謝燕嬌 鄺少軼 鄧慧鳴 虞道銳 樊好飛 賈皓 劉嬙
中圖分類號(hào) R735.2;R361+.3 文獻(xiàn)標(biāo)志碼 A 文章編號(hào) 1001-0408(2019)05-0621-07
DOI 10.6039/j.issn.1001-0408.2019.05.09
摘 要 目的:研究伊維菌素對(duì)人胃癌細(xì)胞BGC-823、MGC-803遷移和侵襲能力的影響及其作用機(jī)制。方法:0、2.5、5、10、20、40 μmol/L伊維菌素分別作用于BGC-823、MGC-803細(xì)胞24 h后用MTT法檢測(cè)細(xì)胞抑制率,再采用Transwell小室侵襲實(shí)驗(yàn)觀察5 μmol/L伊維菌素和含0.67‰二甲基亞砜的磷酸鹽緩沖液(對(duì)照組)作用24 h對(duì)BGC-823、MGC-803細(xì)胞遷移和侵襲的影響,Western blot法分別檢測(cè)5、10 μmol/L伊維菌素和含0.67‰二甲基亞砜的磷酸鹽緩沖液(對(duì)照組)作用于BGC-823、MGC-803細(xì)胞24 h后上皮-間質(zhì)轉(zhuǎn)化(EMT)標(biāo)記物E-cadherin、N-cadherin、Vimentin、Snail和EMT轉(zhuǎn)導(dǎo)通路轉(zhuǎn)化生長(zhǎng)因子β(TGF-β)/Smad中TGF-β1、TGF-βR、Smad2、Smad3 蛋白的表達(dá)水平。結(jié)果:伊維菌素對(duì)BGC-823、MGC-803細(xì)胞生長(zhǎng)均有抑制作用,其細(xì)胞抑制率與其濃度呈正相關(guān)。與對(duì)照組比較,5 μmol/L伊維菌素作用后BGC-823、MGC-803細(xì)胞的遷移數(shù)和侵襲數(shù)均明顯減少(P<0.01或P<0.001);5、10 μmol/L伊維菌素作用后BGC-823、MGC-803細(xì)胞中E-cadherin蛋白表達(dá)明顯增強(qiáng)(P<0.05或P<0.01或P<0.001),N-cadherin、Vimentin、Snail、TGF-βR、Smad2、Smad3蛋白表達(dá)均明顯減弱(P<0.05或P<0.01或P<0.001),TGF-β1蛋白僅在10 μmol/L伊維菌素作用后明顯減弱(P<0.05)。結(jié)論:伊維菌素能顯著抑制BGC-823、MGC-803細(xì)胞的遷移和侵襲,其可能與抑制TGF-β/Smad活性從而影響EMT過(guò)程有關(guān)。
關(guān)鍵詞 伊維菌素;人胃癌細(xì)胞BGC-823;人胃癌細(xì)胞MGC-803;轉(zhuǎn)化生長(zhǎng)因子β/Smad;細(xì)胞遷移;細(xì)胞侵襲
Effects of Ivermectin on Migration and Invasion of Human Gastric Cancer Cells BGC-823 and MGC-803 and Its Mechanism
XIE Yanjiao1,KUANG Shaoyi2,DENG Huiming3,YU Daorui2,F(xiàn)AN Haofei2,JIA Hao2,LIU Qiang2(1.Dept. of Pharmacy, Hainan Provincial People’s Hospital, Haikou 570311, China;2.Dept. of Pharmacology, Hainan Medical College, Haikou 571199, China;3.Dept. of Gastrointestinal Tumor Surgery, the First Affiliated Hospital of Hainan Medical College, Haikou 570102, China)
ABSTRACT OBJECTIVE: To study the effects of ivermectin on the migration and invasion of human gastric cancer cell lines BGC-823 and MGC-803 and its mechanism. METHODS: After treated with 0, 2.5, 5, 10, 20, 40 μmol/L ivermectin for 24 h, inhibitory rate of human gastric cancer cell lines BGC-823 and MGC-803 were detected by MTT assay. Effects of 5 μmol/L ivermectin and phosphate buffercontaining 0.67‰ dimethyl sulfoxide (control group) for 24 h on the migration and invasion of` gastric cancer cells BGC-823 and MGC-803 were observed by Transwell chamber invasion assay.Western blot assay was used to detect the protein expression of TGF-β1, TGF-βR, Smad2 and Smad3 in epithelial-mesenchymal transition (EMT) markers E-cadherin, N-cadherin, Vimentin, Snail and EMT transduction pathway TGF-β/smad of BGC-823 and MGC-803 cells after treated with 5, 10 μmol/L ivermectin and phosphate buffercontaining 0.67‰ dimethyl sulfoxide (control group) for 24 h. RESULTS: Ivermectin could inhibit the growth of BGC-823 and MGC-803, inhibitory rate of it was positively correlated with its concentration. Compared with control group, the number of migration and invasion BGC-823 and MGC-803 cells were decreased significantly after treated with 5 μmol/L ivermectin (P<0.01 or P<0.001); the expression of E-cadherin protein was enhanced significantly in BGC-823 and MGC-803 cells after treated with 5 and 10 μmol/L ivermectin (P<0.05 or P<0.01 or P<0.001); the protein expression of N-cadherin, Vimentin, Snail, TGF-βR, Smad2 and Smad3 were decreased significantly (P<0.05, P<0.01 or P<0.001); protein expression of TGF-β1 was decreased significantly after treated with 10 μmol/L ivermectin (P<0.05). CONCLUSIONS: Ivermectin can significantly inhibit the migration and invasion of gastric cancer cells BGC-823 and MGC-803, and inhibiting the biological activity of EMT by reducing the expression of TGF-β/smad pathway is one of the mechanisms that inhibit the migration and invasion of gastric cancer cells.
KEYWORDS Ivermectin; Human gastric cancer cell BGC- 823; Human gastric cancer cell MGC-803; TGF-β/Smad; Cell migration; Cell invasion
胃癌是全球最常見(jiàn)的消化道惡性腫瘤之一,其發(fā)病率和病死率在惡性腫瘤疾病中位居前列[1]。Lancet發(fā)布的2000-2014年全球癌癥生存率變化趨勢(shì)監(jiān)測(cè)研究報(bào)告顯示,我國(guó)胃癌的5年生存率僅為35.9%,明顯低于韓國(guó)(68.9%)、日本(60.3%)等發(fā)達(dá)國(guó)家[2]。由于胃癌的早期臨床癥狀不明顯,當(dāng)確診時(shí)多數(shù)已為中、晚期并伴有遠(yuǎn)處轉(zhuǎn)移[3]。雖然有研究表明,腹腔鏡微創(chuàng)切除術(shù)結(jié)合亞葉酸鈣、奧沙利鉑、氟尿嘧啶新輔助化療方案用于進(jìn)展期胃癌具有顯著療效,但患者的遠(yuǎn)期存活率仍然很低,而胃癌細(xì)胞向鄰近器官侵襲和遠(yuǎn)處轉(zhuǎn)移是影響胃癌患者生存期的主要因素之一[4-5]。目前轉(zhuǎn)移性胃癌的治療方式主要是以手術(shù)和放化療為主,但手術(shù)清除率低、放化療副作用大一直影響著轉(zhuǎn)移性胃癌的治療效果[6]。因此,尋找新的轉(zhuǎn)移性胃癌的治療方式已成為亟待解決的醫(yī)學(xué)問(wèn)題。
伊維菌素(Ivermectin)是在日本Kitasato研究所發(fā)現(xiàn)由放線菌阿維鏈霉菌發(fā)酵產(chǎn)生的16元大環(huán)內(nèi)酯化合物,屬于阿維菌素類,是新型抗寄生蟲(chóng)藥,還廣泛用于農(nóng)業(yè)、獸醫(yī)和水產(chǎn)養(yǎng)殖等行業(yè),具有高效、廣譜、低毒等特點(diǎn)[7-9]。有研究表明,伊維菌素可作為線粒體功能障礙和氧化損傷的誘導(dǎo)物從而具有抑制腎癌細(xì)胞生長(zhǎng)的作用[10],也能夠誘導(dǎo)乳腺癌細(xì)胞自噬增加進(jìn)而抑制細(xì)胞的生長(zhǎng)[11],還可以作為腫瘤細(xì)胞多藥耐藥的抑制劑[12]。由此可見(jiàn),伊維菌素不僅有望作為抗腫瘤藥物在臨床上推廣應(yīng)用,還可作為“老藥新用”節(jié)約抗腫瘤新藥的研發(fā)成本。上皮-間質(zhì)轉(zhuǎn)化(Epithelial mesenchymal transitions,EMT)是腫瘤細(xì)胞向周?chē)?rùn)和遠(yuǎn)處轉(zhuǎn)移的重要機(jī)制,當(dāng)腫瘤發(fā)生EMT后,腫瘤細(xì)胞間黏附能力下降,浸潤(rùn)和轉(zhuǎn)移能力增強(qiáng),從而突破基底膜侵入腫瘤周?chē)M織或進(jìn)入血液循環(huán)向遠(yuǎn)處轉(zhuǎn)移[13]。已有多項(xiàng)研究表明,EMT與結(jié)腸癌、胃癌、肺癌細(xì)胞的轉(zhuǎn)移和侵襲密切相關(guān)[14-16]。因此,本文結(jié)合國(guó)內(nèi)外的研究現(xiàn)狀,探討伊維菌素是否能夠抑制人胃癌細(xì)胞BGC-823、MGC-803的遷移和侵襲以及其作用機(jī)制,以期為伊維菌素的合理應(yīng)用提供參考。
1 材料
1.1 儀器
3111二氧化碳培養(yǎng)箱(美國(guó)Thermo 公司);BX43正置熒光顯微鏡(日本Olympus公司);SW-CJ-2D 超凈工作臺(tái)(蘇州凈化設(shè)備有限公司);SpectraMax plus384全波長(zhǎng)酶標(biāo)儀(美國(guó)MD公司);TGL-16M臺(tái)式高速冷凍離心機(jī)(湖南湘儀實(shí)驗(yàn)室儀器開(kāi)發(fā)有限公司);TDZ6B-WS臺(tái)式低速離心機(jī)(上海盧湘儀離心機(jī)儀器有限公司);ChemiDoc XRS+System凝膠成像儀和 Mini-Protein Tetra System電泳轉(zhuǎn)印系統(tǒng)(美國(guó)Bio-Rad公司)。
1.2 藥品與試劑
伊維菌素對(duì)照品(上海麥克林生化科技有限公司,批號(hào):I854556,純度:≥98%);RPMI-1640培養(yǎng)基、0.25% 胰蛋白酶-乙二胺四乙酸(Trypsin-EDTA)、青鏈雙抗、胎牛血清(FBS)均購(gòu)于美國(guó)Gibco公司;MTT試劑盒(批號(hào):022817170401)、二辛可寧酸(BCA)蛋白濃度測(cè)定試劑盒(批號(hào):112416170410)均購(gòu)于上海碧云天生物技術(shù)有限公司;Transwell小室和基質(zhì)膠均購(gòu)自美國(guó)Corning公司;兔抗E-鈣黏蛋白(E-cadherin)、神經(jīng)鈣黏附蛋白(N-cadherin)、波形蛋白(Vimentin)、編碼鋅指蛋白轉(zhuǎn)錄因子(Snail)、1型轉(zhuǎn)化生長(zhǎng)因子β(TGF-β1)、轉(zhuǎn)化生長(zhǎng)因子β受體(TGF-βR)、Smad2、Smad3、β-肌動(dòng)蛋白(β-actin)單克隆抗體和山羊抗兔免疫球蛋白G(IgG)抗體均購(gòu)自美國(guó)Abcam公司。
1.3 細(xì)胞
人胃癌細(xì)胞BGC-823、MGC-803均購(gòu)自中國(guó)科學(xué)院上海細(xì)胞庫(kù)。
2 方法
2.1 MTT法檢測(cè)胃癌細(xì)胞抑制率
選取處于對(duì)數(shù)生長(zhǎng)期的BGC-823、MGC-803細(xì)胞,0.25%胰蛋白酶消化后,用含10% FBS的RPMI-1640完全培養(yǎng)基懸浮制成單細(xì)胞懸液,計(jì)數(shù)后調(diào)整細(xì)胞密度,按每孔 5×103個(gè)/100 μL接種于96孔板,待細(xì)胞貼壁后,加入伊維菌素濃度分別為2.5、5、10、20、40 μmol/L的含0.67‰二甲基亞砜(DMSO)的磷酸鹽緩沖液(PBS)(后文均稱為伊維菌素溶液),同時(shí)設(shè)置對(duì)照組加入含0.67‰ DMSO的PBS(由于DMSO含量極少,后文均稱為PBS),每組設(shè)5個(gè)復(fù)孔,置于37 ℃、5% CO2培養(yǎng)箱中培養(yǎng)24 h,于終止培養(yǎng)前4 h加入10 μL MTT(5 mg/mL),繼續(xù)37 ℃孵育4 h,棄去培養(yǎng)液,每孔加入 150 μL DMSO,用全波長(zhǎng)酶標(biāo)儀在570 nm下測(cè)定吸光度(A值),計(jì)算細(xì)胞抑制率(%)=1-給藥組A值/對(duì)照組A值×100%。
2.2 Transwell小室試驗(yàn)檢測(cè)細(xì)胞的遷移和侵襲
2.2.1 遷移 選取處于對(duì)數(shù)生長(zhǎng)期的BGC-823、MGC-803細(xì)胞,0.25%胰蛋白酶消化細(xì)胞,用PBS洗2遍,無(wú)血清的RPMI-1640培養(yǎng)基重懸,調(diào)整細(xì)胞密度至5×105 mL-1。上室均勻加入200 μL細(xì)胞懸液,試驗(yàn)組再加入伊維菌素溶液5 μmol/L,對(duì)照組加入相應(yīng)體積的PBS;下室加入含10% FBS的RPMI-1640培養(yǎng)基600 μL,每組設(shè)5個(gè)復(fù)孔,置于37 ℃、5% CO2培養(yǎng)箱中培養(yǎng)24 h,取出上室,用棉簽擦去上室細(xì)胞,PBS漂洗后用多聚甲醛固定15 min,棄固定液,0.1%結(jié)晶紫染液染色10 min,PBS洗3遍,每次10 min,顯微鏡下攝片并計(jì)數(shù)結(jié)晶紫染色的細(xì)胞遷移數(shù)。
2.2.2 侵襲 將Transwell 小室置于24孔板內(nèi),每孔鋪基質(zhì)膠50 μL,再按“2.2.1”項(xiàng)下條件加入細(xì)胞和藥液,每組設(shè)5個(gè)復(fù)孔,置于37 ℃、5% CO2培養(yǎng)箱中培養(yǎng)24 h后,刮除上室中的基質(zhì)膠和細(xì)胞,按“2.2.1”項(xiàng)下方法固定、染色,顯微鏡下攝片并計(jì)數(shù)結(jié)晶紫染色的細(xì)胞侵襲數(shù)。
2.3 Western blot法檢測(cè)細(xì)胞中E-cadherin、N-cadherin、Vimentin、Snail、TGF-β1、TGF-βR、Smad2、Smad3蛋白的表達(dá)
選取處于對(duì)數(shù)生長(zhǎng)期的BGC-823、MGC-803細(xì)胞,按1×105個(gè)/孔接種于6孔板,待細(xì)胞貼壁后分別給予伊維菌素5、10 μmol/L(伊維菌素低、高濃度組)以及PBS(對(duì)照組),置于37 ℃、5% CO2培養(yǎng)箱中培養(yǎng)24 h后,提取總蛋白,BCA 蛋白定量試劑盒定量分析蛋白濃度,加入5×十二烷基硫酸鈉(SDS)加樣緩沖液混合,95%變性10 min,SDS-聚丙烯酰胺凝膠電泳(PAGE)凝膠電泳,轉(zhuǎn)膜,5%脫脂奶粉封閉2 h,分別加入EMT標(biāo)志蛋白抗體[兔抗E-cadherin(1 ∶ 1 000)、N-cadherin(1 ∶ 1 000)、Vimentin(1 ∶ 1 000)、Snail(1 ∶ 1 000)單克隆抗體]、TGF-β/Smad通路蛋白抗體[TGF-β1(1 ∶ 1 000)、TGF-βR(1 ∶ 1 000)、Smad2(1 ∶ 1 000)、Smad3(1 ∶ 1 000)單克隆抗體]和內(nèi)參抗體[β-actin(1 ∶ 1 000)單克隆抗體],4 ℃孵育過(guò)夜,洗膜后按 1 ∶ 2 000 加山羊抗兔IgG抗體,室溫孵育2 h,洗膜,采用增強(qiáng)化學(xué)發(fā)光試劑盒曝光,Quantity one圖像分析軟件分析目的條帶和內(nèi)參條帶的A值,計(jì)算相對(duì)表達(dá)量。試驗(yàn)重復(fù)3次。
2.4 統(tǒng)計(jì)學(xué)方法
細(xì)胞遷移和侵襲數(shù)量用ImagePro Plus軟件進(jìn)行計(jì)數(shù),蛋白表達(dá)的灰度值用Image J軟件測(cè)定,統(tǒng)計(jì)圖用GraphPad Prism 6軟件制作,數(shù)據(jù)結(jié)果用 x±s表示。采用SPSS 21.0軟件進(jìn)行統(tǒng)計(jì)分析,組間差異采用單因素方差分析和Student’s t檢驗(yàn),P<0.05 表示差異有統(tǒng)計(jì)學(xué)意義。
3 結(jié)果
3.1 細(xì)胞抑制率
與對(duì)照組比較,2.5、5、10、20、40 μmol/L的伊維菌素對(duì)BGC-823細(xì)胞的抑制率分別為0.12±0.04、0.25±0.03、0.34±0.06、0.43±0.03、0.55±0.04,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05);對(duì)MGC-803細(xì)胞的抑制率分別為0.09±0.03、0.24±0.04、0.43±0.07、0.62±0.04、0.79±0.03,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)。結(jié)果表明,伊維菌素對(duì)BGC-823、MGC-803細(xì)胞的生長(zhǎng)均有明顯的抑制作用,且伊維菌素濃度越高、抑制作用越強(qiáng),呈明顯的量效關(guān)系。伊維菌素對(duì)BGC-823、MGC-803細(xì)胞抑制率的影響見(jiàn)圖1。
3.2 遷移和侵襲
3.2.1 遷移 試驗(yàn)組BGC-823、MGC-803細(xì)胞的遷移數(shù)分別為(49.8±17.0)、(37.0±8.1)個(gè)(n=5),均明顯少于對(duì)照組的(125.2±12.5)、(83.4±13.2)個(gè)(n=5),差異均有統(tǒng)計(jì)學(xué)意義(P<0.01或P<0.001)。2組BGC-823、MGC-803細(xì)胞遷移的顯微鏡圖見(jiàn)圖2,測(cè)定結(jié)果見(jiàn)圖3。
3.2.2 侵襲 試驗(yàn)組BGC-823、MGC-803細(xì)胞的侵襲數(shù)分別為(51.4±15.6)、(34.0±6.5)個(gè)(n=5),明顯少于對(duì)照組的(130.0±18.0)、(67.0±8.5)個(gè)(n=5),差異均有統(tǒng)計(jì)學(xué)意義(P<0.001)。2組BGC-823、MGC-803細(xì)胞侵襲的顯微鏡圖見(jiàn)圖4,測(cè)定結(jié)果見(jiàn)圖5。
3.3 EMT標(biāo)志蛋白表達(dá)
與對(duì)照組比較,伊維菌素低、高濃度組BGC-823、MGC-803細(xì)胞中E-cadherin蛋白的表達(dá)明顯升高(P<0.05或P<0.01),N-cadherin、Vimentin、Snail蛋白表達(dá)明顯降低(P<0.05或P<0.01或P<0.001)。表明伊維菌素可能是通過(guò)影響胃癌細(xì)胞EMT過(guò)程從而抑制細(xì)胞的遷移和侵襲。3組BGC-823、MGC-803細(xì)胞中E-cadherin、N-cadherin、Vimentin、Snail蛋白表達(dá)的電泳圖見(jiàn)圖6,測(cè)定結(jié)果見(jiàn)圖7。
3.4 TGF-β/smad信號(hào)通路蛋白表達(dá)
與對(duì)照組比較,除伊維菌素低濃度組BGC-823細(xì)胞中TGF-β1和MGC-803細(xì)胞中Smad3外,伊維菌素低、高濃度組BGC-823、MGC-803細(xì)胞中TGF-β1、TGF-βR、Smad2、Smad3蛋白的表達(dá)均明顯降低(P<0.05或P<0.01)。表明伊維菌素可能通過(guò)明顯抑制TGF-β/smad信號(hào)通路活性,從而抑制EMT過(guò)程,進(jìn)而減弱胃癌細(xì)胞的遷移和侵襲能力。3組BGC-823、MGC-803細(xì)胞中TGF-β1、TGF-βR、Smad2、Smad3蛋白表達(dá)的電泳圖見(jiàn)圖8,測(cè)定結(jié)果見(jiàn)圖9。
4 討論
近年來(lái)多項(xiàng)研究報(bào)告表明,“老藥新用”也是發(fā)展藥物抗腫瘤治療的新途徑之一,例如阿司匹林和二甲雙胍能明顯提高結(jié)直腸癌患者的生存率[17-18]。因老藥具有眾所周知的藥動(dòng)學(xué)和藥效學(xué)概況,所以與新研發(fā)的抗腫瘤藥物相比,老藥具有研究成本低、風(fēng)險(xiǎn)小、成功率高等優(yōu)勢(shì)。本研究結(jié)果發(fā)現(xiàn),抗寄生蟲(chóng)藥伊維菌素也可明顯抑制BGC-823、MGC-803細(xì)胞的生長(zhǎng),明顯減弱其遷移和侵襲能力,這與國(guó)外Nambara S等[19]學(xué)者報(bào)道一致,提示伊維菌素具有發(fā)展為抗腫瘤藥物的潛力。
EMT對(duì)腫瘤的遷移和侵襲起著重要的調(diào)節(jié)作用,在EMT過(guò)程中皮標(biāo)志物E-cadherin的表達(dá)會(huì)降低,而間充質(zhì)標(biāo)志物N-cadherin、Vimentin、Snail蛋白的表達(dá)通常會(huì)增強(qiáng)[20-21]。當(dāng)由上皮組織衍生出來(lái)的腫瘤組織中E-cadherin的表達(dá)降低或者是缺失時(shí)(被認(rèn)為是EMT的關(guān)鍵步驟),E-cadherin向N-cadherin轉(zhuǎn)化并促進(jìn)其表達(dá),形態(tài)上由上皮細(xì)胞轉(zhuǎn)化為具有間充質(zhì)特征,這時(shí)具有間質(zhì)細(xì)胞表型的上皮細(xì)胞活動(dòng)性更強(qiáng)且具有較低的極性,進(jìn)而增強(qiáng)腫瘤細(xì)胞的能動(dòng)性和侵襲性[22-23]。因此當(dāng)靶向EMT抗腫瘤藥物干預(yù)后,腫瘤細(xì)胞內(nèi)常伴隨著E-cadherin、N-cadherin、Vimentin、Snail蛋白的表達(dá)異常。本研究結(jié)果發(fā)現(xiàn),伊維菌素可升高E-cadherin蛋白的表達(dá),降低N-cadherin、Vimentin、Snail蛋白的表達(dá),提示伊維菌素可通過(guò)調(diào)節(jié)EMT 過(guò)程從而抑制 BGC-823、MGC- 803細(xì)胞的遷移和侵襲能力。
TGF-β對(duì)腫瘤細(xì)胞有著雙重調(diào)節(jié)作用,在腫瘤發(fā)生早期,TGF-β可以促進(jìn)腫瘤細(xì)胞凋亡抑制其生長(zhǎng),但在晚期TGF-β可以促進(jìn)腫瘤細(xì)胞轉(zhuǎn)移,因此TGF-β也是調(diào)節(jié)EMT過(guò)程的重要細(xì)胞因子[24-25]。Smads蛋白是TGF-β細(xì)胞內(nèi)信號(hào)傳導(dǎo)的重要蛋白,是將信號(hào)由胞漿傳導(dǎo)至細(xì)胞核的承接者。轉(zhuǎn)錄因子Smads家族中Smad2、Smad3是TGF-β轉(zhuǎn)導(dǎo)通路下游關(guān)鍵的蛋白分子,屬受體激活型,活化的TGF-β1與TGF-βR結(jié)合后活化Smad2、Smad3的磷酸化,與Smad4結(jié)合形成聚合物進(jìn)入細(xì)胞核調(diào)節(jié)靶基因轉(zhuǎn)錄[26]。有研究表明,TGF-β/Smad信號(hào)通路可通過(guò)調(diào)控EMT過(guò)程,對(duì)胰腺癌細(xì)胞和肝癌細(xì)胞的轉(zhuǎn)移和侵襲發(fā)揮正性作用[27-28]。因此筆者也推測(cè)伊維菌素可以影響TGF-β/Smad信號(hào)通路的表達(dá)。本研究結(jié)果表明,伊維菌素作用胃癌細(xì)胞24 h后,TGF-β1、TGF-βR表達(dá)明顯降低,轉(zhuǎn)錄因子Smad2、Smad3的表達(dá)也降低,提示伊維菌素是通過(guò)抑制TGF-β/Smad的活性影響EMT過(guò)程,從而抑制BGC-823、MGC-803細(xì)胞的遷移和侵襲作用。
綜上所述,伊維菌素具有抑制BGC-823、MGC-803細(xì)胞的遷移和侵襲作用,其作用機(jī)制可能為抑制TGF-β/Smad的活性從而影響EMT過(guò)程。但是其如何影響TGF-β/Smad信號(hào)通路調(diào)控EMT的作用機(jī)制尚需進(jìn)一步研究。
參考文獻(xiàn)
[ 1 ] SIEGEL RL,MILLER KD,JEMAL A. Cancer statistics,2017[J]. CA Cancer J Clin,2017,67(1):7-30.
[ 2 ] ALLEMANII C,MATSUDA T,DI CV,et al. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3):analysis of individual records for 37513025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries[J]. Lancet,2018,391(10125):1023-1075.
[ 3 ] GAMBARDELLA V,CERVANTES A. Precision medicine in the adjuvant treatment of gastric cancer[J]. Lancet Oncol,2018,19(5):583-584.
[ 4 ] SHIDA A,MITSUMORI N,NIMURA H,et al. Prediction of lymph node metastasis and sentinel node navigation surgery for patients with early-stage gastric cancer[J]. World J Gastroenterol,2016,22(33):7431-7439.
[ 5 ] 楊立平,李曉峰,耿興隆,等.進(jìn)展期胃癌患者腹腔鏡微創(chuàng)切除術(shù)前應(yīng)用新輔助化療的效果分析[J].中國(guó)藥房,2017,28(27):3797-3800.
[ 6 ] LIAO X,CHAUDHARY P,QIU G,et al. The role of propranolol as a radiosensitizer in gastric cancer treatment[J].Drug Des Dev Ther,2018.DOI:10.2147/DDDT.S160865.
[ 7 ] OTTESEN EA,CAMPBELL W. Ivermectin in human me- dicine[J]. J Antimicrob Chemother,1994,34(2):195-203.
[ 8 ] CRUMP A. Ivermectin:enigmatic multifaceted ‘wonder’ drug continues to surprise and exceed expectations[J]. J Antibiot,2017,70(5):495-505.
[ 9 ] BAI SH,OGBOUME S. Eco-toxicological effects of the avermectin family with a focus on abamectin and ivermectin[J]. Chemosphere,2016.DOI:10.1016/j.chemosphere. 2016.03.113.
[10] ZHU M,LI Y,ZHOU Z. Antibiotic ivermectin preferentially targets renal cancer through inducing mitochondrial dysfunction and oxidative damage[J]. Biochem Bioph Res Co,2017,492(3):373-378.
[11] DOU Q,CHEN HN,WANG K,et al. Ivermectin induces cytostatic autophagy by blocking the PAK1/Akt axis in breast cancer[J]. Cancer Res,2016,76(15):4457-4469.
[12] JUAREZ M,SCHCOLNIK-CABRERA A,DUENASGO- NZALEZ A. The multitargeted drug ivermectin:from an antiparasitic agent to a repositioned cancer drug[J]. Am J Cancer Res,2018,8(2):317-331.
[13] SAITOH M. Involvement of partial EMT in cancer progression[J]. J Biochem,2018,164(4):257-264.
[14] NING Y,ZHANG W,HANNA DL,et al. Clinical relevance of EMT and stem-like gene expression in circulating tumor cells of metastatic colorectal cancer patients[J].Pharmacogenomics J,2018,18(1):29-34.
[15] ZHOU Q,ZHENG X,CHEN L,et al. Smad2/3/4 pathway contributes to TGF-β-induced mirna-181b expression to promote gastric cancer metastasis by targeting Timp3[J]. Cell Physiol Biochem,2016,39(2):453-466.
[16] DING NH,ZHANG L,XIAO Z,et al. NEK4 kinase regulates EMT to promote lung cancer metastasis[J]. Journal of Cellular and Molecular Medicine,2018,22(12):5877-5887.
[17] GARCIA-ALBENIZ X,CHAN AT. Aspirin for the prevention of colorectal cancer[J]. Progress in Chemistry,2013,25(4):461-472.
[18] XIAO Y,ZHENG L,MEI Z,et al. The impact of metformin use on survival in prostate cancer:a systematic review and meta-analysis[J]. Oncotarget,2017,8(59):100449-100458.
[19] NAMBARA S,MASUDA T,NISHIO M,et al. Antitumor effects of the antiparasitic agent ivermectin via inhibition of yes-associated protein 1 expression in gastric cancer[J]. Oncotarget,2017,8(64):107666-107677.
[20] PRADELLA D,NARO C,SETTE C,et al. EMT and stemness:flexible processes tuned by alternative splicing in development and cancer progression[J]. Molecular Cancer,2017.DOI:10.1186/s12943-016-0579-2.
[21] BANYARD J,BIELENBERG DR. The role of EMT and MET in cancer dissemination[J]. Connective Tissue Research,2014,56(5):403-413.
[22] KUPHAL S,BOSSERHOFF AK. Influence of the cytoplasmic domain of E-cadherin on endogenous N-cadherin expression in malignant melanoma[J]. Oncogene,2005,25(2):248-259.
[23] ONDER TT,GUPTA PB,MANI SA,et al. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways[J]. Cancer Research,2008,68(10):3645-3654.
[24] NEUZILLET C,TIJERAS-RABALLAND A,COHEN R,et al. Targeting the TGF-β pathway for cancer therapy[J].Pharmacology & Therapeutics,2015.DOI:10.1016/j.pharmthera.2014.11.001.
[25] LOVICU FJ,SHIN EH,MCAVOY JW. Fibrosis in the lens. Sprouty regulation of TGF-β signaling prevents lens EMT leading to cataract[J]. Experimental Eye Research,2016.DOI:10.1016/j.exer.2015.02.004.
[26] 倪鑫. PCGEM1通過(guò)TGF-β/smad通路調(diào)節(jié)胰腺癌細(xì)胞增殖、遷移和侵襲[D]. 南京:江蘇大學(xué),2016.
[27] THAKUR AK,NIGRI J,LAC S,et al. TAp73 loss favors Smad-independent TGF-β signaling that drives EMT in pancreatic ductal adenocarcinoma[J]. Cell Death & Differentiation,2016,23(8):1358-1370.
[28] YI EY,PARK SY,JUNG SY,et al. Mitochondrial dysfunction induces EMT through the TGF-β/Smad/Snail signaling pathway in Hep3B hepatocellular carcinoma cells[J]. Int J Oncol,2015,47(5):1845-1853.
(收稿日期:2018-09-16 修回日期:2019-01-14)
(編輯:鄒麗娟)