• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    國產(chǎn)驢蹄草的細胞地理學研究(英文)

    2019-09-10 07:22:44王廣艷周寧錢敏張嬋楊永平
    廣西植物 2019年9期

    王廣艷 周寧 錢敏 張嬋 楊永平

    摘 要: ?為探討國產(chǎn)毛茛科(Ranunculaceae)驢蹄草屬(Caltha)兩種植物的演化,該文利用傳統(tǒng)染色體壓片技術和流式細胞術,并結合前人染色體研究結果,對我國驢蹄草23個居群和花葶驢蹄草10個居群進行了細胞學研究。結果表明:驢蹄草是由四倍體(2n=4x=32)、六倍體(2n=6x=48)和八倍體(2n=8x=64)構成的多倍體復合群,花葶驢蹄草具有四倍體(2n=4x=32)和八倍體(2n=8x=64)兩種倍性水平。驢蹄草和花葶驢蹄草均是四倍體較為常見,目前尚未見有二倍體報道。由于驢蹄草和花葶驢蹄草大部分居群采自中國青藏高原地區(qū),可能在冰期時存在古二倍體,其適應性較弱,逐漸被其他的倍性取代,這是由于不同細胞型對環(huán)境適應性的結果。驢蹄草可能存在兩條進化路線:一條是從甘肅到達云南;另一條是從西藏到達云南。前期分子系統(tǒng)學研究顯示花葶驢蹄草與驢蹄草的親緣關系較近,該研究結果中花葶驢蹄草染色體比驢蹄草要小,花葶驢蹄草可能比驢蹄草相對進化。目前花葶驢蹄草只有10個居群,還需進一步增加居群量來解析其演化路線。

    關鍵詞: 細胞地理, 驢蹄草, 花葶驢蹄草, 多倍化

    Polyploidy, the duplication of entire sets of chromosomes, is a key process in the evolution and diversification of vascular plants (Hegarty et al., 2013; Otto & Whitton, 2000). Previous studies have found that polyploids are better to adapt to stress or novel niches than their diploid progenitors (Ehrendorfer, 1980; Grant, 1981; Levin, 2004; Morton, 1993; Otto & Whitton, 2000; Stebbins, 1985). Furthermore, intraspecific variation in ploidy level is frequently observed in angiosperms (Kolárˇ et al., 2015; Wood et al., 2009). It is known that polyploidization is one of the few speciation processes that may operate in sympatry, due to the possible immediate emergence of reproductive isolation between individuals with different ploidy levels (Husband & Sabara, 2003). Therefore, the geographic distribution of cytotypes could provide valuable information about the origin and maintenance of different ploidy levels (Baack, 2004; Kolárˇ et al., 2009; Rieseberg & Willis, 2007; Segraves et al., 1999).

    The perennial herb Caltha palustris grows from 600-4 000 m in mountain regions, valleys, marshlands, forests, streams, and on grassy slopes in the north temperate region (Wang et al., 2001). After C. palustris was first described by Linnaeus (1753), great variability of some morphological characters was described in this species, such as plant size, leaf shape and size, leaf margins, flowers, mature follicles, rooting at nodes, tepal number and color, and seed color and symmetry (Smit, 1973; Kumar & Singhal, 2008). It is previously shown that morphological diversity is a product of environmental conditions (Blagojevic et al., 2013). The current study primarily focused on cytotype distribution in the C. palustris complex, which includes tetraploids (Wang et al., 2013; Yang, 2002; Yuan & Yang, 2006), hexaploids (Parfenov & Dmitrieva, 1985; Wang et al., 2013; Yang, 2002; Yuan & Yang, 2006), and octoploids (Wang et al., 2013; Yang, 2002; Yuan & Yang, 2006) (x=8, Langlet, 1927). Furthermore, molecular phylogenetic evidence also shows that C. scaposa is sister to C. palustris (with 100% bootstrap support) (Cheng & Xie, 2014; Schuettpelz & Hoot, 2004). Caltha scaposa is endemic to SinoHimalaya, and grows from 2 800 to 4 100 m in wet parts of alpine meadows and valleys. Only two cytotypes have been detected: tetraploids (Wang et al., 2013) and octoploids (Wang et al., 2013; Yuan & Yang, 2006) (x=8, Langlet, 1927). The existence of different cytotypes in C. palustris and C. scaposa may indicate strong spatial segregation. As a result of inche differentiation (Ehrendorfer, 1980; Lewis, 1980), reproductive exclusion (Levin, 1975; VanDijk & BakxSchotman, 1997), and historical factors (AnCˇev, 2006), these distinct cytotypes may experience differential reproductive success and occurrence of particular evolutionary constraints or demographic stochasticity (MunozPajares et al., 2017).

    By conducting a novel analysis of previous cytotype distribution data, we herein present a cytogeographical study of C. palustris and C. scaposa in China. Our aims in this study were as follows: (1) To assess the geographic distribution of different cytotypes in C. palustris and C. scaposa to propose a scenario of dispersal events; (2) To determine the major driving force of speciation in C. palustris and C. scaposa.

    1 Materials and Methods

    1.1 Taxon sampling

    In this study, we sampled six C. palustris accessions and four C. scaposa accessions (Table 1). In total, 15-20 plants from each population were sampled. Geographical coordinates were recorded in the field using a GPS instrument. Living plants were cultivated in a greenhouse, and voucher specimens were deposited in the herbarium of Kunming Institute of Botany, Chinese Academy of Sciences. We performed cytogeographical analysis using these accessions and previously reported data (Yang, 2002; Yuan & Yang, 2006; Table 2).

    1.2 Chromosome number

    Root tips were collected from each individual and pretreated with a solution of 0.002 mol·L1 8hydroxyquinoline at 20-21 ℃ for 4-5 h. After fixation for 50 min in Carnoy’s solution (ethanol∶acetic acid=3∶1) at 4 ℃, the root tips were dissociated in a mixture of 1 N HCl and 45% acetic acid (1∶1) at 60 ℃ for 30 s, stained with 1% acetic orcein for 2-3 h and squashed on a glass slide (Wang et al., 2013). Chromosome numbers were determined for each accession from at least 50 cells of at least two seedlings by mitotic observations. Mitotic interphase nuclei and prophase chromosomes preparations followed Tanaka (1971, 1977, 1987), and the designation of the centromeric position followed Levan et al. (1964). Karyotype asymmetry was classified according to Stebbins (1971).

    1.3 Flow cytometry and DNA ploidy level determination

    Propidium iodide flow cytometry (FCM) analysis was performed using fresh leaf samples from our greenhouse. Approximately 0.5 cm2 of leaf material was finely diced using a new razor blade in a Petri dish that contained 1 500-2 000 μL of WPB nuclear solution buffer (0.2 mol·L1 TrisHCl, 4 mmol·L1 MgCl·6H2O, 2 mmol·L1 EDTA Na2·2H2O, 86 mmol·L1 NaCl, 10 mmol·L1 Na2S2O5, 1% PVP10, 1% [v/v] Triton X100, pH 7.5) (Tian et al., 2011). The nuclear suspension was then filtered through disposable filters (30 μm) to remove cell debris, and stained with 150 μL propidium iodide (50 μg·mL1; including RNAse [500 μg·mL1]) for 10 min. Samples were analyzed on a CyFlow Space (Partec, Münster, Germany) flow cytometer equipped with a blue laser operating at 488 nm. At least 5 000 nuclei were measured for each sample. FlowMax ver. 2.82 was used to analyze the resulting histograms. By comparison with a known ploidy level (4x; yyp04), we estimated the ploidy levels of other samples based on the histograms. The ploidy level of each sample was calculated as described by Tian et al., 2011:

    Ploidy level of sample=(mean of sample peak/mean of standard peak) × ploidy level of the standard species.

    2 Results and Analysis

    2.1 Chromosome counts and DNA ploidy level determination

    In this study, ploidy levels included 13 4x C. palustris, one 6x C. palustris, nine 8x C. palustris, seven 4xC. scaposa, and three 8x C. scaposa accessions (Table 2); These specimens were collected from Gansu (one accession), Yunnan (16 accessions), Sichuan (four accessions), Tibet (one accession), Guizhou (one accession), and Qinghai (one accession). Metaphase chromosomes of eight accessions are shown in Fig. 1. We successfully estimated the ploidy levels of two C. palustris accessions (yyp09 and yyp10) by FCM at 4x and 8x (Fig. 2).

    2.2 Cytogeography

    The ploidy distribution of C. palustris and C. scaposa was revealed based on currently available data. All C. palustris accessions were singleploidy, although our sample was very limited in some accessions; however, secondary constriction chromosomes were observed in three C. palustris accessions (Table 2). The tetraploid cytotype was more common than the other cytotypes (hexaploids and octoploids). Moreover, the tetraploid karyotype also exhibited obvious variation among accessions. The samples from Diqing Tibetan Autonomous Prefecture (Yunnan) included tetraploid, hexaploid, and octoploid cytotypes. Two cytotypes (tetraploids and octoploids) were found in Lijiang (Yunnan). Only one cytotype existed in Tewo (Gansu), Dali (Yunnan), Gongshan (Yunnan), Hongyuan (Sichuan), Nayong (Guizhou), and Zuogong (Tibet). All C. scaposa accessions were singleploidy, and the tetraploid cytotype was also common. Two cytotypes (tetraploids and octoploids) existed in Sichuan, and one cytotype each in Tibet, Qinghai, and Yunnan. In addition, only one contact areas between different cytotypes were detected. In the Xiaozhongdian accession, a region of overlap between the ranges of 4x C. palustris and 8x C. scaposa was observed.

    3 Discussion

    FCM offers a rapid and precise method for identifying taxa of different ploidy levels, enabling researchers to map the finescale distribution of ploidies within individual populations (Suda et al., 2004). FCM has been used in ploidy analysis, e.g., in Ranunculus (Ranunculaceae) (Cires et al., 2010) and C. leptosepala s.l. (Wefferling et al., 2017). In our study, ploidy levels of two accessions (yyp09 and yyp10) were estimated by FCM. The current study revealed that C. palustris may be viewed as a polyploid complex, which presents clear patterns of cytotype distribution. Polyploidy is a prevalent phenomenon in the chromosomal evolution of extant species and genera (Otto & Whitton, 2000), and it may have contributed to the origin of flowering plants (De Bodt et al., 2005). As a result, plant scientists have recognized that polyploid lineages may have complex relationships with each other and their diploid ancestors, making application of species concepts problematic (Soltis et al., 2007, 2009).

    C. palustris polyploid complex showed a varied cytotype distribution. No diploids and few hexaploids were found in this study, but tetraploid and octoploid cytotypes were common and widespread. Similarly, in C. scaposa, tetraploids and octoploids were common, whereas diploids and hexaploids were not found. Such distribution patterns are often explained by cytotype adaptive differences to the underlying heterogeneity of environmental factors (Lewis, 1980). All accessions except for the Guizhou and Gansu accessions were from extreme habitats, like alpine mountains in the QinghaiTibetan Plateau. Polyploidy is common in plants from cold climates with harsh and stressful environments (Grant, 1981; Lve & Lve, 1949, 1967). Therefore, a relatively high frequency of polyploidy was observed in this species. Ancestral diploids may be present in this region during glacial periods and colonized most regions at the end of the glaciation cycles. However, other ploidy levels could gradually replace diploids, because of their increased fitness in changing environment (Cui et al., 2008).

    The chromosome counts observed in the C. palustris complex indicate that ploidy changes may be important in its evolution. Chromosome counts often show obvious differences in different accessions within a particular species. Our analysis showed that the Hengduan Mountains could be better viewed as a polyploid complex of diploids, tetraploids, and hexaploids. Symmetrical karyotypes are widely accepted to be more primitive than asymmetrical ones (Stebbins, 1971). In our combined data (Table 1), the accessions from Zhongdian (Yunnan) with different types (3B, 3C), AI (11.39, 7.34, 5.96), and the secondary constrictions showed the highest asymmetric tendencies. Therefore, we speculate that two possible evolutionary trends may exist: one from Gansu to Yunnan, and the other from Tibet to Yunnan of China.

    Molecular phylogeny have shown that C. scaposa is closely related to C. palustris (Cheng & Xie, 2014; Schuettpelz & Hoot, 2004). C. scaposa cytotype distribution was determined from only ten populations; therefore, C. scaposa cytogeography could not be comprehensively analyzed. Moreover, the chromosome size of this species was smaller than that of C. palustris. The size of the chromosome is also a feature subject to evolutionary change, the direction of chromosome evolution could have a decrease trend in chromosome size (Martel et al., 2004). Therefore, smaller chromosomes may be a relatively derived evolutionary character. Consequently, in the future, additional samples need to be analyzed to better elucidate C. scaposa cytogeography.

    References:

    ANCˇEV M, 2006. Polyploidy and hybridization in Bulgarian (Brassicaceae) distribution and evolutionary role [J]. Phytol Balcan, 12: 357-366.

    BAACK EJ, 2004. Cytotype segregation on regional and microgeographic scales in snow buttercups (Ranunculus adoneus, Ranunculaceae) [J]. Amer J Bot, 91: 1783-1788.

    BLAGOJEVIC J, JOVANOVIC V, ADNADEVIC T, et al., 2013. Chromosome status of marsh marigold Caltha palustris L. (Ranunculaceae) from Serbia [J]. Genetika, 45: 793-798.

    CHENG J, XIE L, 2014. Molecular phylogeny and historical biogeography of Caltha (Ranunculaceae) based on analyses of multiple nuclear and plastid sequences [J]. J Syst Evol, 52: 51-67.

    CIRES E, CUESTA C, NGELES M, et al., 2010. Intraspecific genome size variation and morphological differentiation of Ranunculus parnassifolius (Ranunculaceae), an AlpinePyreneanCantabrian polyploid group [J]. Biol J Linn Soc, 101: 251-271.

    CUI XK, AO CQ, ZHANG Q, et al., 2008. Diploid and tetraploid distribution of Allium przewalskianum Regel. (Liliaceae) in the QinghaiTibetan Plateau and adjacent regions [J]. Caryologia, 61(2): 192-200.

    DE BODT S, MAERE S, VAN DE PEER Y, 2005. Genome duplication and the origin of angiosperms [J]. Trends Ecol Evol, 20: 591-597.

    EHRENDORFER F, 1980. Polyploidy and distribution [M]// LEWIS WH. Polyploidy: Biological Relevance: 45-60.

    GRANT V, 1981. Plant speciation [M]. 2nd. New York: Columbia University Press.

    HEGARTY MJ, COATE J, SHERMANBROYLES S, et al., 2013. Lessons from natural and artificial polyploids in higher plants [J]. Cyt Gen Res, 140: 204-225.

    HUSBAND BC, SABARA HA, 2003. Reproductive isolation between autotetraploids and their diploid progenitors in fireweed, Chamerion angustifolium (Onagraceae) [J]. New Phytol, 161: 703-713.

    KOLR F, PISOVA S, ZAVESKA E, et al., 2015. The origin of unique diversity in deglaciated areas traces of Pleistocene processes in northEuropean endemics from the Galium pusillum polyploid complex (Rubiaceae) [J]. Molec Ecol, 24: 1311-1344.

    KOLAR F, TECH M, TRAVNICEK P, et al., 2009. Towards resolving the Knautia arvensis agg. (Dipsacaceae) puzzle: primary and secondary contact zones and ploidy segregation at landscape and microgeographic scales [J]. Ann Bot, 103: 963-974.

    KUMAR P, SINGHAL VK, 2008. Cytology of Caltha palustris L. (Ranunculaceae) from cold regions of western Himalayas [J]. Cytologia, 73: 137-143.

    LANGLET O, 1927. Beitrge zur zytologie der Ranunculazeen [J]. Svensk Bot Tidskr, 21: 1-17.

    LEVAN A, FEDGA K, SANDBERG A, 1964. Nomenclature for centromeric position on chromosomes [J]. Hereditas, 52: 201-220.

    LEVIN DA, 2004. The ecological transition in speciation [J]. New phytol, 161: 91-96.

    LEVIN DA, 1975. Minority cytotype exclusion in local plant populations [J]. Taxon, 1: 35-43.

    LEWIS W, 1980. Polyploidy in species population [M]// LEWIS WH. Polyploidy, biological relevance. New York: Plenum Press: 103-144.

    LINNAEUS C, 1753. Caltha [M]// LINNAEUS C. Species plantarum: 558.

    LVE A, LVE D, 1949. The geobotanical significance of polyploidy I. Polyploidy and latitude [J]. Port Acta Biol Ser, A: 273-352.

    LVE A, LVE D, 1967. Polyploidy and altitude, Mt. Washington [J]. Biol Zent (Supple), 86: 307-312.

    MARTEL E, PONCET V, LAMY F, et al., 2004. Chromosome evolution of Pennisetum species (Poaceae): Implications of ITS phylogeny [J]. Plant Syst Evol, 249: 139-149.

    MORTON J, 1993. Chromosome numbers and polyploidy in the flora of Cameroons Mountain [J]. Opera Bot, 121: 159-172.

    MUNOZPAJARES AJ, PERFECTTI F, LOUREIRO J, et al., 2017. Niche differences may explain the geographic distribution of cytotypes in Erysimum mediohispanicum [J]. Plant Biol, 20(s1): 139-147.

    OTTO SP, WHITTON J, 2000. Polyploid incidence and evolution [J]. Ann Rev Genet, 34: 401-437.

    PARFENOV VI, DMITRIEVA SA, 1985. Kariologicheskaja differenciacija u vidov flory Belorussii iee rol, v formoobrazovanii [J]. Dokl Akad Nauk Byelorussk SSR (Minsk), 29: 544-557.

    RIESEBERG LH, WILLIS JH, 2007. Plant speciation [J]. Science, 317: 910-914.

    SCHUETTPELZ E, HOOT SB, 2004. Phylogeny and biogeography of Caltha (Ranunculaceae) based on chloroplast and nuclear DNA sequences [J]. Am J Bot, 91: 247-253.

    SEGRAVES KA, THOMPSON JN, SOLTIS PS, et al., 1999. Multiple origins of polyploidy and the geographic structure of Heuchera grossulariifolia [J]. Molec Ecol, 8: 253-262.

    SMIT GS, 1973. A revision of Caltha (Ranunculacaea) [J]. Blumea, 21: 119-150.

    SOLTIS DE, SOLTIS PS, SCHEMSKE DW, et al., 2007. Autopolyploidy in angiosperms: Have we grossly underestimated the number of species? [J] Taxon, 56: 13-30.

    SOLTIS DE, ALBERT VA, LEEBENSMACK J, et al., 2009. Polyploidy and angiosperm diversification [J]. Am J Bot, 96(1): 336-348.

    STEBBINS G, 1971. Chromosomal evolution in higher plants [M]. London: Edward Arnold.

    STEBBINS GL, 1985. Polyploidy, hybridization, and the invasion of new habitats [J]. Ann Missouri Bot Gard, 72: 824-832.

    SUDA J, MALCOVA R, ABAZID D, et al., 2004. Cytotype distribution in Empetrum (Ericaceae) at various spatial scales in the Czech Republic [J]. Folia Geobot, 39: 169-171.

    TANAKA R, 1971. Types of resting nuclei in Orchidaceae [J]. Bot Mag Tokyo, 84: 118-122.

    TANAKA R, 1977. Recent karyotype studies [M]// OGAWA K et al. Tokyo: Asakura Publisher: 293-326.

    TANAKA R, 1987. The karyotype theory and wide crossing as an example in Orchidaceae [M]// HONG DY. Plant chromosome research 1987, proceedings of the SinoJapanese symposium on plant chromosomes. Hiroshima: 1-10.

    TIAN XM, ZHOU XY, GONG N, 2011. Applications of flow cytometry in plant researchanalysis of nuclear DNA content and ploidy level in plant cells [J]. Chin Agric Sci Bull, 27: 21-27.

    VANDIJK P, BAKXSCHOTMAN T, 1997. Chloroplast DNA phylogeography and cytotype geography in autopolyploid Plantago media [J]. Molec Ecol, 6: 345-352.

    WANG GY, MENG Y, YANG YP, 2013. Karyological analyses of 33 species of the tribe Ophiopogoneae (Liliaceae) from Southwest China [J]. J Plant Res, 126: 597-604.

    WANG LY, REN C, YANG QE, 2013. Cytology of two species in the genus Caltha (Ranunculaceae) from China [J]. J Trop Subtrop Bot, 21(1): 21-28. [王龍遠, 任琛, 楊親二, 等, 2013. 國產(chǎn)毛茛科驢蹄草屬兩種植物的細胞學研究 [J]. 熱帶亞熱帶植物學報, 21(1): 21-28.]

    WANG WT, FU DZ, LI LQ, et al., 2001. Ranunculaceae, Flora Reipublicae Popularis Sinicae [M]. Beijing: Science Press: 133-438. [王文采, 傅德志, 李良千, 等, 2001. 毛茛科, 中國植物志 [M]. 北京: 科學出版社: 133-438. ]

    WEFFERLING KM, CASTRO S, LOUREIRO J, et al., 2017. Cytogeography of the subalpine marsh marigold polyploidy complex (Caltha leptosepala s. l., Ranunculaceae) [J]. Am J Bot, 104(2): 271-285.

    WOOD TE, TAKEBAYASHI N, BARKER MS, et al., 2009. The frequency of polyploid speciation in vascular plants [J]. Proc Natl Acad Sci USA, 106: 13875-13879.

    YANG Q, 2002. Cytology of the tribe Trollieae and of the tribe Cimicifugeae in the Ranunculaceae a comparative study [J]. Acta Phytotax Sin, 40: 52-65.

    YUAN Q, YANG QE, 2006. Cytology, palynology, and taxonomy of Asteropyrum and four other genera of Ranunculaceae [J]. Bot J Linn Soc, 152: 15-26.

    YUAN Q, YANG QE, 2006. Tribal relationships of Beesia, Eranthis and seven other genera of Ranunculaceae evidence from cytological characters [J]. Bot J Linn Soc, 150: 267-289.

    别揉我奶头 嗯啊视频| 97精品久久久久久久久久精品| 久久人人爽人人爽人人片va| av.在线天堂| 99久久精品一区二区三区| 国产乱来视频区| 午夜亚洲福利在线播放| 日韩不卡一区二区三区视频在线| 欧美亚洲 丝袜 人妻 在线| 精品熟女少妇av免费看| av.在线天堂| 欧美激情久久久久久爽电影| 国产淫语在线视频| 国产一区有黄有色的免费视频| 狠狠精品人妻久久久久久综合| 欧美丝袜亚洲另类| 亚洲精品成人av观看孕妇| 色视频www国产| 亚洲av免费高清在线观看| 舔av片在线| 日韩制服骚丝袜av| 国产精品国产三级专区第一集| 欧美xxⅹ黑人| 高清视频免费观看一区二区| 最近2019中文字幕mv第一页| 男男h啪啪无遮挡| 九色成人免费人妻av| 亚洲av中文av极速乱| 国产成人精品久久久久久| 久久女婷五月综合色啪小说 | 一级毛片黄色毛片免费观看视频| 99热6这里只有精品| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 夫妻性生交免费视频一级片| 18禁动态无遮挡网站| 日韩强制内射视频| 亚洲欧美一区二区三区黑人 | 女人久久www免费人成看片| 欧美老熟妇乱子伦牲交| 久热这里只有精品99| 亚洲人成网站高清观看| 精品亚洲乱码少妇综合久久| 国产大屁股一区二区在线视频| 国产成人免费观看mmmm| 三级国产精品欧美在线观看| 人人妻人人爽人人添夜夜欢视频 | 晚上一个人看的免费电影| 久久6这里有精品| 久久人人爽人人爽人人片va| 欧美日韩精品成人综合77777| 你懂的网址亚洲精品在线观看| 波多野结衣巨乳人妻| 丝瓜视频免费看黄片| 亚洲国产色片| 天天躁日日操中文字幕| 少妇的逼好多水| 黄片无遮挡物在线观看| 人妻 亚洲 视频| 久久久久久久久久久丰满| 99久久精品国产国产毛片| 爱豆传媒免费全集在线观看| 免费观看av网站的网址| 女人久久www免费人成看片| 看十八女毛片水多多多| 三级经典国产精品| 大陆偷拍与自拍| 国产精品久久久久久久电影| 欧美精品一区二区大全| 国产白丝娇喘喷水9色精品| 日韩在线高清观看一区二区三区| 亚洲精品国产av蜜桃| 国产一级毛片在线| 女的被弄到高潮叫床怎么办| 干丝袜人妻中文字幕| 国产老妇伦熟女老妇高清| 亚洲欧美中文字幕日韩二区| 韩国av在线不卡| 国产精品99久久99久久久不卡 | 日日啪夜夜爽| 2021少妇久久久久久久久久久| 中文精品一卡2卡3卡4更新| 日本猛色少妇xxxxx猛交久久| 黑人高潮一二区| 高清午夜精品一区二区三区| 又爽又黄a免费视频| 九九久久精品国产亚洲av麻豆| 国产精品.久久久| 超碰97精品在线观看| 国产一级毛片在线| 日本一本二区三区精品| 国产又色又爽无遮挡免| 日本-黄色视频高清免费观看| 蜜臀久久99精品久久宅男| 国产精品av视频在线免费观看| 精品午夜福利在线看| 欧美性感艳星| 国产精品久久久久久精品电影小说 | 色视频在线一区二区三区| 禁无遮挡网站| av线在线观看网站| 十八禁网站网址无遮挡 | 大又大粗又爽又黄少妇毛片口| 人人妻人人爽人人添夜夜欢视频 | 超碰97精品在线观看| 赤兔流量卡办理| 日本-黄色视频高清免费观看| 国产精品av视频在线免费观看| 黄色怎么调成土黄色| 国产人妻一区二区三区在| 新久久久久国产一级毛片| 天天一区二区日本电影三级| av免费观看日本| 国产高清三级在线| 夜夜看夜夜爽夜夜摸| 亚洲欧美成人综合另类久久久| 亚洲av电影在线观看一区二区三区 | 91狼人影院| 麻豆久久精品国产亚洲av| 免费av毛片视频| 一区二区三区四区激情视频| 欧美日韩亚洲高清精品| 超碰av人人做人人爽久久| 丰满少妇做爰视频| 中国国产av一级| 在线精品无人区一区二区三 | 天天躁夜夜躁狠狠久久av| 精品99又大又爽又粗少妇毛片| 国产高清国产精品国产三级 | 国产亚洲一区二区精品| 国产精品国产av在线观看| 欧美区成人在线视频| 久久久久久伊人网av| 中文乱码字字幕精品一区二区三区| 午夜激情福利司机影院| 国产毛片在线视频| 色视频在线一区二区三区| 日本三级黄在线观看| 国产av码专区亚洲av| 免费在线观看成人毛片| 最近中文字幕2019免费版| 菩萨蛮人人尽说江南好唐韦庄| 国产视频首页在线观看| 国产色爽女视频免费观看| 亚洲精品成人久久久久久| 麻豆精品久久久久久蜜桃| 夜夜看夜夜爽夜夜摸| 一本一本综合久久| 亚洲精品,欧美精品| 日韩三级伦理在线观看| 美女cb高潮喷水在线观看| 欧美日韩亚洲高清精品| 人人妻人人澡人人爽人人夜夜| 美女主播在线视频| 一区二区三区四区激情视频| 日本黄色片子视频| 十八禁网站网址无遮挡 | 狂野欧美激情性xxxx在线观看| 国产精品精品国产色婷婷| 听说在线观看完整版免费高清| 天美传媒精品一区二区| 日本一二三区视频观看| 久久久久国产精品人妻一区二区| 免费看日本二区| 亚洲美女搞黄在线观看| 日韩一区二区视频免费看| 中文资源天堂在线| 成人亚洲精品一区在线观看 | 国产欧美日韩精品一区二区| 黄色一级大片看看| 91久久精品电影网| 少妇丰满av| 少妇裸体淫交视频免费看高清| videos熟女内射| 高清午夜精品一区二区三区| 亚洲av成人精品一二三区| 三级国产精品欧美在线观看| 日韩亚洲欧美综合| 国产免费视频播放在线视频| 久久人人爽av亚洲精品天堂 | 成人鲁丝片一二三区免费| 视频中文字幕在线观看| 视频区图区小说| 男人舔奶头视频| 亚洲精品视频女| 日韩av在线免费看完整版不卡| 神马国产精品三级电影在线观看| 国产乱人视频| 天天躁夜夜躁狠狠久久av| 只有这里有精品99| 亚洲精品久久久久久婷婷小说| 能在线免费看毛片的网站| 久久人人爽av亚洲精品天堂 | 91精品一卡2卡3卡4卡| 亚洲成人中文字幕在线播放| 男人和女人高潮做爰伦理| 一级毛片aaaaaa免费看小| 亚洲av欧美aⅴ国产| 亚洲最大成人av| 亚洲精品中文字幕在线视频 | 久热久热在线精品观看| 亚洲av日韩在线播放| 少妇的逼好多水| 麻豆乱淫一区二区| 人体艺术视频欧美日本| 国产一区二区亚洲精品在线观看| 极品教师在线视频| 欧美xxⅹ黑人| 国产av国产精品国产| av在线app专区| 午夜福利网站1000一区二区三区| 视频中文字幕在线观看| 久久久久久久精品精品| 国产成人免费观看mmmm| 精品国产一区二区三区久久久樱花 | 听说在线观看完整版免费高清| 人人妻人人澡人人爽人人夜夜| 高清在线视频一区二区三区| 久久99热6这里只有精品| 亚洲欧美中文字幕日韩二区| 国产黄色视频一区二区在线观看| 高清在线视频一区二区三区| 欧美激情久久久久久爽电影| 免费观看av网站的网址| 久久久久久伊人网av| 久久精品久久精品一区二区三区| 精品人妻熟女av久视频| 青春草国产在线视频| 亚洲精品日本国产第一区| 美女cb高潮喷水在线观看| 中文字幕亚洲精品专区| 国产探花在线观看一区二区| 亚洲经典国产精华液单| av在线观看视频网站免费| 777米奇影视久久| 高清欧美精品videossex| 亚洲不卡免费看| 免费av观看视频| 国产精品久久久久久久电影| 日本wwww免费看| 国产成人免费无遮挡视频| 亚洲国产成人一精品久久久| 精品少妇黑人巨大在线播放| 成人毛片a级毛片在线播放| 爱豆传媒免费全集在线观看| 久久午夜福利片| 久久精品国产a三级三级三级| 成人亚洲精品一区在线观看 | kizo精华| 97人妻精品一区二区三区麻豆| 欧美性猛交╳xxx乱大交人| 天堂俺去俺来也www色官网| 国产成人午夜福利电影在线观看| 亚洲激情五月婷婷啪啪| 成人漫画全彩无遮挡| 99热这里只有是精品在线观看| 一级毛片aaaaaa免费看小| 1000部很黄的大片| 久久久精品94久久精品| 大香蕉97超碰在线| 欧美丝袜亚洲另类| 人人妻人人看人人澡| 久久久久久九九精品二区国产| 91久久精品国产一区二区三区| 18禁裸乳无遮挡免费网站照片| 伊人久久国产一区二区| 亚洲av二区三区四区| 精品久久久久久电影网| av在线天堂中文字幕| 国内精品宾馆在线| 国产亚洲av片在线观看秒播厂| 人妻制服诱惑在线中文字幕| 亚洲精品,欧美精品| 成人特级av手机在线观看| 亚洲人与动物交配视频| 人人妻人人看人人澡| 中文欧美无线码| 欧美成人a在线观看| 99久久人妻综合| 寂寞人妻少妇视频99o| 久久久久久国产a免费观看| 水蜜桃什么品种好| 国产伦在线观看视频一区| 搡女人真爽免费视频火全软件| av卡一久久| 精品亚洲乱码少妇综合久久| 成年女人看的毛片在线观看| 中国三级夫妇交换| 久久久久九九精品影院| 80岁老熟妇乱子伦牲交| 天天躁夜夜躁狠狠久久av| 亚洲av电影在线观看一区二区三区 | 女人被狂操c到高潮| 成人高潮视频无遮挡免费网站| av免费观看日本| 综合色丁香网| 午夜精品国产一区二区电影 | 亚洲av免费在线观看| 久久久久国产精品人妻一区二区| 97超碰精品成人国产| 国产精品偷伦视频观看了| 听说在线观看完整版免费高清| 国产一级毛片在线| 内射极品少妇av片p| 又大又黄又爽视频免费| 午夜老司机福利剧场| 国产精品久久久久久久久免| 成年版毛片免费区| 在线观看三级黄色| 免费黄色在线免费观看| 久久久久网色| 看黄色毛片网站| 久久精品人妻少妇| 成人黄色视频免费在线看| 一本色道久久久久久精品综合| 欧美激情在线99| 亚洲国产最新在线播放| 简卡轻食公司| 成人欧美大片| 91久久精品电影网| 久久久国产一区二区| 高清欧美精品videossex| 免费少妇av软件| 天天躁夜夜躁狠狠久久av| 嫩草影院精品99| 最近的中文字幕免费完整| 亚洲精华国产精华液的使用体验| 国产精品偷伦视频观看了| 91久久精品国产一区二区三区| 卡戴珊不雅视频在线播放| 国产乱来视频区| 欧美人与善性xxx| 草草在线视频免费看| 精品久久久久久久末码| 亚洲久久久久久中文字幕| 久久久久久久久久人人人人人人| 欧美日韩精品成人综合77777| 亚洲欧美日韩卡通动漫| 国产日韩欧美亚洲二区| 两个人的视频大全免费| 国产亚洲午夜精品一区二区久久 | 国产老妇女一区| 国产成人精品婷婷| 国产一级毛片在线| 国产精品成人在线| 黄色视频在线播放观看不卡| 免费观看av网站的网址| 久久久久九九精品影院| 精品国产一区二区三区久久久樱花 | www.色视频.com| 人妻少妇偷人精品九色| 永久网站在线| 大香蕉97超碰在线| 国内精品美女久久久久久| 亚洲婷婷狠狠爱综合网| 岛国毛片在线播放| 最近中文字幕高清免费大全6| 国产又色又爽无遮挡免| 大片电影免费在线观看免费| 中文字幕人妻熟人妻熟丝袜美| 亚洲成人中文字幕在线播放| 日本黄色片子视频| av在线观看视频网站免费| 国产美女午夜福利| 男女啪啪激烈高潮av片| 国产中年淑女户外野战色| 成年女人看的毛片在线观看| 毛片女人毛片| 在线a可以看的网站| 亚洲高清免费不卡视频| 人人妻人人澡人人爽人人夜夜| 国产成人免费无遮挡视频| 国产一区二区三区综合在线观看 | 亚洲精品影视一区二区三区av| 亚洲国产日韩一区二区| 国精品久久久久久国模美| 伦精品一区二区三区| 国国产精品蜜臀av免费| 欧美潮喷喷水| 噜噜噜噜噜久久久久久91| 久久久精品免费免费高清| 在线观看三级黄色| 国产免费又黄又爽又色| 国产一区亚洲一区在线观看| 伊人久久国产一区二区| 99久久中文字幕三级久久日本| 极品少妇高潮喷水抽搐| 亚洲国产精品专区欧美| 亚洲精品乱码久久久v下载方式| 久久久久精品久久久久真实原创| 久久精品国产鲁丝片午夜精品| 亚洲精品成人久久久久久| 婷婷色av中文字幕| 欧美日韩精品成人综合77777| 国产精品蜜桃在线观看| av国产免费在线观看| 男人狂女人下面高潮的视频| 免费观看av网站的网址| 欧美性感艳星| av线在线观看网站| 22中文网久久字幕| 久久久久久久精品精品| 亚洲在线观看片| 看非洲黑人一级黄片| 国产亚洲精品久久久com| 看黄色毛片网站| 免费av毛片视频| 久久精品久久久久久久性| 国产av码专区亚洲av| 欧美性猛交╳xxx乱大交人| 高清在线视频一区二区三区| 深夜a级毛片| 中文乱码字字幕精品一区二区三区| 免费大片黄手机在线观看| 国产成年人精品一区二区| 亚洲av不卡在线观看| 在线观看av片永久免费下载| 亚洲国产精品成人综合色| 久久精品熟女亚洲av麻豆精品| 免费高清在线观看视频在线观看| 欧美少妇被猛烈插入视频| 水蜜桃什么品种好| 亚洲久久久久久中文字幕| 免费少妇av软件| 国产精品av视频在线免费观看| 中文字幕亚洲精品专区| 国产 一区精品| 久久99热6这里只有精品| 亚洲av中文av极速乱| 99久久精品国产国产毛片| av天堂中文字幕网| 日日摸夜夜添夜夜爱| 免费看不卡的av| 日日撸夜夜添| 亚洲精品乱码久久久v下载方式| 亚洲av国产av综合av卡| 亚洲国产最新在线播放| 国产精品.久久久| 久久99热这里只频精品6学生| 99热这里只有是精品50| 中文欧美无线码| 麻豆乱淫一区二区| 久久热精品热| 久久久久精品性色| 亚洲国产欧美人成| 国产日韩欧美亚洲二区| 五月伊人婷婷丁香| 久久精品国产亚洲网站| 91精品国产九色| av在线蜜桃| 亚洲精品影视一区二区三区av| 日韩国内少妇激情av| 日本wwww免费看| 欧美日韩亚洲高清精品| av福利片在线观看| 男女边吃奶边做爰视频| 日本三级黄在线观看| 中文天堂在线官网| 女人十人毛片免费观看3o分钟| 亚洲精品一二三| 成人国产麻豆网| 99久国产av精品国产电影| 午夜精品一区二区三区免费看| 国产免费福利视频在线观看| 国精品久久久久久国模美| 欧美潮喷喷水| 黄片wwwwww| 国产极品天堂在线| av一本久久久久| av女优亚洲男人天堂| 夜夜爽夜夜爽视频| 国产老妇女一区| 欧美国产精品一级二级三级 | 亚洲自偷自拍三级| 少妇熟女欧美另类| 国产高清不卡午夜福利| 日本爱情动作片www.在线观看| 久久久a久久爽久久v久久| 男女啪啪激烈高潮av片| 亚洲国产精品成人久久小说| 高清视频免费观看一区二区| av又黄又爽大尺度在线免费看| 日韩一区二区三区影片| 九草在线视频观看| 国产亚洲最大av| 成年av动漫网址| av在线观看视频网站免费| 久久久久九九精品影院| 久久久久久久久久人人人人人人| 亚洲av电影在线观看一区二区三区 | 亚洲精品一二三| 亚洲精品成人久久久久久| 99热这里只有是精品在线观看| 欧美区成人在线视频| 欧美xxxx黑人xx丫x性爽| 色5月婷婷丁香| 亚洲美女视频黄频| 欧美丝袜亚洲另类| 全区人妻精品视频| 王馨瑶露胸无遮挡在线观看| 免费看不卡的av| av一本久久久久| 国产色婷婷99| 在线观看国产h片| 91狼人影院| 91在线精品国自产拍蜜月| 亚洲,欧美,日韩| 麻豆国产97在线/欧美| 国产69精品久久久久777片| 91午夜精品亚洲一区二区三区| 日韩 亚洲 欧美在线| 中文字幕av成人在线电影| 国产一级毛片在线| 一级毛片 在线播放| 乱码一卡2卡4卡精品| 亚洲av.av天堂| 国产综合懂色| 亚洲一级一片aⅴ在线观看| av专区在线播放| 亚洲国产欧美人成| 成人免费观看视频高清| 美女cb高潮喷水在线观看| 精品熟女少妇av免费看| 成年人午夜在线观看视频| 中文欧美无线码| 如何舔出高潮| 色吧在线观看| 精品久久久噜噜| 深爱激情五月婷婷| 成人高潮视频无遮挡免费网站| 婷婷色综合www| 成年女人看的毛片在线观看| 国产精品国产三级国产专区5o| 婷婷色麻豆天堂久久| 99热这里只有精品一区| 亚洲综合色惰| 成人欧美大片| 久久ye,这里只有精品| av天堂中文字幕网| 插阴视频在线观看视频| 久久久午夜欧美精品| 麻豆精品久久久久久蜜桃| 亚洲综合色惰| 免费av观看视频| 精品久久久精品久久久| 国产乱人视频| 成年av动漫网址| 亚洲内射少妇av| 伊人久久精品亚洲午夜| 亚洲欧美清纯卡通| 亚洲欧美日韩无卡精品| 精品人妻一区二区三区麻豆| 欧美性猛交╳xxx乱大交人| av福利片在线观看| 国产乱来视频区| 美女国产视频在线观看| 熟女av电影| 日韩欧美精品免费久久| freevideosex欧美| 国产亚洲av片在线观看秒播厂| 偷拍熟女少妇极品色| 精品国产一区二区三区久久久樱花 | 久久久精品欧美日韩精品| 免费av观看视频| 一本久久精品| 自拍偷自拍亚洲精品老妇| 久久久久久久久久久丰满| 国产成人免费观看mmmm| 国产毛片在线视频| 69av精品久久久久久| 日韩欧美 国产精品| 亚洲av免费高清在线观看| av天堂中文字幕网| 一本久久精品| 街头女战士在线观看网站| 高清毛片免费看| 少妇的逼好多水| 国产精品99久久久久久久久| 日韩成人av中文字幕在线观看| 网址你懂的国产日韩在线| 亚洲国产精品成人久久小说| 国产午夜精品久久久久久一区二区三区| 国产亚洲av片在线观看秒播厂| 日韩av免费高清视频| 色综合色国产| 国语对白做爰xxxⅹ性视频网站| 只有这里有精品99| 欧美高清性xxxxhd video| 噜噜噜噜噜久久久久久91| 欧美+日韩+精品| 王馨瑶露胸无遮挡在线观看| 亚洲精品久久久久久婷婷小说| 嘟嘟电影网在线观看| 国产av不卡久久| 内射极品少妇av片p| 老司机影院成人| 免费高清在线观看视频在线观看| 老女人水多毛片| 麻豆国产97在线/欧美| 一个人看的www免费观看视频| 一级毛片我不卡| 日本与韩国留学比较| 亚洲精品国产av蜜桃| 久久ye,这里只有精品| 大香蕉久久网| 久久久久国产精品人妻一区二区| 精品国产乱码久久久久久小说| tube8黄色片| 少妇裸体淫交视频免费看高清| 亚洲经典国产精华液单| 国产乱来视频区| 亚洲国产精品专区欧美| av在线亚洲专区| 日日摸夜夜添夜夜爱| 亚洲精品自拍成人| 亚洲国产精品国产精品|