劉委青 曲明成 吳翔虎
摘 要:隨著物流車、無人機(jī)技術(shù)的逐漸成熟以及在運(yùn)輸中的出眾表現(xiàn),車輛與無人機(jī)協(xié)同作業(yè)的路徑規(guī)劃問題(VRPUAV)成為當(dāng)前學(xué)術(shù)和工程界亟待解決的問題。本文基于車輛與無人機(jī)協(xié)同作業(yè)場景,將運(yùn)輸問題劃分為三粒度,即“無人機(jī)數(shù)量為0”,“無人機(jī)數(shù)量不足”, “無人機(jī)數(shù)量充足”。采用蟻群算法和無人機(jī)物流車協(xié)同運(yùn)輸優(yōu)化算法對3個(gè)子問題分別提出相應(yīng)的解決策略;最后通過仿真實(shí)驗(yàn)證明了算法在行駛成本與時(shí)間成本上的優(yōu)化作用,同時(shí)在運(yùn)輸物品總條件一定的前提下,三類子問題的治略方案均能夠正確求解出優(yōu)化解,且第2、3種場景較第1種,第3種場景較第2種具有更優(yōu)運(yùn)輸成本和客戶等待時(shí)間成本,充分證明了三粒度分治的合理和有效性。
關(guān)鍵詞:蟻群算法;三支決策;無人機(jī)物流車協(xié)同運(yùn)輸;多目標(biāo)車輛路徑問題
文章編號:2095-2163(2019)04-0027-06?中圖分類號:TP18?文獻(xiàn)標(biāo)志碼:A
1 研究概述
1.1 帶無人機(jī)的車輛路徑問題
車輛路徑問題(Vehicle Routing Problem ,VRP)是在現(xiàn)代物流配送領(lǐng)域具有重大研究意義的一類問題。目前來說,對于單車場車輛路徑問題研究已然取得了較為可觀的研究成果[1]。
對于多車場車輛開放式車輛路徑問題(Multi-Deport Open Vehicle Routing Problem ,MDOVRP)的研究也逐漸增多[2]。陳美軍等人[3]提出了自適應(yīng)的最大-最小蟻群算法來解決多約束下多車場車輛路徑問題(Multi-Depots Vehicle Routing Problem with Multiple Constraints, MDVRPMC),同時(shí)在車輛行駛路徑長度方面進(jìn)行了優(yōu)化。
而對于時(shí)間成本的優(yōu)化,王征等人[4]提出的變鄰域搜索算法取得了實(shí)質(zhì)性的提高。曾正洋等人[5]在應(yīng)急物流中的累計(jì)時(shí)間式多車場車輛路徑問題中提出的多起始點(diǎn)變鄰域下降快速求解方法對客戶累積等待時(shí)間成本也起到了一定程度的優(yōu)化作用。凌海峰等人[6]提出的結(jié)合K-means與細(xì)菌覓食算法改進(jìn)的蟻群算法對帶軟時(shí)間窗的多車場開放式車輛調(diào)度問題(Multi-Depot Open Vehicle Routing Problem with Soft Time Windows,MDOVRPSTW)也在相當(dāng)程度上優(yōu)化了算法效率。
隨著無人技術(shù)的日益發(fā)展,眾多國內(nèi)外物流公司已陸續(xù)開始將無人技術(shù)應(yīng)用到運(yùn)輸行業(yè)中。亞馬遜、谷歌等公司于業(yè)界最早提出研發(fā)無人機(jī)空管系統(tǒng)的計(jì)劃,并于2016年利用無人機(jī)首次完成貨物送達(dá)任務(wù)。而在2017年又領(lǐng)先提出利用地面車輛與空運(yùn)無人機(jī)協(xié)同運(yùn)輸?shù)呢浳镞\(yùn)輸方式[7]。然而隨著無人駕駛技術(shù)日益發(fā)展和無人機(jī)在快遞行業(yè)的拓展應(yīng)用,此前對于車輛路徑問題的求解方法也已顯出一些不足,無人技術(shù)使得車輛路徑問題有了更好的求解方法。
但是經(jīng)研究可知,目前學(xué)術(shù)界對于無人技術(shù)在車輛路徑問題研究較少。其中,Luo等人[8]采用啟發(fā)式優(yōu)化算法對區(qū)域內(nèi)單車載無人機(jī)與地面車輛執(zhí)行巡航任務(wù)的路線問題提出了優(yōu)化方法,Yu等人[9]利用單無人機(jī)與移動(dòng)充電車輛協(xié)同配合解決了區(qū)域內(nèi)點(diǎn)遍歷任務(wù)的廣義旅行商問題(Generalized Traveling Salesperson Problem)模型向TSP(Traveling Salesperson Problem)問題模型的轉(zhuǎn)化。然而這些文獻(xiàn)主要目標(biāo)擬在實(shí)現(xiàn)對區(qū)域內(nèi)點(diǎn)的訪問任務(wù)研究,并沒有考慮無人機(jī)的承載能力和貨物運(yùn)輸能力。為此,本文提出了一種新的研究場景:利用無人機(jī)和物流車協(xié)同運(yùn)輸完成對區(qū)域內(nèi)各點(diǎn)的貨物送達(dá)任務(wù),即帶無人機(jī)的車輛路徑問題(Vehicle Routing Problem with Unmanned Aerial Vehicle,VRPUAV)。并借鑒二級車輛路徑問題的解決思路對VRPVAV問題提出了解決方法。
1.2 三支決策
三支決策是由姚一豫教授提出的對于復(fù)雜問題求解典型方法之一[10]。該方法的主要思想為“三分而治”,按照分治法將復(fù)雜問題轉(zhuǎn)化為3個(gè)規(guī)模較小的問題,有針對性地解決3個(gè)小問題,從而提高決策質(zhì)量,減少?zèng)Q策成本和降低決策時(shí)間。 “三分”將全局“一”劃分成“三”個(gè)獨(dú)立的部分,即“一分為三”?!爸温浴贬槍Ω鱾€(gè)部分開發(fā)相應(yīng)的治理策略,以達(dá)到解決問題的成本最小化或利益最大化。
在VRPUAV問題中,系統(tǒng)性能與無人機(jī)的運(yùn)輸能力密切相關(guān),而無人機(jī)運(yùn)輸能力與天氣、損壞情況密切相關(guān)。例如在天氣較差,能見度較低時(shí),無人機(jī)不能完成飛行任務(wù)。而當(dāng)無人機(jī)損壞,或者定期保養(yǎng)時(shí),會(huì)導(dǎo)致無人機(jī)數(shù)量不足。只有當(dāng)天氣正常,所有無人機(jī)均無損壞情況時(shí),方可正常飛行。所以無人機(jī)運(yùn)輸能力同樣也涉及到3個(gè)粒度的問題。本文中,在該領(lǐng)域首次提出基于三支決策理論解決無人機(jī)物流車協(xié)同運(yùn)輸?shù)膬?yōu)化算法,結(jié)合三支決策的“三分而治”的基本思想,將無人機(jī)的運(yùn)輸能力作為分治的依據(jù),將問題三分為“無人機(jī)數(shù)量為0”、“無人機(jī)數(shù)量充足”、“無人機(jī)存在且不足”三個(gè)子問題,針對這三個(gè)部分提出相應(yīng)的治理策略實(shí)現(xiàn)等待時(shí)間成本和行駛成本的最小化。并通過實(shí)驗(yàn)數(shù)據(jù)證明了本文方法的有效性。對此擬展開研究論述如下。
2 帶無人機(jī)協(xié)助運(yùn)輸?shù)目旒\(yùn)輸算法
2.1 VRPUAV問題描述
本文的研究場景可以概括為:在僅有一個(gè)快件分發(fā)中心的區(qū)域中,對m個(gè)快件收貨點(diǎn)進(jìn)行快遞分發(fā),且m個(gè)快件收貨點(diǎn)上需要送達(dá)的總重量不同;同時(shí)根據(jù)無人機(jī)的最大配送重量K將快件收貨點(diǎn)劃分為重件點(diǎn)和輕件點(diǎn)。其中,無人機(jī)可完成輕件點(diǎn)的快遞送達(dá),物流車可完成任意快件點(diǎn)的送達(dá)任務(wù)。對于各個(gè)快件點(diǎn)而言,均具備最晚送達(dá)時(shí)間的不同要求和超時(shí)懲罰系數(shù)puni。每個(gè)快件點(diǎn)的時(shí)間成本為其超時(shí)時(shí)長T*puni。物流車攜帶區(qū)域內(nèi)所有快件和n(n≥0)架無人機(jī)從快件分發(fā)中心出發(fā),協(xié)同運(yùn)輸,以最小的行駛代價(jià)和最小的總時(shí)間成本,完成區(qū)域內(nèi)所有快件點(diǎn)的送達(dá)任務(wù)。最后均回到快件分發(fā)中心。
2.2 求解過程
由于無人機(jī)有著最大配送半徑的耐力限制,需要不斷地往返于物流車進(jìn)行充電,假設(shè)無人機(jī)可以直接更換電池后再次開始下一快件點(diǎn)的訪問,且其時(shí)間忽略不計(jì)。這是一類二級車輛路徑問題的變形,其中二級交通工具無人機(jī)的行駛路徑是建立在物流車的行駛基礎(chǔ)之上,因此借鑒二級車輛路徑問題的求解思路,將區(qū)域內(nèi)物流車和無人機(jī)行駛路徑進(jìn)行分層次求解。
由于無人機(jī)飛行速度較快,以空間直線距離行駛,不受地面交通狀態(tài)影響,且單位行駛成本遠(yuǎn)低于物流車,因此要充分發(fā)揮無人機(jī)的配送優(yōu)勢。并根據(jù)此原則,依據(jù)無人機(jī)的數(shù)量,采用三支決策的主要思想,將問題整體分為3個(gè)部分,而且根據(jù)三分的結(jié)果,有針對性地設(shè)計(jì)策略和動(dòng)作,達(dá)到成本的最小化。在本文中,由于無人機(jī)數(shù)量不同時(shí),需要采取不同的處理策略,因此研究將無人機(jī)數(shù)量作為分治的依據(jù)。將問題劃分為“無人機(jī)數(shù)量為0”、“無人機(jī)數(shù)量充足”、“無人機(jī)數(shù)量存在且不足”,并采用不同的策略進(jìn)行解決,以達(dá)到行駛成本和時(shí)間成本的最小化。問題分治求解流程如圖1所示。對以上3個(gè)子部分的處理策略可做闡釋分述如下。
(1)如果無人機(jī)數(shù)量為0,將所有快件點(diǎn)歸為重件點(diǎn),直接調(diào)用蟻群算法求解物流車行駛路徑,得到時(shí)間成本和行駛成本。
(2)如果無人機(jī)數(shù)量充足,先調(diào)用蟻群算法求解物流車關(guān)于物流車送達(dá)點(diǎn)的行駛軌跡,然后調(diào)用無人機(jī)物流車協(xié)同運(yùn)輸算法求解無人機(jī)的飛行軌跡,得到時(shí)間成本和行駛成本。
(3)如果無人機(jī)數(shù)量不足,動(dòng)態(tài)調(diào)整快遞任務(wù),改變重件點(diǎn)和輕件點(diǎn)的比例,減輕無人機(jī)的運(yùn)送壓力。對于所調(diào)整的比例,每次調(diào)用蟻群算法求解行駛軌跡和無人機(jī)物流車協(xié)同運(yùn)輸算法求解行駛軌跡和飛行軌跡。并計(jì)算行駛成本和客戶等待時(shí)間成本。不斷調(diào)整,直到行駛成本和等待時(shí)間成本達(dá)到最優(yōu)為止。
2.3 無人機(jī)配送路徑規(guī)劃算法
在該區(qū)域中,物流車將由快件中心出發(fā),對各個(gè)重件點(diǎn)依序進(jìn)行訪問,最后回到快件中心,這是一個(gè)典型的NP-hard的問題。因此采用啟發(fā)式搜索算法完成路徑求解,本文采用蟻群算法來規(guī)劃求出物流車的行駛路徑。
由于無人機(jī)需要從物流車上攜帶快件出發(fā),飛往輕件點(diǎn),成功送達(dá)后返回物流車。不斷往返,直到左右輕件點(diǎn)上快件送達(dá)完畢,這樣的協(xié)同運(yùn)輸方式使得無人機(jī)飛行路線的求解需要建立在物流車的行駛軌跡之上。在已知物流車行駛路徑的前提條件下,需要根據(jù)無人機(jī)飛行速度,物流車行駛速度、當(dāng)前路段路況等參數(shù)關(guān)于區(qū)域內(nèi)各個(gè)已知位置和重量的輕件點(diǎn)對無人機(jī)飛行路線進(jìn)行規(guī)劃。求得每次無人機(jī)飛行路線的起飛點(diǎn)和降落點(diǎn),以及此次飛行路線中完成送達(dá)的輕件點(diǎn)。在此基礎(chǔ)上,可研究推得設(shè)計(jì)算法如下。
算法1 計(jì)算無人機(jī)關(guān)于輕件點(diǎn)的飛行路線
輸出 無人機(jī)對區(qū)域中所有輕件點(diǎn)的飛行路線,物流車行駛時(shí)間,重件點(diǎn)送達(dá)時(shí)間,輕件點(diǎn)送達(dá)時(shí)間
步驟5 根據(jù)無人機(jī)數(shù)量和合并飛行路徑,調(diào)整合并飛行路徑起飛點(diǎn)和降落點(diǎn)。此次調(diào)整要滿足使得物流車等待時(shí)間最小以及無人機(jī)飛行成本有限增加的原則。
步驟6 計(jì)算物流車等待時(shí)間,以及各重件點(diǎn)超時(shí)配送成本和輕件點(diǎn)超時(shí)配送成本,計(jì)算無人機(jī)飛行成本以及物流車行駛成本。
在給定區(qū)域中,已知物流車的行駛軌跡和輕件點(diǎn)分布的位置如圖2中(a)所示;且已知無人機(jī)數(shù)量為1;調(diào)用無人機(jī)-物流車協(xié)同運(yùn)輸優(yōu)化算法:首先對于(a)中所有輕件點(diǎn),離其最近的直接道路,并算出無人機(jī)對其單點(diǎn)配送的飛行降落點(diǎn),如圖2中(b)所示。對于各個(gè)輕件點(diǎn)單點(diǎn)配送的飛行降落點(diǎn)計(jì)算無人機(jī)對其進(jìn)行單點(diǎn)飛行的起飛點(diǎn),如圖2中(c)所示。計(jì)算各個(gè)輕件點(diǎn)單點(diǎn)飛行的起飛點(diǎn)和降落點(diǎn)與車輛出發(fā)點(diǎn)的距離。并根據(jù)距離從小到大進(jìn)行排序。根據(jù)排序后的結(jié)果和各個(gè)輕件點(diǎn)的重量對各個(gè)輕件點(diǎn)的單點(diǎn)飛行路徑進(jìn)行合并得到合并的飛行路線,如圖2中(d)所示。由于當(dāng)前無人機(jī)數(shù)量為1,所以每執(zhí)行一次飛行任務(wù)時(shí),就要等待上一次飛行路線結(jié)束。從而調(diào)整無人機(jī)起飛點(diǎn)和降落點(diǎn)得到最終的飛行路線如圖2中(e)所示。
3 實(shí)驗(yàn)結(jié)果與分析
3.1 實(shí)驗(yàn)平臺與參數(shù)選取
本實(shí)驗(yàn)在處理器為Intel(R)Core(TM) i5-3337U CPU@1.80 GHz 1.80 GHz ,安裝內(nèi)存為4.00 GB的64位Windows系統(tǒng)上進(jìn)行,實(shí)驗(yàn)環(huán)境為Visual Studio 2016。并設(shè)定無人機(jī)速度與物流車速度比為1.5:1,無人機(jī)單位行駛成本與物流車單位行駛成本為1:5,無人機(jī)最大載重為18。隨機(jī)生成路網(wǎng)信息,隨機(jī)生成若干組快件點(diǎn)的數(shù)量及其重量的實(shí)驗(yàn)數(shù)據(jù)見表1。
本實(shí)驗(yàn)以時(shí)間成本和行駛成本為判別依據(jù),首先將帶無人機(jī)的車輛路徑問題和傳統(tǒng)的車輛路徑問題進(jìn)行對比,驗(yàn)證無人機(jī)物流車協(xié)同運(yùn)輸優(yōu)化算法的優(yōu)勢。隨后,根據(jù)三支決策思想對帶無人機(jī)的車輛路徑問題所劃分出的3個(gè)粒度,運(yùn)用本文提出的對應(yīng)的算法策略予以實(shí)現(xiàn),觀察是否能夠得到3個(gè)子問題的優(yōu)化解。最后,針對同一組數(shù)據(jù),分別運(yùn)用“無人機(jī)數(shù)量為0”、“無人機(jī)數(shù)量充足”、“無人機(jī)數(shù)量不足”三個(gè)子問題中的策略進(jìn)行求解,并對結(jié)果加以比較分析,證明應(yīng)用三支決策思想求解VRPUAV問題優(yōu)化解的正確性。
3.2 無人機(jī)無人車協(xié)同運(yùn)輸算法優(yōu)勢驗(yàn)證實(shí)驗(yàn)
為了驗(yàn)證無人機(jī)無人車協(xié)同運(yùn)輸方式的優(yōu)勢,使用表1中前五組數(shù)據(jù)進(jìn)行實(shí)驗(yàn),與傳統(tǒng)的蟻群算法(將所有快件點(diǎn)視為重件點(diǎn))進(jìn)行比較,以期望能夠獲得服務(wù)時(shí)間成本和行駛成本的降低。
在協(xié)同運(yùn)輸算法中,無人機(jī)數(shù)量設(shè)置為1,劃分不同比例的快件點(diǎn)為輕件點(diǎn),得到實(shí)驗(yàn)數(shù)據(jù)見表2。
根據(jù)表1、表2數(shù)據(jù)可得圖3。從圖3(a)、(b)中可以看出,對于表1中第一到第五組實(shí)驗(yàn)數(shù)據(jù),分別使用蟻群算法和無人機(jī)無人車協(xié)同運(yùn)輸算法時(shí),后者服務(wù)時(shí)間成本和行駛成本均小于傳統(tǒng)的蟻群算法所求得的結(jié)果,且算法優(yōu)化作用隨著快件點(diǎn)數(shù)增加而逐漸增大,與預(yù)期相符。證明了無人機(jī)無人車協(xié)同運(yùn)輸優(yōu)化算法相比于傳統(tǒng)蟻群算法在時(shí)間成本和行駛成本上的優(yōu)化作用。
3.3 三支決策對比實(shí)驗(yàn)
對于表1中第八組數(shù)據(jù),總快件點(diǎn)數(shù)為172。隨機(jī)散落在所構(gòu)建的路網(wǎng)中,并采用所規(guī)定的實(shí)驗(yàn)參數(shù)。初始時(shí),將重件點(diǎn)劃分閾值K定為18。分別執(zhí)行“無人機(jī)數(shù)量為0”、“無人機(jī)數(shù)量充足”、“無人機(jī)數(shù)量不足”三個(gè)粒度下的求解算法。對于無人機(jī)數(shù)量為0的情況,區(qū)域內(nèi)所有快件點(diǎn)均為重件點(diǎn),采用蟻群算法進(jìn)行求解。對于無人機(jī)數(shù)量充足時(shí),重件點(diǎn)數(shù)量為74,輕件點(diǎn)數(shù)量為98。采用無人機(jī)無人車協(xié)同運(yùn)輸優(yōu)化算法,最少用5架無人機(jī)數(shù)量時(shí)可得到優(yōu)化解。對于無人機(jī)數(shù)量不足時(shí),設(shè)定無人機(jī)數(shù)量為2,通過任務(wù)調(diào)整,將重件點(diǎn)數(shù)量設(shè)為93,輕件點(diǎn)數(shù)量設(shè)為79后可得到優(yōu)化解。三支決策對比實(shí)驗(yàn)結(jié)果見表3,三支決策對應(yīng)子問題的優(yōu)化解如圖4所示。
需要指出,在圖4中,情況1、2、3分別表示“無人機(jī)數(shù)量為0”、“無人機(jī)數(shù)量不足”和“無人機(jī)數(shù)量充足”。由表3各子問題優(yōu)化解可知,對于VRPUAV問題的求解,結(jié)合三支決策思想對問題進(jìn)行劃分,可以得到對應(yīng)子問題的優(yōu)化解。并且由圖4中(a)和(b)可知,對于“無人機(jī)數(shù)量充足”和“無人機(jī)數(shù)量不足”,其時(shí)間成本和行駛成本均優(yōu)于“無人機(jī)數(shù)量為0”的情形。在無人機(jī)數(shù)量不足時(shí),可將重件點(diǎn)閾值由18調(diào)整為16,從而得到接近于無人機(jī)數(shù)量充足時(shí)的優(yōu)化解。實(shí)驗(yàn)結(jié)果符合實(shí)驗(yàn)預(yù)期,證明了三支決策應(yīng)用的正確性。
3.4 實(shí)驗(yàn)總結(jié)
本文基于表1中隨機(jī)生成的數(shù)據(jù),共進(jìn)行了4組實(shí)驗(yàn)。先是在無人機(jī)無人車協(xié)同運(yùn)輸算法優(yōu)勢驗(yàn)證實(shí)驗(yàn)中,由圖4中數(shù)據(jù)可知,無人機(jī)無人車的協(xié)同運(yùn)輸算法(UAV數(shù)量為2時(shí))相較于傳統(tǒng)的蟻群算法,服務(wù)時(shí)間成本平均降低了4.52%,行駛成本平均降低了9.58%。這充分證明了無人機(jī)無人車協(xié)同運(yùn)輸方式相比于傳統(tǒng)物流運(yùn)輸方式的優(yōu)勢。接著,在三支決策對比實(shí)驗(yàn)中,通過對3個(gè)粒度下實(shí)驗(yàn)結(jié)果的分析,證實(shí)了三支決策思想在當(dāng)前問題中應(yīng)用的有效性。以上四組實(shí)驗(yàn)數(shù)據(jù)均符合預(yù)期目標(biāo),由此表明了本文結(jié)合三支決策思想解決VRPUAV問題的方法策略在時(shí)間成本和行駛成本上的優(yōu)化作用。
4 結(jié)束語
本文針對單一配送中心周邊的大規(guī)??旒渌蛦栴},在傳統(tǒng)物流的解決方式之上,加入無人技術(shù)的配送因素。首先以最小化行駛成本和時(shí)間成本為目標(biāo),借鑒二級車輛路徑問題的解決方法,將區(qū)域內(nèi)快件點(diǎn)進(jìn)行劃分,提出了帶無人機(jī)協(xié)助運(yùn)輸?shù)目旒渌头椒?,采用蟻群算法和無人機(jī)配送路徑求解算法分別求解物流車行駛路徑和無人機(jī)飛行路徑。并通過實(shí)驗(yàn)證明了與傳統(tǒng)物流相比,無人機(jī)物流車協(xié)同運(yùn)輸方式在行駛成本和時(shí)間成本上的優(yōu)勢。隨后結(jié)合三支決策的基本思想,將問題分解為“無人機(jī)為0”、“無人機(jī)數(shù)量充足”、“無人機(jī)存在且不足”三個(gè)粒度,并提出用蟻群算法,無人機(jī)物流車協(xié)同運(yùn)輸優(yōu)化算法,和任務(wù)調(diào)整的算法和策略在三個(gè)子問題中得到了最優(yōu)解。最后用實(shí)驗(yàn)數(shù)據(jù)證明了本文所提出的結(jié)合三支決策解決VRPUAV問題算法策略的正確性。
參考文獻(xiàn)
[1]?SCHEUERER S. A Tabu search heuristic for the truck and trailer routing problem[J]??.Computers & Operations Research , 2006, 33(4):894-909.
[2]MONTOYA-TORRES J R, FRANCO J L, ISAZA S N, et al. A literature review on the vehicle routing problem with multiple depots[J]. Computers & Industrial Engineering, 2015, 79:115-129.
[3]陳美軍, 張志勝, 史金飛. 多約束下多車場車輛路徑問題的蟻群算法研究[J]. 中國機(jī)械工程, 2008, 19(16):1939-1944.
[4]王征, 張俊, 王旭坪. 多車場帶時(shí)間窗車輛路徑問題的變鄰域搜索算法[J]. 中國管理科學(xué), 2011, 19(2):99-109.
[5]曾正洋, 許維勝, 徐志宇,等. 應(yīng)急物流中的累計(jì)時(shí)間式多車場車輛路徑問題[J]. 控制與決策, 2014,29(12):2183-2188.
[6]凌海峰, 谷俊輝. 帶軟時(shí)間窗的多車場開放式車輛調(diào)度[J]. 計(jì)算機(jī)工程與應(yīng)用, 2017, 53(14):232-239.
[7]21世紀(jì)網(wǎng). 今天,劉強(qiáng)東重磅宣布!快遞員慌了...[EB/OL]. [2018-02-28]. https://view.inews.qq.com/a/20180228A0I7SG00?fro.
[8]LUO Z, LIU Z, SHI J. A two-echelon cooperated routing problem for a ground vehicle and its carried unmanned aerial vehicle[J]. Sensors, 2017, 17(5):E1144.
[9]YU K, BUDHIRAJA A K, TOKEKAR P. Algorithms and experiments on routing of unmanned aerial vehicles with mobile recharging stations[J]. Journal of Field Robotics, 2018,36(3):602-616.
[10]YAO Yiyu. An outline of a theory of Three-Way Decisions[M]//Rough sets and current trends in computing. RSCTC 2012. Lecture Notes in Computer Science, Berlin/Heidelberg:Springer, 2012,7413:1-17.