祖春旭
摘 要:本文簡要闡述了公務(wù)員行政能力測驗(yàn)考試中,眾多考生對(duì)資料分析考題的誤解,并進(jìn)而探討了一些資料分析的速算技巧。以期通過本文的分析與研究,能夠?yàn)楣珓?wù)員考試中考生筆試成績的提升,提供出可供參考與借鑒的內(nèi)容。
關(guān)鍵詞:資料分析;速算技巧
前言
國考、省考,亦或是事業(yè)單位、招警等考試中,行測中的資料分析考題,大多被眾多考生定義為計(jì)算困難的題型。這實(shí)則是考生對(duì)資料分析考題的誤解,以及未能掌握速算技巧所導(dǎo)致的結(jié)果。如若通過一些速算技巧的應(yīng)用,便能使考生在較短的時(shí)間里,無需計(jì)算便獲取到正確的答案,進(jìn)而在消除考生對(duì)考題誤解的同時(shí),掌握到提升考試成績的答題技巧,使資料分析考題成為極具性價(jià)比的考試內(nèi)容之一。
一、考生對(duì)考題的誤解分析
首先,部分考生認(rèn)為解答資料分析考題,需要良好的數(shù)學(xué)基礎(chǔ),這是誤區(qū)之一。依照公務(wù)員考試大綱中的要求與說明可以了解到:“資料分析,主要測查報(bào)考者理解、把握事物間量化關(guān)系和解決問題的能力,主要涉及數(shù)據(jù)關(guān)系的分析、推理、判斷、運(yùn)算等。”仔細(xì)研讀不難發(fā)現(xiàn),分析、推理、以及判斷等能力在前,而基礎(chǔ)運(yùn)算在后,這表明運(yùn)算能力僅僅是考察要素中的分類考察項(xiàng)而已,且并未占據(jù)主導(dǎo)地位。通過對(duì)以往年份的考題分析不難看出,很多省考或國考的行測真題中,所考察的知識(shí)點(diǎn),高中知識(shí)僅為小部分,而大部分多為小學(xué)或初中所學(xué)知識(shí)內(nèi)容。因此,所應(yīng)用到的解題方法,也都是中小學(xué)學(xué)習(xí)的基礎(chǔ)方法。
其次,一些考生認(rèn)為資料分析需要通篇閱讀資料,不僅需要逐題計(jì)算,且15—20個(gè)考題的分值也較少,這也是考生存在的一大誤區(qū)。以國考行測真題為例,其中數(shù)學(xué)部分的總分值能夠占到試卷總分值的30%以上,且資料分析考題為20題,分值約為20分,絕對(duì)是不可忽視的部分。并且,一些資料分析考題的題目被設(shè)置成了秒殺性題目,即在進(jìn)行題目的閱讀結(jié)束后,能夠在短時(shí)間內(nèi)便可依照規(guī)律或文中提示,找尋到正確答案,這也在提升考生考試成績的同時(shí),為整體試卷的作答創(chuàng)造出效率。
二、資料分析比較類速算技巧
對(duì)考題存在誤區(qū)的考生,難以在有效時(shí)間內(nèi)對(duì)題目進(jìn)行正確的分析、判斷、以及解答。因而,掌握良好的速算技巧便成為打開資料分析成功大門的“金鑰匙”。在此,本文僅就資料分析考題中,比較類的部分速算技巧做出針對(duì)性講解,具體內(nèi)容如下:
(一)化同法
當(dāng)分?jǐn)?shù)無法直接進(jìn)行比較時(shí),便可將一個(gè)分?jǐn)?shù)的分子與分母進(jìn)行同步的擴(kuò)大或縮小,隨后再進(jìn)行比較,此類方法即是化同法??碱}中通常會(huì)涉及到增長率、增長量、以及基期量等方面的內(nèi)容。其中,增長量通常不會(huì)直接給出,而增長率=增長量/基期量;現(xiàn)期量/基期量=增長量/基期量+100%,此時(shí),增長率的比較,便能夠轉(zhuǎn)化成現(xiàn)期量與基期量的比值的比較。同時(shí),針對(duì)分?jǐn)?shù)的比較也通用如下性質(zhì):
若A>a>0且B>b>0,則:A x B>a x B>a x b;
(二)差分法
在進(jìn)行分?jǐn)?shù)比較時(shí),若無法直接進(jìn)行比較,且通過分?jǐn)?shù)分子與分母的同步擴(kuò)大與縮?。ɑǎ┮矡o法找尋到合適的放縮比例時(shí),便可觀察比較分?jǐn)?shù)中分子、分母的首個(gè)數(shù)字是否接近,若較為接近,便可采用差分法進(jìn)行比較。因此,差分法即可當(dāng)作是比較兩個(gè)分?jǐn)?shù)大小時(shí),所應(yīng)用到的一種“比較型”速算技巧。
差分法的核心法則:分子、分母都大的分?jǐn)?shù)稱為“大分?jǐn)?shù)”,分子、分母都小的分?jǐn)?shù)稱為“小分?jǐn)?shù)”;大分?jǐn)?shù)和小分?jǐn)?shù)的分子、分母分別做差得到的新的分?jǐn)?shù)稱為差分?jǐn)?shù)。若差分?jǐn)?shù)>小分?jǐn)?shù),則大分?jǐn)?shù)>小分?jǐn)?shù);若差分?jǐn)?shù)<小分?jǐn)?shù),則大分?jǐn)?shù)<小分?jǐn)?shù);若差分?jǐn)?shù)=小分?jǐn)?shù),則大分?jǐn)?shù)=小分?jǐn)?shù);需要注意的是:雖然最終得出的比值大小關(guān)系精確,但其步驟較為繁瑣,因而需明確是否需要應(yīng)用此種方法,或應(yīng)用估算法、直除法、以及化同法亦可。并且,若應(yīng)用差分法,則應(yīng)確保其應(yīng)用本質(zhì),即擴(kuò)大兩個(gè)分子、分母均較為接近的分?jǐn)?shù)之間的差距。唯有如此,才能使考題化繁為簡,較為快速的得出正確結(jié)論。
(三)放縮法
所謂放縮法,即是在進(jìn)行數(shù)字比較計(jì)算的過程中,若對(duì)于數(shù)字的精度沒有過高要求,或幾個(gè)數(shù)值之間相差較大,則可以利用將中間結(jié)果進(jìn)行“擴(kuò)大”或“縮小”的方式,來對(duì)數(shù)字間的大小關(guān)系做出比較。其中,擴(kuò)大即放,縮小即縮。在這一過程中,不能對(duì)數(shù)字進(jìn)行盲目的縮放,而要依照“放縮”的方向與進(jìn)行結(jié)果的比較。
現(xiàn)階段,在資料分析中所常用到的縮放法,主要涉及到以下兩種形式:
其一,若兩個(gè)數(shù)相乘,則應(yīng)將兩個(gè)數(shù)的數(shù)值同時(shí)變小,則其乘積變小;若將兩個(gè)數(shù)值同時(shí)變大,則其乘積同步變大(若兩個(gè)數(shù)中有一數(shù)變大,而另一數(shù)變小,則結(jié)果便無法確定。此時(shí),需要對(duì)兩數(shù)進(jìn)行變大變小幅度的結(jié)合與判斷,故應(yīng)盡量避免出現(xiàn)此種情況的放縮現(xiàn)象)。
其二,若兩個(gè)數(shù)相除,將分子數(shù)值變大分母數(shù)值變小,則分?jǐn)?shù)數(shù)值就會(huì)相應(yīng)的增大。而將分子數(shù)值變小分母數(shù)值變大,則分?jǐn)?shù)數(shù)值就會(huì)相應(yīng)的減?。ㄈ魞蓚€(gè)數(shù)同時(shí)變大或同時(shí)變小,則其結(jié)果也無法確定,而需結(jié)合兩數(shù)間大小變化幅度,故應(yīng)盡量避免此種縮放情況的出現(xiàn))。
結(jié)語
很多參加行測考試的考生,都對(duì)資料分析考題存在不同程度的誤解或理解偏差。對(duì)此,應(yīng)在化解考生誤解的基礎(chǔ)上,同步教授其作答此類考題的速算技巧。這也是促進(jìn)考生答題效率與成績提升的重要措施。
參考文獻(xiàn)
[1]張琳靜.關(guān)于行政能力測試中與資料分析一些方法[J].科技經(jīng)濟(jì)導(dǎo)刊,2016(32):203-204.
[2]方博.和資料分析題備考策略[J].決策,2013(11):84-85.
[3]胡斌. 2016~2017公務(wù)員錄用考試15天快速突破,資料分析[M]//2013~2014公務(wù)員錄用考試15天快速突破資料分析. 2011.