特點(diǎn)的外推方法,進(jìn)而為中國(guó)農(nóng)業(yè)機(jī)械田間作業(yè)載荷譜的編制提供新的思路。
作為載荷譜編制過程中的關(guān)鍵技術(shù),載荷外推根據(jù)外推形式的不同主要分為雨流域外推和時(shí)域外推2類[11]。有關(guān)雨流域外推的相關(guān)研究起步較早且技術(shù)較為成熟,陳愛雅等[12-13]采用基于載荷均幅值聯(lián)合分布函數(shù)的單參數(shù)雨流外推方法對(duì)軍用裝備關(guān)鍵零部件載荷進(jìn)行外推,Nagode等[14-15]在單參數(shù)雨流外推方法的基礎(chǔ)之上發(fā)展了基于混合分布的雨流外推方法,隨著研究不斷深入,參數(shù)分布無法對(duì)多峰復(fù)雜載荷實(shí)現(xiàn)精確擬合的弊端逐漸顯現(xiàn),非參數(shù)密度估計(jì)的思想被引入到載荷外推,Johannesson等[16-17]對(duì)雨流計(jì)數(shù)得到的From-To矩陣進(jìn)行核密度估計(jì),發(fā)展了結(jié)合極值理論的非參數(shù)雨流外推方法。雖然非參數(shù)法能夠有效避免參數(shù)法外推過程中的主觀因素,但是在將時(shí)域載荷轉(zhuǎn)換到雨流域的過程中依然只保留載荷循環(huán)的均值和幅值信息并會(huì)打破原有載荷的加載時(shí)序,這是雨流域外推方法的共性問題,基于此,Johannesson率先提出了時(shí)域外推方法[18]。基于POT模型的時(shí)域外推方法能夠?qū)?shí)測(cè)獲取的載荷數(shù)據(jù)在時(shí)域基礎(chǔ)上直接外推生成新的時(shí)域信號(hào),省略了雨流域外推過程的一系列變換,減少了由于環(huán)節(jié)過多產(chǎn)生的誤差,逐漸成為國(guó)內(nèi)外載荷外推方法中的研究熱點(diǎn)[19-20]。Yang等[21-22]將時(shí)域載荷外推方法應(yīng)用于車輛載荷外推,雖然對(duì)閾值選取方法進(jìn)行了探討,但是依然沒有解決時(shí)域外推過程中閾值選取方法主觀性較強(qiáng)的問題,缺乏對(duì)閾值的準(zhǔn)確量化方法。
本文針對(duì)上述問題對(duì)時(shí)域外推過程中的閾值選取方法進(jìn)行改進(jìn),結(jié)合極值理論和灰色關(guān)聯(lián)度分析方法,提出了1套時(shí)域外推過程中閾值選取的量化方法。并以大功率拖拉機(jī)傳動(dòng)軸為研究對(duì)象,通過搭建無線扭矩測(cè)試系統(tǒng)獲取的真實(shí)田間載荷數(shù)據(jù)驗(yàn)證了閾值選取方法的準(zhǔn)確性以及該時(shí)域外推方法在農(nóng)業(yè)裝備領(lǐng)域的適用性。
本試驗(yàn)以東方紅LX2204型拖拉機(jī)為試驗(yàn)對(duì)象,犁耕作業(yè)時(shí)掛接的犁具為法國(guó)KUHN公司生產(chǎn)的MULTI-MASTER153T型翻轉(zhuǎn)犁。試驗(yàn)時(shí)間為2018年10月,試驗(yàn)地點(diǎn)為河南省洛陽市孟津縣金村,試驗(yàn)過程中參照GB/T14225-2008《鏵式犁》對(duì)作業(yè)環(huán)境及作業(yè)質(zhì)量進(jìn)行檢測(cè),測(cè)定環(huán)境溫度為25.6 ℃,環(huán)境濕度為21%,風(fēng)速為4.6 m/s;土壤表面玉米秸稈留茬高度約10 cm,土壤種類為砂土,在距土壤表面5、10和15 cm處分別測(cè)定土壤含水率為6.28%、9.84%和12.20%;耕深為320 mm,耕作幅寬為2.1 m,碎土率為99.2%,經(jīng)檢驗(yàn)作業(yè)質(zhì)量符合國(guó)家標(biāo)準(zhǔn)規(guī)定。
由于拖拉機(jī)田間作業(yè)過程中作業(yè)環(huán)境惡劣,在隨機(jī)土壤激勵(lì)下整機(jī)振動(dòng)會(huì)增加[23],因此測(cè)試設(shè)備應(yīng)具有良好的抗振性能,同時(shí)傳動(dòng)軸在作業(yè)工況下高速旋轉(zhuǎn),需要選用便于安裝固定且能夠?qū)崿F(xiàn)信號(hào)穩(wěn)定傳輸?shù)膫鞲衅鳌1驹囼?yàn)采用北京必創(chuàng)科技公司生產(chǎn)的TQ201型無線扭矩節(jié)點(diǎn)進(jìn)行數(shù)據(jù)的同步采集,分辨率為±0.1ε,采用BF350-3BA型半橋應(yīng)變片組成全橋電路,利用無線扭矩節(jié)點(diǎn)中封裝的發(fā)射器與接收器共同作用實(shí)現(xiàn)傳動(dòng)軸扭矩信號(hào)的發(fā)射和接收,無線扭矩節(jié)點(diǎn)、應(yīng)變片、電池、接收器和筆記本共同構(gòu)成無線扭矩采集系統(tǒng),為提高采集系統(tǒng)精度,采集過程中利用巴特沃斯濾波的方式對(duì)數(shù)據(jù)進(jìn)行抗混疊濾波,無線扭矩采集系統(tǒng)組成如圖1所示。
在傳動(dòng)軸靠近中心的位置粘貼1枚應(yīng)變片,應(yīng)變片和電池通過引線與無線扭矩節(jié)點(diǎn)相連并一同固定于傳動(dòng)軸上,工作時(shí)傳感器與傳動(dòng)軸的相對(duì)位置始終保持不變并隨軸同步轉(zhuǎn)動(dòng),傳感器布置方案如圖2所示。
試驗(yàn)選取約13.3 hm2玉米收獲完成后的農(nóng)田作為試驗(yàn)場(chǎng)地。選擇具有輪式拖拉機(jī)駕駛證的駕駛員駕駛拖拉機(jī)進(jìn)行作業(yè)且試驗(yàn)全程均為同一人駕駛,為使所測(cè)數(shù)據(jù)能夠真實(shí)反映犁耕作業(yè)情況,試驗(yàn)過程由駕駛員根據(jù)其作業(yè)習(xí)慣進(jìn)行操作且盡量避免對(duì)駕駛員的干預(yù)。試驗(yàn)過程中拖拉機(jī)擋位為中三擋,速度范圍為5~10 km/h。測(cè)取犁耕作業(yè)全程拖拉機(jī)傳動(dòng)軸的扭矩變化并記錄于測(cè)試用筆記本電腦中,利用TeamViewer平臺(tái)技術(shù)實(shí)現(xiàn)遠(yuǎn)程監(jiān)控。
圖1 無線扭矩采集系統(tǒng)組成
圖2 無線扭矩節(jié)點(diǎn)及應(yīng)變片安裝示意圖
本文采用基于POT理論的載荷時(shí)域外推方法對(duì)預(yù)處理后的實(shí)測(cè)載荷時(shí)間歷程進(jìn)行外推,并針對(duì)外推過程中閾值的選取方法進(jìn)行探究,外推流程如圖3所示。
圖3 基于POT理論的時(shí)域外推流程
POT理論又被稱作門限峰值法,其中心思想是通過對(duì)超出給定閾值的樣本數(shù)據(jù)進(jìn)行建模,從而描述分布的尾部特征,是一種對(duì)極值分布進(jìn)行統(tǒng)計(jì)推斷的工具。通常先對(duì)一段時(shí)域樣本信號(hào)選取合適的上限閾值max和下限閾值min,將超出閾值的峰谷值提取出來并依次計(jì)算超出量,然后利用GPD分布來擬合超出量分布,最終由超出量分布間接得到最后實(shí)際峰值樣本的極值載荷分布。因此需要先將實(shí)測(cè)獲取的載荷時(shí)間歷程進(jìn)行峰谷值的提取,在不破壞載荷時(shí)序的前提下對(duì)數(shù)據(jù)進(jìn)行簡(jiǎn)化。
選取大功率拖拉機(jī)傳動(dòng)軸犁耕工況載荷試驗(yàn)中獲取的數(shù)據(jù)作為研究對(duì)象,選取犁具調(diào)整完畢后單程犁耕作業(yè)工況下的完整時(shí)域信號(hào)作為外推樣本,時(shí)間長(zhǎng)度為120 s??紤]到小載荷循環(huán)對(duì)疲勞損傷的貢獻(xiàn)度很小,一般可以根據(jù)需求將幅值小于最大載荷循環(huán)10%的小載荷進(jìn)行濾除[24],為最大程度保留載荷時(shí)域序列,本文選取幅值為最大載荷循環(huán)的1%作為過濾閾值對(duì)原始載荷樣本進(jìn)行峰谷值提取,提取后載荷時(shí)間歷程如圖4所示。
圖4 峰谷值提取后載荷時(shí)間歷程
時(shí)域外推方法的關(guān)鍵在于運(yùn)用極值理論對(duì)極值樣本進(jìn)行準(zhǔn)確描述,通常按照極值樣本所服從的分布分為廣義極值分布(generalized extreme value distribution,GEVD)和廣義帕累托分布(GPD)2種形式[25],Pickands[26]、李昕雪等[27]研究表明,當(dāng)閾值充分大時(shí),超出量分布更傾向于服從GPD分布,因此本文基于GPD分布對(duì)超出量分布進(jìn)行擬合。
GPD累計(jì)分布函數(shù)表達(dá)式為
GPD概率密度函數(shù)表達(dá)式為
2.3.1 超出量均值函數(shù)圖法
以選取上限閾值為例,首先對(duì)峰谷值提取后的時(shí)域載荷樣本進(jìn)行計(jì)算,得出上限閾值對(duì)應(yīng)的超出量均值函數(shù)圖,如圖5所示。
圖5 超出量均值函數(shù)圖
從圖5中可以看出,隨著閾值的增大,由于極值樣本中數(shù)目過少造成尾部均值波動(dòng)劇烈,閾值的選取應(yīng)避開此類波動(dòng)區(qū)間,因此選取最接近波動(dòng)區(qū)間且超閾值均值與閾值呈線性變化的區(qū)間[492,501]作為最優(yōu)上限閾值區(qū)間,同理確定最優(yōu)下限閾值區(qū)間為[325,334]。
2.3.2 灰色關(guān)聯(lián)度分析方法
在閾值區(qū)間內(nèi)確定最優(yōu)閾值可以等效為分析不同閾值所得到超出量的GPD擬合結(jié)果的好壞,因此本文采用灰色關(guān)聯(lián)度分析方法,對(duì)擬合結(jié)果進(jìn)行量化評(píng)價(jià)。在閾值區(qū)間內(nèi)針對(duì)不同閾值對(duì)應(yīng)的超出量依次進(jìn)行GPD擬合,求解每種GPD擬合的灰色關(guān)聯(lián)度結(jié)果并從中選取最優(yōu)閾值。
灰色關(guān)聯(lián)度分析是灰色系統(tǒng)理論的重要組成部分[29],通過對(duì)比每種擬合的灰色關(guān)聯(lián)度評(píng)價(jià)樣本分布曲線與擬合分布曲線的接近程度,灰色關(guān)聯(lián)度的計(jì)算步驟如下:
1)分別對(duì)實(shí)測(cè)數(shù)據(jù)和擬合結(jié)果序列進(jìn)行無量綱化處理,通常采用初值化、均值化和區(qū)間化3種方法,本文選取均值化方法進(jìn)行數(shù)據(jù)處理,如式(6)。
2)求均值化后的2個(gè)數(shù)據(jù)序列之間的絕對(duì)差序列D(),如式(7)。
3)求絕對(duì)差序列的極大值與極小值,如式(8)。
灰色關(guān)聯(lián)度越大,表明樣本分布與擬合分布的曲線趨勢(shì)越接近。為了確定上限和下限的最優(yōu)閾值,分別在上限和下限閾值區(qū)間等間距選取10個(gè)閾值并計(jì)算每個(gè)閾值對(duì)應(yīng)的灰色關(guān)聯(lián)度。理論上講閾值選取應(yīng)在區(qū)間越多越好并且可以將閾值無限細(xì)化,但是細(xì)化的同時(shí)會(huì)造成計(jì)算量的增加。閾值選取的最終目標(biāo)是找到一個(gè)最優(yōu)閾值來準(zhǔn)確描述樣本中超閾值部分的分布,即達(dá)到最優(yōu)的擬合效果。因此,對(duì)閾值區(qū)間內(nèi)每個(gè)閾值所對(duì)應(yīng)的GPD擬合分布曲線進(jìn)行初步的擬合優(yōu)度檢驗(yàn),結(jié)果如表1。
表1 閾值區(qū)間內(nèi)各個(gè)閾值對(duì)應(yīng)的灰色關(guān)聯(lián)度及決定系數(shù)
注:表中標(biāo)記數(shù)據(jù)為灰色關(guān)聯(lián)度最高的數(shù)值及其對(duì)應(yīng)的最優(yōu)閾值。
Note: Marked data in the table is the highest value of grey correlation degree and its corresponding optimal thresholds.
由表1可知,各閾值對(duì)應(yīng)的決定系數(shù)均滿足精度要求(2>0.996)并且偏差很小,在此基礎(chǔ)上通過對(duì)比灰色關(guān)聯(lián)度的數(shù)值大小,選取灰色關(guān)聯(lián)度最高的閾值為最優(yōu)閾值,最終確定上限最優(yōu)閾值為497 N·m,下限最優(yōu)閾值為333 N·m。
以上限和下限的最優(yōu)閾值為界限,對(duì)超出閾值的樣本極值進(jìn)行提取,提取結(jié)果如圖6所示。由圖6可知,超出上限閾值的樣本數(shù)為175,超出量為[0.2,129.7] N·m,超出下限閾值的樣本數(shù)為210,超出量為[0.3,142.7] N·m。
圖6 超出上下限閾值的樣本量提取結(jié)果
根據(jù)最優(yōu)閾值進(jìn)行GPD擬合,得到累計(jì)分布參數(shù)的估計(jì)值,結(jié)果如表2所示。
表2 最優(yōu)閾值對(duì)應(yīng)的GPD擬合結(jié)果
式(11)~(12)分別為上限閾值和下限閾值對(duì)應(yīng)超出量GPD擬合分布的概率密度函數(shù)。為量化GPD擬合的精確度,用最大似然估計(jì)的漸近協(xié)方差矩陣計(jì)算擬合的標(biāo)準(zhǔn)誤差,其中上限閾值對(duì)應(yīng)GPD擬合的形狀參數(shù)和尺度參數(shù)的標(biāo)準(zhǔn)誤差分別為0.072 4、2.751 6,下限閾值對(duì)應(yīng)GPD擬合的形狀參數(shù)和尺度參數(shù)的標(biāo)準(zhǔn)誤差分別為0.075 2、3.338 1。
為更加直觀地反映擬合效果,分別繪制CDF(cumulative distribution function)圖和P-P(probability-plot)圖進(jìn)行擬合優(yōu)度檢驗(yàn),如圖7所示。由圖7可知,GPD分布函數(shù)擬合曲線與極值樣本之間的相關(guān)系數(shù)均大于0.99,具有較高的重合度,擬合效果良好。
結(jié)合超出量GPD擬合分布的概率密度函數(shù),生成與樣本量數(shù)目一致的隨機(jī)載荷序列,將生成的載荷序列在原時(shí)間點(diǎn)替換原超出值即可得到外推時(shí)域信號(hào)。圖8a為外推1次后新產(chǎn)生的載荷時(shí)間歷程與原始載荷時(shí)間歷程的對(duì)比,將圖4中的載荷序列進(jìn)行10倍時(shí)域外推的結(jié)果如圖8b所示,從圖8可以看出,由于時(shí)域載荷外推只對(duì)超出閾值的極值載荷進(jìn)行重構(gòu),外推后的載荷時(shí)間歷程極大程度保留了原有載荷在時(shí)域內(nèi)的變化趨勢(shì)。
圖7 擬合優(yōu)度檢驗(yàn)
圖8 載荷時(shí)域外推結(jié)果
為了判斷基于POT模型的拖拉機(jī)傳動(dòng)軸載荷時(shí)域外推結(jié)果是否合理,本文通過繪制幅值累積頻次曲線來反映載荷循環(huán)的統(tǒng)計(jì)結(jié)果,將傳統(tǒng)雨流外推方法、時(shí)域外推方法以及10倍原始載荷循環(huán)之間幅值累積頻次曲線進(jìn)行對(duì)比,如圖9所示。由圖9可知,傳統(tǒng)的雨流域外推方法和時(shí)域外推方法得到的頻次曲線較為一致,與原始載荷數(shù)據(jù)相比,2種載荷外推結(jié)果中均出現(xiàn)了少量在試驗(yàn)過程中并沒有出現(xiàn)的大極值載荷。可見,基于POT模型的載荷外推方法不僅增加了載荷循環(huán)的頻次,同時(shí)還能夠基于大極值載荷的分布規(guī)律在一定程度上對(duì)載荷極值進(jìn)行外推。在此基礎(chǔ)上,時(shí)域外推方法能夠最大限度地保留原有的時(shí)域載荷序列,這是雨流域外推方法無法實(shí)現(xiàn)的。
圖9 載荷循環(huán)幅值累計(jì)頻次曲線
將利用本文所述方法外推得到的載荷時(shí)域歷程與原始載荷數(shù)據(jù)分別進(jìn)行雨流計(jì)數(shù)統(tǒng)計(jì),對(duì)雨流矩陣中載荷循環(huán)的均值和幅值分別繪制頻次分布直方圖,如圖10所示,進(jìn)一步對(duì)二者的頻次分布進(jìn)行相關(guān)性分析,得到均值的相關(guān)系數(shù)為0.991,幅值的相關(guān)系數(shù)為0.998,可見時(shí)域外推得到的載荷循環(huán)分布與原始數(shù)據(jù)載荷循環(huán)分布具有相似性,表明本文的時(shí)域外推方法能夠較好地模擬大功率拖拉機(jī)傳動(dòng)軸作業(yè)工況下載荷的真實(shí)分布規(guī)律。
圖10 原始數(shù)據(jù)與時(shí)域外推結(jié)果的均幅值頻次統(tǒng)計(jì)
載荷時(shí)域外推方法是依據(jù)極值理論對(duì)極值載荷的分布進(jìn)行擬合,并基于擬合結(jié)果對(duì)極值載荷進(jìn)行生成、重構(gòu),最終實(shí)現(xiàn)載荷外推。作為首要環(huán)節(jié),閾值的選取關(guān)系到用于分布擬合的極值載荷樣本,閾值大小直接影響極值載荷的樣本數(shù)量及擬合精度,進(jìn)而對(duì)外推結(jié)果產(chǎn)生重要影響。因此,本文所述方法只適用于載荷均值較為穩(wěn)定的情況,當(dāng)遇到載荷均值隨時(shí)間發(fā)生較大變化的情況時(shí),由時(shí)域載荷外推所生成的新極值分布可能無法準(zhǔn)確地描述原始載荷變化的趨勢(shì),從而造成外推載荷的失真。應(yīng)結(jié)合農(nóng)業(yè)機(jī)械作業(yè)特點(diǎn),對(duì)時(shí)域外推方法進(jìn)一步改進(jìn),以適應(yīng)拖拉機(jī)不同工況、不同作業(yè)模式下的載荷外推。
1)以大功率拖拉機(jī)傳動(dòng)軸為研究對(duì)象,搭建無線扭矩測(cè)試系統(tǒng),通過田間試驗(yàn)驗(yàn)證測(cè)試系統(tǒng)的可行性并獲取犁耕工況下傳動(dòng)軸的載荷時(shí)間歷程。
2)基于POT模型對(duì)實(shí)測(cè)載荷時(shí)間歷程進(jìn)行時(shí)域外推。利用超出量均值函數(shù)圖法確定上限和下限的最優(yōu)閾值區(qū)間分別為[492,501]和[325,334],計(jì)算閾值區(qū)間內(nèi)各個(gè)閾值的灰色關(guān)聯(lián)度,對(duì)比灰色關(guān)聯(lián)度的數(shù)值大小確定上限最優(yōu)閾值為497 N·m,下限最優(yōu)閾值為333 N·m,通過廣義帕累托分布對(duì)超閾值數(shù)據(jù)進(jìn)行擬合并繪制CDF圖和P-P圖進(jìn)行擬合優(yōu)度檢驗(yàn),GPD分布函數(shù)擬合曲線與極值樣本之間的相關(guān)系數(shù)均大于0.99,結(jié)果表明GPD分布函數(shù)擬合曲線能夠準(zhǔn)確描述極值樣本的分布規(guī)律,最后將新生成的同分布的隨機(jī)載荷數(shù)列替換原有極值載荷實(shí)現(xiàn)載荷的時(shí)域外推。
3)將利用時(shí)域外推方法得到的外推載荷數(shù)據(jù)與原始載荷數(shù)據(jù)進(jìn)行對(duì)比分析,結(jié)果表明基于POT模型的載荷時(shí)域外推方法在對(duì)載荷頻次進(jìn)行外推的同時(shí)能夠在一定程度上實(shí)現(xiàn)對(duì)載荷極值外推。進(jìn)一步將時(shí)域外推法得到的載荷時(shí)域歷程和原始載荷數(shù)據(jù)進(jìn)行統(tǒng)計(jì),對(duì)二者均值、幅值的頻次分布分別進(jìn)行相關(guān)性分析,均值的相關(guān)系數(shù)為0.991,幅值的相關(guān)系數(shù)為0.998,驗(yàn)證了時(shí)域外推方法的準(zhǔn)確性。相比于雨流域外推方法,本文時(shí)域外推方法能夠極大程度保留原始載荷在時(shí)域內(nèi)的變化趨勢(shì),對(duì)大功率拖拉機(jī)傳動(dòng)軸在作業(yè)工況下的實(shí)測(cè)載荷有良好的適用性。
[1] 周素霞,李福勝,謝基龍,等. 基于損傷容限的動(dòng)車組車軸實(shí)測(cè)載荷譜等效應(yīng)力評(píng)價(jià)[J]. 機(jī)械工程學(xué)報(bào),2015,51(8):131-136.
Zhou Suxia, Li Fusheng, Xie Jilong, et al. Equivalent stress evaluation of the load spectrum measured on the EMU axle based on damage tolerance[J]. Journal of Mechanical Engineering, 2015, 51(8): 131-136. (in Chinese with English abstract)
[2] Heuler P, Klatschke H. Generation and use of standardised load spectra and load-time histories[J]. International Journal of Fatigue, 2005, 27(8): 974-990.
[3] 潘宏俠,黃晉英,郭彥青,等. 裝甲車輛動(dòng)力傳動(dòng)系統(tǒng)載荷譜測(cè)試方法研究[J]. 振動(dòng)、測(cè)試與診斷,2009,29(1):105-109,122.
Pan Hongxia, Huang Jinying, Guo Yanqing, et al. Testing load spectrum on power train of armored vehicle[J]. Journal of Vibration, Measurement & Diagnosis, 2009, 29(1): 105-109, 122. (in Chinese with English abstract)
[4] 高云凱,徐成民,方劍光. 車身臺(tái)架疲勞試驗(yàn)程序載荷譜研究[J]. 機(jī)械工程學(xué)報(bào),2014,50(4):92-98.
Gao Yunkai, Xu Chengmin, Fang Jianguang. Study on the programed load spectrum of the body fatigue bench test[J]. Journal of Mechanical Engineering, 2014,50(4):92-98. (in Chinese with English abstract)
[5] 趙曉鵬,張強(qiáng),姜丁,等. 某型越野車試驗(yàn)場(chǎng)載荷譜的壓縮與外推[J]. 汽車工程,2009,31(9):871-875.
Zhao Xiaopeng, Zhang Qiang, Jiang Ding, et al. The compression and extrapolation of load spectrum for a heavy off-road vehicle obtained from proving ground testing[J]. Automotive Engineering, 2009, 31(9): 871-875. (in Chinese with English abstract)
[6] 劉彥龍,鄒喜紅,石曉輝,等. 基于擋位的汽車傳動(dòng)系載荷譜提取與外推[J]. 重慶理工大學(xué)學(xué)報(bào):自然科學(xué),2015,29(4):17-23.
Liu Yanlong, Zou Xihong, Shi Xiaohui, et al. Extraction and extrapolation of load spectrum data for auto transmission based on gears[J]. Journal of Chongqing University of Technology: Natural Science, 2015, 29(4): 17-23. (in Chinese with English abstract)
[7] 張英爽,王國(guó)強(qiáng),王繼新,等. 工程車輛傳動(dòng)系載荷譜編制方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(4):179-183.
Zhang Yingshuang, Wang Guoqiang, Wang Jixin, et al. Compilation method of power train load spectrum of engineering vehicle[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(4): 179-183. (in Chinese with English abstract)
[8] 馮曉賓. 大馬力四輪驅(qū)動(dòng)拖拉機(jī)前轉(zhuǎn)向驅(qū)動(dòng)橋萬向傳動(dòng)軸可靠性提升[D]. 長(zhǎng)春:吉林大學(xué),2016.
Feng Xiaobin. High-powered 4 wd Tractor Front Steering Drive Axle Universal Joints Shaft Reliability Improvement[D]. Changchun: Jilin University, 2016. (in Chinese with English abstract)
[9] 姚艷春,趙雪彥,杜岳峰,等. 考慮質(zhì)量時(shí)變的收獲機(jī)械工作模態(tài)分析與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(9):83-94.
Yao Yanchun, Zhao Xueyan, Du Yuefeng, et al. Operating modal analysis and test of harvester induced by mass-varying process[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(9): 83-94. (in Chinese with English abstract)
[10] 項(xiàng)勝喜. 試論農(nóng)業(yè)機(jī)械的作業(yè)特點(diǎn)[J]. 農(nóng)機(jī)化研究,2006(3):223.
[11] 江柱錦. 混合動(dòng)力裝載機(jī)電機(jī)載荷外推方法研究[D]. 長(zhǎng)春:吉林大學(xué),2018.
Jiang Zhujin. Research on Load Extrapolation Method of Hybrid Loader Motor[D]. Changchun: Jilin University, 2018. (in Chinese with English abstract)
[12] 陳愛雅,高鎮(zhèn)同. 二維隨機(jī)疲勞載荷的統(tǒng)計(jì)處理及其應(yīng)用[J]. 北京航空航天大學(xué)學(xué)報(bào),1986(1):80-90.
[13] 陳東升,項(xiàng)昌樂,陳欣. 軍用車輛傳動(dòng)系零件載荷譜的建立[J]. 機(jī)械強(qiáng)度,2002,24(2):310-314.
Chen Dongsheng, Xiang Changle, Chen Xin. Establishment of the spectrum of the military vehicle transmission elements[J]. Journal of Mechanical Strength, 2002, 24(2): 310-314. (in Chinese with English abstract)
[14] Nagode M, Fajdiga M. A general multi-modal probability density function suitable for the rainflow ranges of stationary random processes[J]. International Journal of Fatigue, 1998, 20(3): 211-223.
[15] 翟新婷,張曉晨,江柱錦,等. 基于混合分布的輪式裝載機(jī)半軸載荷譜編制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(8):78-84.
Zhai Xinting, Zhang Xiaochen, Jiang Zhujin, et al. Load spectrum compiling for wheel loader semi-axle based on mixed distribution[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(8): 78-84. (in Chinese with English abstract)
[16] Johannesson P, Thomas J J. Extrapolation of rainflow matrices[J]. Extremes, 2001, 4(3): 241-262
[17] Wang M, Liu X, Wang X, et al. Research on load spectrum construction of automobile key parts based on monte carlo sampling[J]. Journal of Testing and Evaluation, 2018, 46(3): 1099-1110.
[18] Johannesson P. Extrapolation of load histories and spectra[J]. Fatigue & Fracture of Engineering Materials & Structures, 2006, 29(3): 201-207.
[19] 尤爽. 輪式裝載機(jī)載荷極值度量與時(shí)域外推方法研究[D].長(zhǎng)春:吉林大學(xué),2016.
You Shuang. Research on Extreme Determination and Extrapolation in Time-domain Load of Wheel Loader[D]. Changchun: Jilin University, 2016. (in Chinese with English abstract)
[20] 劉巖,張喜逢,王振雨,等. 載荷譜外推方法的對(duì)比[J].現(xiàn)代制造工程,2011(11):8-11.
Liu Yan, Zhang Xifeng, Wang Zhenyu, et al. Contrast of extrapolations in compiling load spectrum[J]. Modern Manufacturing Engineering, 2011(11): 8-11. (in Chinese with English abstract)
[21] Yang X, Liu X, Tong J, et al. Research on load spectrum construction of bench test based on automotive proving ground[J]. Journal of Testing and Evaluation, 2018, 46(1): 244-251.
[22] Yang X, Zhang J, Ren W X. Threshold selection for extreme strain extrapolation due to vehicles on bridges[J]. Procedia Structural Integrity, 2017(5): 1176-1183.
[23] 承鑒,遲瑞娟,賴青青,等. 基于電液懸掛系統(tǒng)的拖拉機(jī)主動(dòng)減振控制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(5):82-90.
Cheng Jian, Chi Ruijuan, Lai Qingqing, et al. Active vibration control of tractor based on electro-hydraulic hitch system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(5): 82-90. (in Chinese with English abstract)
[24] Wang Jixin, Wang Naixiang, Wang Zhenyu, et al. Determination of the minimum sample size for the transmission load of a wheel loader based on multi-criteria decision-making technology[J]. Journal of Terramechanics, 2012, 49(3/4): 147-160.
[25] 李春前. 基于GPD模型的車輛荷載效應(yīng)極值估計(jì)[D]. 北京:清華大學(xué),2012.
Li Chunqian. Research on the Extreme Value of the Vehicle load Effect Based on the GPD Model[D]. Beijing: Tsinghua University, 2012. (in Chinese with English abstract)
[26] Pickhands J. Statistical inference using extreme order statisties[J]. The Annals of Statistics, 1975, 3: 119-131.
[27] 李昕雪,王迎光. 不同外推方法求解近海風(fēng)機(jī)的極限載荷[J]. 上海交通大學(xué)學(xué)報(bào),2016,50(6):844-848.
Li Xinxue, Wang Yingguang. Comparison of different statistic extrapolation methods in calculation of extreme load of offshore wind turbines[J]. Journal of Shanghai Jiaotong University, 2016, 50(6): 844-848. (in Chinese with English abstract)
[28] Caballero-Megido C, Hillier J, Wyncoll D, et al. Technical note: comparison of methods for threshold selection[J]. Journal of Flood Risk Management, 2018, 11(2): 127-140.
[29] Kayacan E, Ulutas B, Kaynak O. Grey system theory-based models in time series prediction[J]. Expert Systems with Applications, 2010, 37(2): 1784-1789.
[30] 劉巧斌,史文庫,陳志勇,等. 工程車輛車橋位移譜統(tǒng)計(jì)分布建模及分步參數(shù)識(shí)別[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(23):67-75.
Liu Qiaobin, Shi Wenku, Chen Zhiyong, et al. Statistical distribution modeling and two-step parameter identification of vehicle bridge displacement spectrum [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(23): 67-75. (in Chinese with English abstract)
Time domain extrapolation method for load of drive shaft of high-power tractor based on POT model
Yang Zihan1, Song Zhenghe1※, Yin Yiyong1, Zhao Xueyan1, Liu Jianghui2, Han Jiangang2
(1.,100083,; 2.471000,)
Tractor transmission shaft is one of the components that affect the reliability of the tractor. Compiling load spectrum which can reflect the actual working conditions of high-power tractor drive shaft is of great significance to improve the reliability of the tractor. It is time consuming and expensive to obtain the actual measurement for load spectrum of the whole life cycle, so extrapolated methods are always applied by using the load spectrum of the limited measurement duration. However, the traditional method of rain flow counting and rain basin extrapolation in the process of compiling load spectrum of transmission system has limitations, this paper proposed a POT (peak over threshold) model based time domain extrapolation method for driving shaft load of high-power tractor. Firstly, a set of wireless torque measurement system for tractor transmission shaft is built, which mainly includes strain gauges, batteries, wireless strain nodes and wireless acquisition terminals. The strain gauge is pasted on the proper part of the tractor drive shaft and connected with the wireless torque node. The wireless transmitter is encapsulated in the wireless torque node and transmits the measured torque signal to the wireless receiver synchronously. The test data of the drive shaft under field working conditions are stored in a portable computer connected to a wireless receiver. Then, POT model is established based on extremum theory to extract the peak and valley values of the test data and eliminate the small load cycles, and the intervals of the optimal thresholds are determined by using the mean excess function graph, which are [492, 501] N·m for the upper limit and [325, 334]N·m for the lower limit, respectively. Thirdly, the data in the threshold interval is divided according to a certain gradient, and the fitting effect corresponding to each threshold is preliminarily tested by calculating R-square. The grey relational degree analysis method is used to select the optimal threshold and calculate the grey relational degree of each threshold in the corresponding threshold range. the optimum threshold values 497 N·m for upper limit and 333 N·m for lower limit are achieved by comparing the values of grey correlation degree corresponding to different threshold. The excess threshold data are fitted by generalized Pareto distribution and the CDF and P-P figures are plotted to evaluate the effectiveness of fitting test. The results show that the fitting curve of generalized distribution function can accurately describe the distribution law of extreme samples. Finally, according to the fitted generalized distribution function, the load sequence with the same distribution is generated. The time domain extrapolation of the load is achieved by replacing the original extremum load with the generated sequence. The cumulative frequency curve of the load cycle is developed according to the original load data and the results obtained by the time domain extrapolation method and the rain flow extrapolation method. The results show that the frequency curves obtained by the traditional rain flow extrapolation method and the time domain extrapolation method are consistent. Compared to the original load data, both load extrapolation results have a small amount of large extreme load which did not occur during the test. Therefore, it can be indicated that the load extrapolation method based on the POT model not only increases the frequency of the load cycle, but also extrapolates the load extreme value to a certain extent based on the distribution law of the large extreme load. The accuracy of the time domain extrapolation method is verified. The load time domain extrapolation method developed in this paper has good applicability to the measured loads of high-power tractor transmission shaft in operation conditions. Compared with the rain basin extrapolation method, the load time domain extrapolation method based on POT model can not only obtain the load time domain sequence of arbitrary mileage, but also retain the order of the measured load cycle to a great extent, which can provide reliable data support for the indoor load spectrum loading test of high-power tractor transmission system in the future.
agricultural machinery; parameter estimation; models; POT; loads; time domain extrapolation; generalized pareto distribution; transmission shaft
10.11975/j.issn.1002-6819.2019.15.006
S220; TU413.4
A
1002-6819(2019)-15-0040-08
2019-01-12
2019-06-23
國(guó)家重點(diǎn)研發(fā)計(jì)劃資助項(xiàng)目(2017YFD0700301);北京市自然科學(xué)基金資助項(xiàng)目(3184053)
楊子涵,博士生,主要從事農(nóng)業(yè)裝備載荷測(cè)試、載荷譜編制方法等研究。Email:yangzihan@cau.edu.cn
宋正河,博士,教授,主要從事農(nóng)業(yè)裝備試驗(yàn)驗(yàn)證方法與技術(shù)研究。Email:songzhenghe@cau.edu.cn
楊子涵,宋正河,尹宜勇,趙雪彥,劉江輝,韓建剛. 基于POT模型的大功率拖拉機(jī)傳動(dòng)軸載荷時(shí)域外推方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(15):40-47. doi:10.11975/j.issn.1002-6819.2019.15.006 http://www.tcsae.org
Yang Zihan, Song Zhenghe, Yin Yiyong, Zhao Xueyan, Liu Jianghui, Han Jiangang. Time domain extrapolation method for load of drive shaft of high-power tractor based on POT model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(15): 40-47. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.15.006 http://www.tcsae.org