張巖 王祥花 李明慧 胡曉燕 王瑩 馬瑞霞
[摘要] 目的 探討microRNA-26a(miR-26a)在糖尿病腎?。―N)中的表達(dá)及其與DN的關(guān)系。方法 高脂高糖喂養(yǎng)聯(lián)合腹腔注射小劑量鏈脲霉素構(gòu)建大鼠2型糖尿病模型(T2DM),另設(shè)正常對照(NC)組。于動(dòng)物模型建立后8周收集兩組大鼠血、尿及腎臟標(biāo)本。比較兩組血、尿生化指標(biāo),蘇木精-伊紅染色觀察腎小球病理變化,實(shí)時(shí)定量PCR方法檢測腎臟miR-26a、Nephrin mRNA表達(dá)水平,Western Blot方法測定腎臟Nephrin蛋白表達(dá)水平。結(jié)果 與NC組比較,T2DM組大鼠空腹血糖(FBG)、膽固醇(TC)、三酰甘油(TG)、內(nèi)生肌酐清除率(Ccr)、24 h尿蛋白定量均明顯升高(t=10.710~28.421,P<0.05)。光鏡下觀察,T2DM組腎小球體積較NC組增大,基底膜增厚,系膜區(qū)擴(kuò)大,腎小球毛細(xì)血管腔受壓變窄。與NC組比較,T2DM組Nephrin mRNA和miR-26a表達(dá)明顯減少(t=9.070、12.270,P<0.05),Nephrin蛋白表達(dá)明顯減少(t=7.429,P<0.05)。Pearson分析顯示,miR-26a與Nephrin表達(dá)正相關(guān)(r=0.650,P<0.01)。結(jié)論 miR-26a 在DN大鼠腎組織表達(dá)降低,并與大鼠DN足細(xì)胞的損傷密切相關(guān)。
[關(guān)鍵詞] 糖尿病腎病;足細(xì)胞;miR-26a;大鼠
[中圖分類號] R587.24 ?[文獻(xiàn)標(biāo)志碼] A ?[文章編號] ?2096-5532(2019)04-0447-05
[ABSTRACT] Objective To investigate the expression of microRNA-26a (miR-26a) in diabetic nephropathy (DN) and its relationship with DN. ?Methods A rat model of type 2 diabetes mellitus (T2DM) was established by high-fat and high-sugar diet combined with intraperitoneal injection of low-dose streptozotocin, and a normal control (NC) group was also established. Blood, urine, and kidney specimens were collected at 8 weeks after the establishment of the animal model. The blood and urine biochemical parameters were compared between the two groups. Glomerular pathology was observed by HE staining. The expression of miR-26a and Nephrin mRNA was determined by qPCR, while the protein expression of Nephrin in the renal cortex was measured by Western blot. ?Results Compared with the NC group, the T2DM group had significantly increased fasting blood glucose, cholesterol, triglyceride, endogenous creatinine clearance, and 24 h urinary protein excretion (t=10.710-28.421,P<0.05). As observed under light microscopy, the T2DM group had a larger glomerular volume, a thicker basement membrane, an enlarged mesangial region, and a smaller glomerular capillary lumen compared with the NC group. Meanwhile, the T2DM group had significant reductions in the expression of Nephrin mRNA and miR-26a (t=9.070,12.27;P<0.05), as well as Nephrin protein (t=7.429,P<0.05), as compared with the NC group. Pearson analysis showed that miR-26a was positively correlated with the expression of Nephrin (r=0.650,P<0.01). ?Conclusion In rats with DN, the expression of miR-26a in renal tissue is reduced, which is closely associated with the damage of podocytes.
[KEY WORDS] diabetic nephropathies; podocytes; miR-26a; rats
糖尿病腎?。―N)是糖尿病(DM)最嚴(yán)重和常見的慢性并發(fā)癥之一,研究顯示其為導(dǎo)致終末期腎病(ESRD)的最常見病因[1-2]。因此,防治DN、延緩腎功能的減退,越來越受到醫(yī)學(xué)界關(guān)注。足細(xì)胞、腎小球毛細(xì)血管內(nèi)皮細(xì)胞與腎小球基底膜共同構(gòu)成腎小球?yàn)V過屏障,足細(xì)胞在腎小球?yàn)V過功能中發(fā)揮著重要作用。足細(xì)胞病變是DN發(fā)病機(jī)制的中心環(huán)節(jié)及影響DN病人預(yù)后的主要因素之一[3-4]。高葡萄糖干預(yù)足細(xì)胞、鈣離子內(nèi)流增加誘發(fā)足細(xì)胞凋亡[5]。Nephrin與podocin等分子共同參與裂孔隔膜信號轉(zhuǎn)導(dǎo)[6]。檢測Nephrin的表達(dá)可以評估DN足細(xì)胞病理損傷[7]。近期有研究結(jié)果顯示,microRNA-26a(miR-26a)在狼瘡腎炎及IgA腎病病人腎小球足細(xì)胞中表達(dá)顯著降低[8]。miRNA是高度保守的小非編碼RNA家族,可以通過降解或抑制翻譯下調(diào)靶蛋白的表達(dá)[9-10]。然而,目前miR-26a與DN足細(xì)胞病變的關(guān)系國內(nèi)外研究甚少。本課題通過構(gòu)建2型糖尿?。═2DM)模型研究miR-26a在DN中的表達(dá)水平,探討miR-26a與DN的關(guān)系,為DN防治提供依據(jù)?,F(xiàn)將結(jié)果報(bào)告如下。
1 材料與方法
1.1 DN大鼠模型的制備及分
清潔級SD雄性大鼠30只,體質(zhì)量為180~220 g(青島大學(xué)附屬醫(yī)院動(dòng)物實(shí)驗(yàn)室提供),SPF級環(huán)境飼養(yǎng),環(huán)境溫度為(22±2)℃、相對濕度45%~65%,每日光照12 h。隨機(jī)分為正常對照組(NC組,n=10)和T2DM組(n=20)。NC組常規(guī)飼料喂養(yǎng);T2DM組給予高脂高糖飲食(Research Diet公司,USA,每100 g飼料含:常規(guī)飼料66.5 g,蔗糖20.0 g,豬油10.0 g,膽固醇2.5 g,膽酸鹽1.0 g)喂養(yǎng)8周后,聯(lián)合小劑量鏈脲佐菌素(30 mg/kg,Sigma,USA)一次性腹腔注射1周后,于禁食不禁水12 h后鼠尾靜脈取血,測定空腹血糖(FBG)及空腹胰島素(FINS),并計(jì)算胰島素敏感指數(shù)(ISI)。以FBG≥NC組大鼠FBG均值+3個(gè)標(biāo)準(zhǔn)差(血糖≥10.0 mmol/L)及ISI≤NC組大鼠的均值為T2DM模型建立成功[11-12]。
1.2 血液和尿液生化指標(biāo)檢測
T2DM造模成功后,繼續(xù)高脂喂養(yǎng)8周,用代謝籠收集大鼠24 h尿液以測定清蛋白和肌酐,測鼠尾收縮壓(SBP)并采集大鼠尾靜脈血。參照相關(guān)文獻(xiàn)方法[11],檢測大鼠血標(biāo)本FBG、膽固醇(TC)、三酰甘油(TG)、低密度脂蛋白(LDL)、高密度脂蛋白(HDL)、血肌酐(Scr),尿液標(biāo)本尿肌酐(Ucr)、24 h尿蛋白定量。根據(jù)Ucr、Scr計(jì)算內(nèi)生肌酐清除率(Ccr)[13]。Ccr=Ucr/Scr×24 h尿量。用ELISA檢測試劑盒(Novus公司,美國)檢測FINS,按說明書方法操作,用酶標(biāo)儀檢測450 nm波長處吸光度。
1.3 大鼠腎臟組織病理檢查
處死大鼠,取部分腎皮質(zhì)用40 g/L多聚甲醛固定,梯度乙醇脫水,二甲苯透明,浸蠟包埋,4 μm切片,蘇木精-伊紅(HE)染色后光鏡下觀察腎組織病理學(xué)變化。
1.4 實(shí)時(shí)定量PCR檢測Nephrin mRNA表達(dá)
采用TRIZOL試劑(TaKaRa公司,日本)提取腎皮質(zhì)總RNA,通過紫外線分光光度計(jì)檢測RNA的濃度和純度。應(yīng)用RNA反轉(zhuǎn)錄逆轉(zhuǎn)錄試劑盒(TaKaRa公司,日本)合成cDNA。以GAPDH作為內(nèi)參照,應(yīng)用實(shí)時(shí)熒光定量PCR儀(美國ABI 7500)進(jìn)行PCR擴(kuò)增,引物由TaKaRa公司合成,引物的序列見表1。實(shí)時(shí)定量PCR反應(yīng)條件為:95 ℃、10 min,95 ℃、30 s,95 ℃、5 s,60 ℃、30 s,擴(kuò)增45個(gè)循環(huán)。用2-△△CT計(jì)算相對表達(dá)量,△△CT=(CT實(shí)驗(yàn)組目的-CT實(shí)驗(yàn)組內(nèi)參)-(CT對照組目的-CT對照組內(nèi)參)。每個(gè)實(shí)驗(yàn)組均重復(fù)檢測3次。
裂解腎皮質(zhì),用BCA試劑盒測定蛋白濃度,蛋白煮沸變性。取30 μg總蛋白,行十二烷基硫酸鈉聚丙烯酰胺凝膠電泳,轉(zhuǎn)膜,室溫下以5 g/L脫脂奶粉封閉1 h,加一抗搖勻后置于4 ℃冰箱內(nèi)孵育過夜。一抗Nephrin(1∶1 000,美國Novus),一抗GAPDH(1∶2 000,英國Abcam)。TBST洗膜3×12 min后加入二抗(1∶10 000,中國Elabscience)室溫?fù)u床孵育1 h。電化學(xué)發(fā)光液(ECL)顯色并掃描結(jié)果。所有實(shí)驗(yàn)均進(jìn)行3次。用Image J軟件分析實(shí)驗(yàn)條帶。
1.6 統(tǒng)計(jì)學(xué)分析
應(yīng)用SPSS 22.0軟件進(jìn)行統(tǒng)計(jì)學(xué)分析,符合正態(tài)分布的計(jì)量資料結(jié)果用±s表示,兩組數(shù)據(jù)比較用t檢驗(yàn);相關(guān)性分析用Pearson分析。P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié) ?果
2.1 兩組大鼠一般情況比較
本文14只大鼠T2DM造模成功,造模成功率70%。T2DM組大鼠的FBG、TC、TG、SBP、LDL、Ccr、24 h尿蛋白定量較NC組明顯升高,ISI、HDL顯著低于NC組,差異有統(tǒng)計(jì)學(xué)意義(t=5.387~28.421,P<0.05);而兩組間Scr差異則無統(tǒng)計(jì)學(xué)意義(P>0.05)。見表2。
2.2 兩組腎臟組織病理比較
NC組大鼠腎小球結(jié)構(gòu)完整、清晰,并無明顯異常。
4期張巖,等. miR-26a在糖尿病腎病大鼠腎臟的表達(dá)及其意義449
與NC組比較,T2DM組大鼠腎小球體積增大,基底膜增厚,系膜區(qū)擴(kuò)大,腎小球毛細(xì)血管腔受壓變窄。
2.3 兩組Nephrin mRNA及miR-26a表達(dá)比較
與NC組相比較,T2DM組Nephrin mRNA、miR-26a表達(dá)量減少(t=12.270、9.070,P<0.05),見表3。Pearson分析表明,miR-26a與Nephrin表達(dá)正相關(guān)(r=0.65,P<0.01)。
2.4 兩組Nephrin蛋白表達(dá)比較
與NC組比較,T2DM組Nephrin蛋白表達(dá)量減少(t=7.429,P<0.05)。見圖1、表3。
3 討 ?論
DN為1型和2型DM的嚴(yán)重并發(fā)癥之一[14],最終可發(fā)展為ESRD[1,15]。目前關(guān)于DN發(fā)病機(jī)制尚不明確。足細(xì)胞是附著在腎小球基底膜外側(cè)的終末分化的上皮細(xì)胞,是腎小球?yàn)V過屏障的重要組成部分[16]。高糖通過刺激NADPH氧化酶和線粒體途徑增加細(xì)胞內(nèi)活性氧的產(chǎn)生,刺激鈣調(diào)磷酸酶TRPC6激活,促使凋亡基因的活化導(dǎo)致足細(xì)胞凋亡,并且是導(dǎo)致小鼠1型DM和T2DM的早期病理機(jī)制[17]。DKD大鼠模型腎臟足細(xì)胞鈣調(diào)磷酸酶激活和活性氧增多可刺激TRPC6誘導(dǎo)的足細(xì)胞凋亡[18],而抑制TRPC6可降低NFAT mRNA改善高葡萄糖誘導(dǎo)的足細(xì)胞損傷,保護(hù)腎小球?yàn)V過屏障完整性[19]。有研究表明,雷公藤多甙通過上調(diào)自噬和下調(diào)β-arrestin-1改善足細(xì)胞損傷,延緩小鼠DN發(fā)生[20]。國外有研究證實(shí),足細(xì)胞凋亡是DN發(fā)病機(jī)制中的中心環(huán)節(jié)[3-4]。
Nephrin與podocin等分子共同參與足細(xì)胞裂孔隔膜信號轉(zhuǎn)導(dǎo)[5]。Nephrin的表達(dá)變化可以用來評估大鼠DN病變及足細(xì)胞的損傷[7]。本文實(shí)驗(yàn)結(jié)果顯示,T2DM組的造模成功率為70%,T2DM組FBG、TC、TG、SBP、LDL、24 h尿蛋白定量較NC組大鼠均明顯升高,伴胰島素抵抗;與NC組比較,T2DM組腎臟組織出現(xiàn)病理改變,Nephrin基因和蛋白表達(dá)降低,提示DN腎臟組織病理損傷。有研究顯示,miR-26a在自身免疫性腎小球腎炎小鼠以及IgA腎病病人腎小球足細(xì)胞中表達(dá)顯著降低[8],并且與非DN相關(guān)的腎小球足細(xì)胞損傷密切相關(guān)。miRNA是高度保守小非編碼RNA家族,miRNA與靶mRNA的3′非翻譯區(qū)(3′UTR)配對結(jié)合從而負(fù)向調(diào)節(jié)靶基因的表達(dá),可通過降解或抑制翻譯下調(diào)靶蛋白[9-10]。國內(nèi)外研究結(jié)果證實(shí),miRNA參與多種腎臟疾病的發(fā)生發(fā)展,miR-23b在1型DM組及T2DM組外周血及腎臟組織中的表達(dá)下降[21];miR-146a在急性腎損傷組織的表達(dá)水平降低[22]。在人和小鼠腎臟組織miR-26a呈高水平特異性表達(dá)[23],足細(xì)胞是小鼠腎臟中miR-26a表達(dá)的主要位點(diǎn)。目前國內(nèi)外關(guān)于miR-26a與DN病變關(guān)系的研究甚少。本文研究結(jié)果表明,T2DM組miR-26a表達(dá)降低,并且miR-26a與Nephrin表達(dá)正相關(guān),提示miR-26a表達(dá)降低與大鼠DN病變及足細(xì)胞的損傷密切相關(guān)。ICHII等[8]的研究顯示,miR-26a在小鼠自身免疫性腎小球腎炎中表達(dá)降低并與足細(xì)胞的損傷緊密相關(guān),本文結(jié)果與其相一致。另有研究結(jié)果表明,miR-217通過靶向調(diào)節(jié)TNFSF11改變?nèi)俗慵?xì)胞的凋亡,是膜性腎病一種有用的診斷生物標(biāo)志物[24]。尿miR-30c-5p和miR-192-5p為缺血再灌注誘導(dǎo)的腎損傷的潛在生物標(biāo)志物[25]。尿miR-377和miR-216a也是DN風(fēng)險(xiǎn)的生物標(biāo)志物[26]。
因此推測miR-26a可能對DN診斷有一定價(jià)值,但需進(jìn)一步研究證明。
綜上所述,miR-26a在DN大鼠腎組織表達(dá)降低,并與大鼠DN病變及足細(xì)胞的損傷密切相關(guān)。目前,國外已有學(xué)者研究miR-26a在狼瘡型腎小管間質(zhì)炎癥、腎衰竭、免疫性腎病等疾病表達(dá)變化及作用機(jī)制[8,24]。本實(shí)驗(yàn)研究miR-26a與DN足細(xì)胞損傷的關(guān)系,在國內(nèi)外研究甚少。本課題后續(xù)將進(jìn)一步深入研究miR-26a在DN足細(xì)胞損傷中的作用機(jī)制,為DN的治療提供依據(jù)。
[參考文獻(xiàn)]
[1] GUO Yinfeng, SONG Zhixia, ZHOU Min, et al. Infiltrating macrophages in diabetic nephropathy promote podocytes apoptosis via TNF-alpha-ROS-p38MAPK pathway[J]. Oncotarget, 2017,8(32):53276-53287.
[2] WANG Xiaodan, GAO Lihui, LIN Hua, et al. Mangiferin prevents diabetic nephropathy progression and protects podocyte function via autophagy in diabetic rat glomeruli[J]. European Journal of Pharmacology, 2018,824(4):170-178.
[3] SHI Jianxia. Glucagon-like peptide-1 protects mouse podocytes from high glucose-induced apoptosis and inhibits the production of reactive oxygen species and the secretion of pro-inflammatory cytokines by sirtuin 1 activation in vitro[J]. Molecular Medicine Reports, 2018,18(2):1789-1797.
[4] WANG Liming, JING Yonggang, BAI Yi. Podocyte-specific knockout of cyclooxygenase 2 exacerbates diabetic kidney di-sease[J]. American Journal of Physiology-renal Physiology, 2017,313(2): F430-F439.
[5] SZABO T, AMBRUS L, ZAKANY N, et al. Regulation of TRPC6 ion channels in podocytes Implications for focal segmental glomerulosclerosis and acquired forms of proteinuric diseases[J]. Acta Physiologica Hungarica, 2015,102(3):241-251.
[6] LI Sutong, LIU Xiaoxia, LEI Jie, et al. Crocin protects podocytes against oxidative stress and inflammation induced by high glucose through inhibition of NF-kappa B[J]. Cellular Physio-logy and Biochemistry, 2017,42(4):1481-1492.
[7] NEW L A, MARTIN C E, SCOTT R P, et al. Nephrin tyrosine phosphorylation is required to stabilize and restore podocyte foot process architecture[J]. Journal of the American Society of Nephrology, 2016,27(8):2422-2435.
[8] ICHII O, OTSUKA-KANAZAWA S, HORINO T, et al. Decreased miR-26a expression correlates with the progression of podocyte injury in autoimmune glomerulonephritis[J]. PLoS One, 2014,9(10): e110383-e110388.
[9] NEUMANN A, NAPP L C, KLEEBERGER J A, et al. MicroRNA 628-5p as a novel biomarker for cardiac allograft vasculopathy[J]. Transplantation, 2017,101(1): E26-E33.
[10] NEAULT M, COUTEAU F, BONNEAU , et al. Molecular regulation of cellular senescence by microRNAs:implications in cancer and age-related diseases[J]. International Review of Cell&Molecular Biology, 2017,334(5):27-29.
[11] MA Ruixia, LIU Liqiu, JIANG Wei, et al. FK506 ameliorates podocyte injury in type 2 diabetic nephropathy by down-regulating TRPC6 and NFAT expression[J]. International Journal of Clinical and Experimental Pathology, 2015,8(11):14063-14074.
[12] ZHANG Li, ZHANG Qianmei, LIU Shuangxin, et al. DNA methyltransferase 1 may be a therapy target for attenuating diabetic nephropathy and podocyte injury[J]. Kidney International, 2017,92(1):140-153.
[13] 武國華,馬瑞霞,張偉,等. 他克莫司對2型糖尿病大鼠足細(xì)胞氧化應(yīng)激的影響[J]. 中華腎臟病雜志, 2016,32(4):300-301.
[14] ZHANG Yinghui, BING Wang, FENG Guo, et al. Involvement of the TGFβ1-ILK-Akt signaling pathway in the effects of hesperidin in type 2 diabetic nephropathy[J]. Biomedicine & Pharmacotherapy, 2018,105(6):766-772.
[15] TENG B N, DUONG M, TOSSIDOU I, et al. Role of protein kinase C in podocytes and development of glomerular damage in diabetic nephropathy[J]. Frontiers in Endocrinology, 2014,5(3):179-183.
[16] WANG Yao, LI Han, SONG Shuping. Beta-Arrestin 1/2 aggravates podocyte apoptosis of diabetic nephropathy via Wnt/beta-Catenin pathway[J]. Medical Science Monitor, 2018,24(3):1724-1732.
[17] LU H, LI Y, ZHANG T, et al. Salidroside reduces high-glucose-induced podocyte apoptosis and oxidative stress via upre-gulating heme oxygenase-1 (HO-1) expression[J]. Med Sci Monit, 2017,23(8):4067-4076.
[18] YAO Xingmei, LIU Yujun, WANG Yunman, et al. Astragaloside Ⅳ prevents high glucose-induced podocyte apoptosis via downregulation of TRPC6[J]. Molecular Medicine Reports, 2016,13(6):5149-5156.
[19] ZHAI Limin, GU Junfei, DI Yang, et al. Metformin ameliorates podocyte damage by restoring renal tissue podocalyxin expression in type 2 diabetic rats[J]. Journal of Diabetes, 2015,9(5):231825-231831.
[20] ZHAN Huifang, JUAN Jin, LIANG Shikai, et al. Triptery-gium glycoside protects diabetic kidney disease mouse serum-induced podocyte injury by upregulating autophagy and downre-gulating β-arrestin-1[J]. Histology and Histopathology, 2019,6(3):18097-18102.
[21] ZHAO Binghai, LI Hongzhi, LIU Jieting, et al. MicroRNA-23b targets Ras GTPase-activating protein SH3 Domain-binding protein 2 to alleviate fibrosis and albuminuria in diabetic nephropathy[J]. Journal of the American Society of Nephrology: JASN, 2016,27(9):2597-2608.
[22] DING Ying, GUO Feng, ZHU Tao, et al. Mechanism of long non-coding RNA MALAT1 in??lipopolysaccharide-induced acute kidney injury is mediated by the miR-146a/NF-κB signaling pathway[J]. International Journal of Molecular Medicine, 2018,41(1):446-454.
[23] KOGA K, YOKOI H, MORI K, et al. MicroRNA-26a inhi-bits TGF-β-induced extracellular matrix protein expression in podocytes by targeting CTGF and is downregulated in diabetic nephropathy[J]. Diabetologia, 2015,58(9):2169-2180.
[24] LI Jing, LIU Bin, XUE Hen, et al. miR-217 is a useful diagnostic biomarker and regulates human podocyte cells apoptosis via targeting TNFSF11 in membranous nephropathy[J]. BioMed Research International, 2017,32(3):1-9.
[25] ZOU Yanfang, WEN Dan, ZHAO Qian, et al. Urinary MicroRNA-30c-5p and MicroRNA-192-5p as potential biomarkers of ischemia-reperfusion-induced kidney injury[J]. Experimental Biology and Medicine, 2017,242(6):657-667.
[26] EL-SAMAHY M H, ADLY A A, ELHENAWY Y I, et al. Urinary miRNA-377 and miRNA-216a as biomarkers of nephropathy and subclinical atherosclerotic risk in pediatric patients with type 1 diabetes[J]. Journal of Diabetes and Its Complications, 2018,32(2):185-192.
(本文編輯 黃建鄉(xiāng))