• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    國產(chǎn)驢蹄草的細胞地理學研究(英文)

    2019-09-10 07:22:44王廣艷周寧錢敏張嬋楊永平
    廣西植物 2019年9期

    王廣艷 周寧 錢敏 張嬋 楊永平

    摘 要: ?為探討國產(chǎn)毛茛科(Ranunculaceae)驢蹄草屬(Caltha)兩種植物的演化,該文利用傳統(tǒng)染色體壓片技術和流式細胞術,并結合前人染色體研究結果,對我國驢蹄草23個居群和花葶驢蹄草10個居群進行了細胞學研究。結果表明:驢蹄草是由四倍體(2n=4x=32)、六倍體(2n=6x=48)和八倍體(2n=8x=64)構成的多倍體復合群,花葶驢蹄草具有四倍體(2n=4x=32)和八倍體(2n=8x=64)兩種倍性水平。驢蹄草和花葶驢蹄草均是四倍體較為常見,目前尚未見有二倍體報道。由于驢蹄草和花葶驢蹄草大部分居群采自中國青藏高原地區(qū),可能在冰期時存在古二倍體,其適應性較弱,逐漸被其他的倍性取代,這是由于不同細胞型對環(huán)境適應性的結果。驢蹄草可能存在兩條進化路線:一條是從甘肅到達云南;另一條是從西藏到達云南。前期分子系統(tǒng)學研究顯示花葶驢蹄草與驢蹄草的親緣關系較近,該研究結果中花葶驢蹄草染色體比驢蹄草要小,花葶驢蹄草可能比驢蹄草相對進化。目前花葶驢蹄草只有10個居群,還需進一步增加居群量來解析其演化路線。

    關鍵詞: 細胞地理, 驢蹄草, 花葶驢蹄草, 多倍化

    Polyploidy, the duplication of entire sets of chromosomes, is a key process in the evolution and diversification of vascular plants (Hegarty et al., 2013; Otto & Whitton, 2000). Previous studies have found that polyploids are better to adapt to stress or novel niches than their diploid progenitors (Ehrendorfer, 1980; Grant, 1981; Levin, 2004; Morton, 1993; Otto & Whitton, 2000; Stebbins, 1985). Furthermore, intraspecific variation in ploidy level is frequently observed in angiosperms (Kolárˇ et al., 2015; Wood et al., 2009). It is known that polyploidization is one of the few speciation processes that may operate in sympatry, due to the possible immediate emergence of reproductive isolation between individuals with different ploidy levels (Husband & Sabara, 2003). Therefore, the geographic distribution of cytotypes could provide valuable information about the origin and maintenance of different ploidy levels (Baack, 2004; Kolárˇ et al., 2009; Rieseberg & Willis, 2007; Segraves et al., 1999).

    The perennial herb Caltha palustris grows from 600-4 000 m in mountain regions, valleys, marshlands, forests, streams, and on grassy slopes in the north temperate region (Wang et al., 2001). After C. palustris was first described by Linnaeus (1753), great variability of some morphological characters was described in this species, such as plant size, leaf shape and size, leaf margins, flowers, mature follicles, rooting at nodes, tepal number and color, and seed color and symmetry (Smit, 1973; Kumar & Singhal, 2008). It is previously shown that morphological diversity is a product of environmental conditions (Blagojevic et al., 2013). The current study primarily focused on cytotype distribution in the C. palustris complex, which includes tetraploids (Wang et al., 2013; Yang, 2002; Yuan & Yang, 2006), hexaploids (Parfenov & Dmitrieva, 1985; Wang et al., 2013; Yang, 2002; Yuan & Yang, 2006), and octoploids (Wang et al., 2013; Yang, 2002; Yuan & Yang, 2006) (x=8, Langlet, 1927). Furthermore, molecular phylogenetic evidence also shows that C. scaposa is sister to C. palustris (with 100% bootstrap support) (Cheng & Xie, 2014; Schuettpelz & Hoot, 2004). Caltha scaposa is endemic to SinoHimalaya, and grows from 2 800 to 4 100 m in wet parts of alpine meadows and valleys. Only two cytotypes have been detected: tetraploids (Wang et al., 2013) and octoploids (Wang et al., 2013; Yuan & Yang, 2006) (x=8, Langlet, 1927). The existence of different cytotypes in C. palustris and C. scaposa may indicate strong spatial segregation. As a result of inche differentiation (Ehrendorfer, 1980; Lewis, 1980), reproductive exclusion (Levin, 1975; VanDijk & BakxSchotman, 1997), and historical factors (AnCˇev, 2006), these distinct cytotypes may experience differential reproductive success and occurrence of particular evolutionary constraints or demographic stochasticity (MunozPajares et al., 2017).

    By conducting a novel analysis of previous cytotype distribution data, we herein present a cytogeographical study of C. palustris and C. scaposa in China. Our aims in this study were as follows: (1) To assess the geographic distribution of different cytotypes in C. palustris and C. scaposa to propose a scenario of dispersal events; (2) To determine the major driving force of speciation in C. palustris and C. scaposa.

    1 Materials and Methods

    1.1 Taxon sampling

    In this study, we sampled six C. palustris accessions and four C. scaposa accessions (Table 1). In total, 15-20 plants from each population were sampled. Geographical coordinates were recorded in the field using a GPS instrument. Living plants were cultivated in a greenhouse, and voucher specimens were deposited in the herbarium of Kunming Institute of Botany, Chinese Academy of Sciences. We performed cytogeographical analysis using these accessions and previously reported data (Yang, 2002; Yuan & Yang, 2006; Table 2).

    1.2 Chromosome number

    Root tips were collected from each individual and pretreated with a solution of 0.002 mol·L1 8hydroxyquinoline at 20-21 ℃ for 4-5 h. After fixation for 50 min in Carnoy’s solution (ethanol∶acetic acid=3∶1) at 4 ℃, the root tips were dissociated in a mixture of 1 N HCl and 45% acetic acid (1∶1) at 60 ℃ for 30 s, stained with 1% acetic orcein for 2-3 h and squashed on a glass slide (Wang et al., 2013). Chromosome numbers were determined for each accession from at least 50 cells of at least two seedlings by mitotic observations. Mitotic interphase nuclei and prophase chromosomes preparations followed Tanaka (1971, 1977, 1987), and the designation of the centromeric position followed Levan et al. (1964). Karyotype asymmetry was classified according to Stebbins (1971).

    1.3 Flow cytometry and DNA ploidy level determination

    Propidium iodide flow cytometry (FCM) analysis was performed using fresh leaf samples from our greenhouse. Approximately 0.5 cm2 of leaf material was finely diced using a new razor blade in a Petri dish that contained 1 500-2 000 μL of WPB nuclear solution buffer (0.2 mol·L1 TrisHCl, 4 mmol·L1 MgCl·6H2O, 2 mmol·L1 EDTA Na2·2H2O, 86 mmol·L1 NaCl, 10 mmol·L1 Na2S2O5, 1% PVP10, 1% [v/v] Triton X100, pH 7.5) (Tian et al., 2011). The nuclear suspension was then filtered through disposable filters (30 μm) to remove cell debris, and stained with 150 μL propidium iodide (50 μg·mL1; including RNAse [500 μg·mL1]) for 10 min. Samples were analyzed on a CyFlow Space (Partec, Münster, Germany) flow cytometer equipped with a blue laser operating at 488 nm. At least 5 000 nuclei were measured for each sample. FlowMax ver. 2.82 was used to analyze the resulting histograms. By comparison with a known ploidy level (4x; yyp04), we estimated the ploidy levels of other samples based on the histograms. The ploidy level of each sample was calculated as described by Tian et al., 2011:

    Ploidy level of sample=(mean of sample peak/mean of standard peak) × ploidy level of the standard species.

    2 Results and Analysis

    2.1 Chromosome counts and DNA ploidy level determination

    In this study, ploidy levels included 13 4x C. palustris, one 6x C. palustris, nine 8x C. palustris, seven 4xC. scaposa, and three 8x C. scaposa accessions (Table 2); These specimens were collected from Gansu (one accession), Yunnan (16 accessions), Sichuan (four accessions), Tibet (one accession), Guizhou (one accession), and Qinghai (one accession). Metaphase chromosomes of eight accessions are shown in Fig. 1. We successfully estimated the ploidy levels of two C. palustris accessions (yyp09 and yyp10) by FCM at 4x and 8x (Fig. 2).

    2.2 Cytogeography

    The ploidy distribution of C. palustris and C. scaposa was revealed based on currently available data. All C. palustris accessions were singleploidy, although our sample was very limited in some accessions; however, secondary constriction chromosomes were observed in three C. palustris accessions (Table 2). The tetraploid cytotype was more common than the other cytotypes (hexaploids and octoploids). Moreover, the tetraploid karyotype also exhibited obvious variation among accessions. The samples from Diqing Tibetan Autonomous Prefecture (Yunnan) included tetraploid, hexaploid, and octoploid cytotypes. Two cytotypes (tetraploids and octoploids) were found in Lijiang (Yunnan). Only one cytotype existed in Tewo (Gansu), Dali (Yunnan), Gongshan (Yunnan), Hongyuan (Sichuan), Nayong (Guizhou), and Zuogong (Tibet). All C. scaposa accessions were singleploidy, and the tetraploid cytotype was also common. Two cytotypes (tetraploids and octoploids) existed in Sichuan, and one cytotype each in Tibet, Qinghai, and Yunnan. In addition, only one contact areas between different cytotypes were detected. In the Xiaozhongdian accession, a region of overlap between the ranges of 4x C. palustris and 8x C. scaposa was observed.

    3 Discussion

    FCM offers a rapid and precise method for identifying taxa of different ploidy levels, enabling researchers to map the finescale distribution of ploidies within individual populations (Suda et al., 2004). FCM has been used in ploidy analysis, e.g., in Ranunculus (Ranunculaceae) (Cires et al., 2010) and C. leptosepala s.l. (Wefferling et al., 2017). In our study, ploidy levels of two accessions (yyp09 and yyp10) were estimated by FCM. The current study revealed that C. palustris may be viewed as a polyploid complex, which presents clear patterns of cytotype distribution. Polyploidy is a prevalent phenomenon in the chromosomal evolution of extant species and genera (Otto & Whitton, 2000), and it may have contributed to the origin of flowering plants (De Bodt et al., 2005). As a result, plant scientists have recognized that polyploid lineages may have complex relationships with each other and their diploid ancestors, making application of species concepts problematic (Soltis et al., 2007, 2009).

    C. palustris polyploid complex showed a varied cytotype distribution. No diploids and few hexaploids were found in this study, but tetraploid and octoploid cytotypes were common and widespread. Similarly, in C. scaposa, tetraploids and octoploids were common, whereas diploids and hexaploids were not found. Such distribution patterns are often explained by cytotype adaptive differences to the underlying heterogeneity of environmental factors (Lewis, 1980). All accessions except for the Guizhou and Gansu accessions were from extreme habitats, like alpine mountains in the QinghaiTibetan Plateau. Polyploidy is common in plants from cold climates with harsh and stressful environments (Grant, 1981; Lve & Lve, 1949, 1967). Therefore, a relatively high frequency of polyploidy was observed in this species. Ancestral diploids may be present in this region during glacial periods and colonized most regions at the end of the glaciation cycles. However, other ploidy levels could gradually replace diploids, because of their increased fitness in changing environment (Cui et al., 2008).

    The chromosome counts observed in the C. palustris complex indicate that ploidy changes may be important in its evolution. Chromosome counts often show obvious differences in different accessions within a particular species. Our analysis showed that the Hengduan Mountains could be better viewed as a polyploid complex of diploids, tetraploids, and hexaploids. Symmetrical karyotypes are widely accepted to be more primitive than asymmetrical ones (Stebbins, 1971). In our combined data (Table 1), the accessions from Zhongdian (Yunnan) with different types (3B, 3C), AI (11.39, 7.34, 5.96), and the secondary constrictions showed the highest asymmetric tendencies. Therefore, we speculate that two possible evolutionary trends may exist: one from Gansu to Yunnan, and the other from Tibet to Yunnan of China.

    Molecular phylogeny have shown that C. scaposa is closely related to C. palustris (Cheng & Xie, 2014; Schuettpelz & Hoot, 2004). C. scaposa cytotype distribution was determined from only ten populations; therefore, C. scaposa cytogeography could not be comprehensively analyzed. Moreover, the chromosome size of this species was smaller than that of C. palustris. The size of the chromosome is also a feature subject to evolutionary change, the direction of chromosome evolution could have a decrease trend in chromosome size (Martel et al., 2004). Therefore, smaller chromosomes may be a relatively derived evolutionary character. Consequently, in the future, additional samples need to be analyzed to better elucidate C. scaposa cytogeography.

    References:

    ANCˇEV M, 2006. Polyploidy and hybridization in Bulgarian (Brassicaceae) distribution and evolutionary role [J]. Phytol Balcan, 12: 357-366.

    BAACK EJ, 2004. Cytotype segregation on regional and microgeographic scales in snow buttercups (Ranunculus adoneus, Ranunculaceae) [J]. Amer J Bot, 91: 1783-1788.

    BLAGOJEVIC J, JOVANOVIC V, ADNADEVIC T, et al., 2013. Chromosome status of marsh marigold Caltha palustris L. (Ranunculaceae) from Serbia [J]. Genetika, 45: 793-798.

    CHENG J, XIE L, 2014. Molecular phylogeny and historical biogeography of Caltha (Ranunculaceae) based on analyses of multiple nuclear and plastid sequences [J]. J Syst Evol, 52: 51-67.

    CIRES E, CUESTA C, NGELES M, et al., 2010. Intraspecific genome size variation and morphological differentiation of Ranunculus parnassifolius (Ranunculaceae), an AlpinePyreneanCantabrian polyploid group [J]. Biol J Linn Soc, 101: 251-271.

    CUI XK, AO CQ, ZHANG Q, et al., 2008. Diploid and tetraploid distribution of Allium przewalskianum Regel. (Liliaceae) in the QinghaiTibetan Plateau and adjacent regions [J]. Caryologia, 61(2): 192-200.

    DE BODT S, MAERE S, VAN DE PEER Y, 2005. Genome duplication and the origin of angiosperms [J]. Trends Ecol Evol, 20: 591-597.

    EHRENDORFER F, 1980. Polyploidy and distribution [M]// LEWIS WH. Polyploidy: Biological Relevance: 45-60.

    GRANT V, 1981. Plant speciation [M]. 2nd. New York: Columbia University Press.

    HEGARTY MJ, COATE J, SHERMANBROYLES S, et al., 2013. Lessons from natural and artificial polyploids in higher plants [J]. Cyt Gen Res, 140: 204-225.

    HUSBAND BC, SABARA HA, 2003. Reproductive isolation between autotetraploids and their diploid progenitors in fireweed, Chamerion angustifolium (Onagraceae) [J]. New Phytol, 161: 703-713.

    KOLR F, PISOVA S, ZAVESKA E, et al., 2015. The origin of unique diversity in deglaciated areas traces of Pleistocene processes in northEuropean endemics from the Galium pusillum polyploid complex (Rubiaceae) [J]. Molec Ecol, 24: 1311-1344.

    KOLAR F, TECH M, TRAVNICEK P, et al., 2009. Towards resolving the Knautia arvensis agg. (Dipsacaceae) puzzle: primary and secondary contact zones and ploidy segregation at landscape and microgeographic scales [J]. Ann Bot, 103: 963-974.

    KUMAR P, SINGHAL VK, 2008. Cytology of Caltha palustris L. (Ranunculaceae) from cold regions of western Himalayas [J]. Cytologia, 73: 137-143.

    LANGLET O, 1927. Beitrge zur zytologie der Ranunculazeen [J]. Svensk Bot Tidskr, 21: 1-17.

    LEVAN A, FEDGA K, SANDBERG A, 1964. Nomenclature for centromeric position on chromosomes [J]. Hereditas, 52: 201-220.

    LEVIN DA, 2004. The ecological transition in speciation [J]. New phytol, 161: 91-96.

    LEVIN DA, 1975. Minority cytotype exclusion in local plant populations [J]. Taxon, 1: 35-43.

    LEWIS W, 1980. Polyploidy in species population [M]// LEWIS WH. Polyploidy, biological relevance. New York: Plenum Press: 103-144.

    LINNAEUS C, 1753. Caltha [M]// LINNAEUS C. Species plantarum: 558.

    LVE A, LVE D, 1949. The geobotanical significance of polyploidy I. Polyploidy and latitude [J]. Port Acta Biol Ser, A: 273-352.

    LVE A, LVE D, 1967. Polyploidy and altitude, Mt. Washington [J]. Biol Zent (Supple), 86: 307-312.

    MARTEL E, PONCET V, LAMY F, et al., 2004. Chromosome evolution of Pennisetum species (Poaceae): Implications of ITS phylogeny [J]. Plant Syst Evol, 249: 139-149.

    MORTON J, 1993. Chromosome numbers and polyploidy in the flora of Cameroons Mountain [J]. Opera Bot, 121: 159-172.

    MUNOZPAJARES AJ, PERFECTTI F, LOUREIRO J, et al., 2017. Niche differences may explain the geographic distribution of cytotypes in Erysimum mediohispanicum [J]. Plant Biol, 20(s1): 139-147.

    OTTO SP, WHITTON J, 2000. Polyploid incidence and evolution [J]. Ann Rev Genet, 34: 401-437.

    PARFENOV VI, DMITRIEVA SA, 1985. Kariologicheskaja differenciacija u vidov flory Belorussii iee rol, v formoobrazovanii [J]. Dokl Akad Nauk Byelorussk SSR (Minsk), 29: 544-557.

    RIESEBERG LH, WILLIS JH, 2007. Plant speciation [J]. Science, 317: 910-914.

    SCHUETTPELZ E, HOOT SB, 2004. Phylogeny and biogeography of Caltha (Ranunculaceae) based on chloroplast and nuclear DNA sequences [J]. Am J Bot, 91: 247-253.

    SEGRAVES KA, THOMPSON JN, SOLTIS PS, et al., 1999. Multiple origins of polyploidy and the geographic structure of Heuchera grossulariifolia [J]. Molec Ecol, 8: 253-262.

    SMIT GS, 1973. A revision of Caltha (Ranunculacaea) [J]. Blumea, 21: 119-150.

    SOLTIS DE, SOLTIS PS, SCHEMSKE DW, et al., 2007. Autopolyploidy in angiosperms: Have we grossly underestimated the number of species? [J] Taxon, 56: 13-30.

    SOLTIS DE, ALBERT VA, LEEBENSMACK J, et al., 2009. Polyploidy and angiosperm diversification [J]. Am J Bot, 96(1): 336-348.

    STEBBINS G, 1971. Chromosomal evolution in higher plants [M]. London: Edward Arnold.

    STEBBINS GL, 1985. Polyploidy, hybridization, and the invasion of new habitats [J]. Ann Missouri Bot Gard, 72: 824-832.

    SUDA J, MALCOVA R, ABAZID D, et al., 2004. Cytotype distribution in Empetrum (Ericaceae) at various spatial scales in the Czech Republic [J]. Folia Geobot, 39: 169-171.

    TANAKA R, 1971. Types of resting nuclei in Orchidaceae [J]. Bot Mag Tokyo, 84: 118-122.

    TANAKA R, 1977. Recent karyotype studies [M]// OGAWA K et al. Tokyo: Asakura Publisher: 293-326.

    TANAKA R, 1987. The karyotype theory and wide crossing as an example in Orchidaceae [M]// HONG DY. Plant chromosome research 1987, proceedings of the SinoJapanese symposium on plant chromosomes. Hiroshima: 1-10.

    TIAN XM, ZHOU XY, GONG N, 2011. Applications of flow cytometry in plant researchanalysis of nuclear DNA content and ploidy level in plant cells [J]. Chin Agric Sci Bull, 27: 21-27.

    VANDIJK P, BAKXSCHOTMAN T, 1997. Chloroplast DNA phylogeography and cytotype geography in autopolyploid Plantago media [J]. Molec Ecol, 6: 345-352.

    WANG GY, MENG Y, YANG YP, 2013. Karyological analyses of 33 species of the tribe Ophiopogoneae (Liliaceae) from Southwest China [J]. J Plant Res, 126: 597-604.

    WANG LY, REN C, YANG QE, 2013. Cytology of two species in the genus Caltha (Ranunculaceae) from China [J]. J Trop Subtrop Bot, 21(1): 21-28. [王龍遠, 任琛, 楊親二, 等, 2013. 國產(chǎn)毛茛科驢蹄草屬兩種植物的細胞學研究 [J]. 熱帶亞熱帶植物學報, 21(1): 21-28.]

    WANG WT, FU DZ, LI LQ, et al., 2001. Ranunculaceae, Flora Reipublicae Popularis Sinicae [M]. Beijing: Science Press: 133-438. [王文采, 傅德志, 李良千, 等, 2001. 毛茛科, 中國植物志 [M]. 北京: 科學出版社: 133-438. ]

    WEFFERLING KM, CASTRO S, LOUREIRO J, et al., 2017. Cytogeography of the subalpine marsh marigold polyploidy complex (Caltha leptosepala s. l., Ranunculaceae) [J]. Am J Bot, 104(2): 271-285.

    WOOD TE, TAKEBAYASHI N, BARKER MS, et al., 2009. The frequency of polyploid speciation in vascular plants [J]. Proc Natl Acad Sci USA, 106: 13875-13879.

    YANG Q, 2002. Cytology of the tribe Trollieae and of the tribe Cimicifugeae in the Ranunculaceae a comparative study [J]. Acta Phytotax Sin, 40: 52-65.

    YUAN Q, YANG QE, 2006. Cytology, palynology, and taxonomy of Asteropyrum and four other genera of Ranunculaceae [J]. Bot J Linn Soc, 152: 15-26.

    YUAN Q, YANG QE, 2006. Tribal relationships of Beesia, Eranthis and seven other genera of Ranunculaceae evidence from cytological characters [J]. Bot J Linn Soc, 150: 267-289.

    国产成人a区在线观看| 黄色配什么色好看| 国产乱来视频区| 欧美bdsm另类| 国产在线一区二区三区精| 国产黄色免费在线视频| 日韩欧美一区视频在线观看 | 青春草视频在线免费观看| 久久6这里有精品| 亚洲av中文av极速乱| 亚洲久久久久久中文字幕| 亚洲国产最新在线播放| 亚洲精品乱久久久久久| 日韩人妻高清精品专区| 不卡视频在线观看欧美| 人妻少妇偷人精品九色| 最新中文字幕久久久久| 亚洲性久久影院| 爱豆传媒免费全集在线观看| 中文天堂在线官网| 精品久久久久久久人妻蜜臀av| 成人鲁丝片一二三区免费| 久久97久久精品| 久久久久精品久久久久真实原创| 岛国毛片在线播放| 亚洲人成网站在线播| videossex国产| 少妇丰满av| 人人妻人人看人人澡| 麻豆av噜噜一区二区三区| 最近视频中文字幕2019在线8| 寂寞人妻少妇视频99o| 80岁老熟妇乱子伦牲交| 特大巨黑吊av在线直播| 精品久久久久久久末码| 亚洲精品久久久久久婷婷小说| 亚洲在久久综合| 色尼玛亚洲综合影院| 国产片特级美女逼逼视频| av一本久久久久| 国产真实伦视频高清在线观看| 亚洲欧美成人精品一区二区| 亚洲精品成人av观看孕妇| 国产黄片视频在线免费观看| 国产精品av视频在线免费观看| 熟女电影av网| 国产激情偷乱视频一区二区| 国产麻豆成人av免费视频| 舔av片在线| 美女黄网站色视频| 永久免费av网站大全| 赤兔流量卡办理| 2021少妇久久久久久久久久久| 黑人高潮一二区| 永久免费av网站大全| 国产在线男女| 日本黄色片子视频| 一级二级三级毛片免费看| 只有这里有精品99| 18+在线观看网站| 国产v大片淫在线免费观看| 日日干狠狠操夜夜爽| 久久精品夜夜夜夜夜久久蜜豆| 免费观看av网站的网址| 赤兔流量卡办理| 男人狂女人下面高潮的视频| 亚洲精品影视一区二区三区av| 国产精品人妻久久久影院| 黄色一级大片看看| 国产乱人偷精品视频| 最近手机中文字幕大全| 亚洲激情五月婷婷啪啪| 免费av观看视频| 青春草国产在线视频| 校园人妻丝袜中文字幕| 一级毛片 在线播放| 亚洲精品一二三| 特大巨黑吊av在线直播| 七月丁香在线播放| 国内精品美女久久久久久| 国产精品不卡视频一区二区| 一级av片app| 丰满少妇做爰视频| 国产一区二区亚洲精品在线观看| 成年女人看的毛片在线观看| 黄色欧美视频在线观看| 久久精品夜色国产| 国产精品女同一区二区软件| 国产黄色免费在线视频| 白带黄色成豆腐渣| 夫妻性生交免费视频一级片| www.av在线官网国产| 熟妇人妻久久中文字幕3abv| 欧美高清成人免费视频www| 国产色婷婷99| 中文字幕免费在线视频6| 天堂俺去俺来也www色官网 | 亚洲va在线va天堂va国产| 亚洲婷婷狠狠爱综合网| 国产精品久久视频播放| 亚洲国产精品成人综合色| 18禁在线播放成人免费| eeuss影院久久| 婷婷色麻豆天堂久久| 波野结衣二区三区在线| 99久久精品一区二区三区| 久久久久精品性色| 亚洲最大成人av| 亚洲美女视频黄频| 亚洲成人av在线免费| 乱码一卡2卡4卡精品| 青春草国产在线视频| 最近中文字幕高清免费大全6| 久久99热这里只有精品18| 欧美不卡视频在线免费观看| 亚洲欧美一区二区三区国产| av在线天堂中文字幕| 黄片无遮挡物在线观看| 大香蕉久久网| 精品久久久久久成人av| 一区二区三区免费毛片| 一级片'在线观看视频| 精品久久久久久久久亚洲| 午夜福利在线观看免费完整高清在| 亚洲三级黄色毛片| 晚上一个人看的免费电影| 亚洲四区av| 一级毛片电影观看| 国产免费福利视频在线观看| 联通29元200g的流量卡| 干丝袜人妻中文字幕| 国产亚洲av嫩草精品影院| 成人漫画全彩无遮挡| 亚洲综合色惰| 国产爱豆传媒在线观看| 国产综合懂色| 久久久久九九精品影院| 免费不卡的大黄色大毛片视频在线观看 | 中文字幕免费在线视频6| 亚洲自偷自拍三级| 亚洲精品自拍成人| 免费看光身美女| 久久久a久久爽久久v久久| 国产片特级美女逼逼视频| 免费大片18禁| 免费播放大片免费观看视频在线观看| 亚洲av日韩在线播放| 色5月婷婷丁香| 久久久久久久亚洲中文字幕| 99久久精品国产国产毛片| 亚洲av国产av综合av卡| 国产成人freesex在线| 久久久久久久午夜电影| 成人一区二区视频在线观看| 成年人午夜在线观看视频 | 免费电影在线观看免费观看| 日本与韩国留学比较| 99久久人妻综合| 丰满少妇做爰视频| 精品午夜福利在线看| 国产真实伦视频高清在线观看| 欧美日韩一区二区视频在线观看视频在线 | 亚洲欧美精品自产自拍| 亚洲在线观看片| 亚洲成人一二三区av| 亚洲精品影视一区二区三区av| 亚洲欧洲日产国产| 日韩不卡一区二区三区视频在线| 午夜福利在线在线| 亚洲色图av天堂| 日日啪夜夜爽| 韩国高清视频一区二区三区| 在线 av 中文字幕| 一区二区三区乱码不卡18| 欧美成人a在线观看| av在线观看视频网站免费| 色网站视频免费| 中文资源天堂在线| 丝袜喷水一区| 91久久精品电影网| 亚洲av成人精品一区久久| 黄色欧美视频在线观看| 国产午夜精品论理片| 国产白丝娇喘喷水9色精品| 国产老妇女一区| 国产免费福利视频在线观看| 国产永久视频网站| 97人妻精品一区二区三区麻豆| 亚洲怡红院男人天堂| 国产精品一区二区性色av| 久久午夜福利片| 好男人在线观看高清免费视频| 色播亚洲综合网| 少妇高潮的动态图| 亚洲精华国产精华液的使用体验| 成人一区二区视频在线观看| 欧美潮喷喷水| 天堂av国产一区二区熟女人妻| 欧美变态另类bdsm刘玥| 中文资源天堂在线| 久久鲁丝午夜福利片| 免费无遮挡裸体视频| 熟女电影av网| 亚洲精品日韩在线中文字幕| 亚洲熟女精品中文字幕| 午夜福利在线在线| 哪个播放器可以免费观看大片| 日韩中字成人| 国产精品一及| 免费不卡的大黄色大毛片视频在线观看 | 日本色播在线视频| 深夜a级毛片| 亚洲国产av新网站| 亚洲熟妇中文字幕五十中出| 我要看日韩黄色一级片| 淫秽高清视频在线观看| 日韩av在线大香蕉| 五月天丁香电影| 国产乱来视频区| 久热久热在线精品观看| 精品亚洲乱码少妇综合久久| 极品少妇高潮喷水抽搐| 国产伦一二天堂av在线观看| 午夜免费男女啪啪视频观看| 精品酒店卫生间| 在线天堂最新版资源| 亚洲成人av在线免费| 天堂中文最新版在线下载 | 成人亚洲精品av一区二区| 蜜桃久久精品国产亚洲av| 午夜精品一区二区三区免费看| 2021少妇久久久久久久久久久| 国模一区二区三区四区视频| 乱系列少妇在线播放| 久久草成人影院| 国产成人精品一,二区| av在线亚洲专区| 内射极品少妇av片p| 精品一区二区三区人妻视频| 亚洲欧美日韩无卡精品| 婷婷六月久久综合丁香| 国语对白做爰xxxⅹ性视频网站| 天天躁日日操中文字幕| 亚洲欧美中文字幕日韩二区| 麻豆精品久久久久久蜜桃| 国产在线一区二区三区精| 波多野结衣巨乳人妻| 九草在线视频观看| 亚洲第一区二区三区不卡| 纵有疾风起免费观看全集完整版 | 日韩一本色道免费dvd| 久久精品国产自在天天线| 男女边吃奶边做爰视频| 99九九线精品视频在线观看视频| 亚洲婷婷狠狠爱综合网| 简卡轻食公司| 亚洲国产精品国产精品| 精品少妇黑人巨大在线播放| 男女边摸边吃奶| 亚洲精品乱久久久久久| 两个人视频免费观看高清| 午夜爱爱视频在线播放| av黄色大香蕉| 麻豆成人av视频| 成人午夜高清在线视频| 国产黄片视频在线免费观看| 亚洲国产精品成人久久小说| 日本三级黄在线观看| 欧美激情国产日韩精品一区| 国产精品综合久久久久久久免费| 亚洲av成人精品一二三区| 成人漫画全彩无遮挡| 亚洲精品日本国产第一区| 国产在线一区二区三区精| 欧美+日韩+精品| 国产精品综合久久久久久久免费| 搡女人真爽免费视频火全软件| 国产视频首页在线观看| 五月天丁香电影| 天堂影院成人在线观看| 看免费成人av毛片| 日产精品乱码卡一卡2卡三| 亚洲内射少妇av| 高清欧美精品videossex| 欧美极品一区二区三区四区| 亚洲人成网站在线观看播放| 麻豆久久精品国产亚洲av| 亚洲综合色惰| 国产精品久久久久久av不卡| 久久精品国产亚洲网站| 亚洲在线自拍视频| 伦理电影大哥的女人| 亚洲精品视频女| 亚洲精品成人久久久久久| 日韩强制内射视频| 国产黄色视频一区二区在线观看| 女的被弄到高潮叫床怎么办| 午夜视频国产福利| 国产精品一区二区性色av| 国产成人91sexporn| 青青草视频在线视频观看| 少妇熟女欧美另类| 久久久久久久亚洲中文字幕| 老司机影院毛片| 国产 一区精品| 日韩三级伦理在线观看| 嫩草影院入口| 晚上一个人看的免费电影| 尾随美女入室| 一区二区三区高清视频在线| 国产精品人妻久久久影院| 亚洲va在线va天堂va国产| 成年av动漫网址| 黄色一级大片看看| 久久国产乱子免费精品| 视频中文字幕在线观看| 亚洲欧美一区二区三区国产| 99热这里只有是精品50| 国产成人精品福利久久| 免费高清在线观看视频在线观看| 丰满乱子伦码专区| 简卡轻食公司| 精品久久久噜噜| 美女脱内裤让男人舔精品视频| 男女下面进入的视频免费午夜| 久久99热这里只频精品6学生| 韩国av在线不卡| 日韩一区二区视频免费看| 精品熟女少妇av免费看| 热99在线观看视频| 久久综合国产亚洲精品| 久久精品国产亚洲网站| av专区在线播放| 国产一级毛片七仙女欲春2| 国产精品国产三级国产av玫瑰| 国产免费视频播放在线视频 | 国产精品综合久久久久久久免费| 国产一区亚洲一区在线观看| 插阴视频在线观看视频| 国产一区有黄有色的免费视频 | 国产午夜精品久久久久久一区二区三区| 日本猛色少妇xxxxx猛交久久| 国产在视频线在精品| 亚洲最大成人中文| av国产免费在线观看| 免费观看性生交大片5| 久久草成人影院| 国产探花极品一区二区| 亚洲欧美日韩无卡精品| 国产精品女同一区二区软件| 久久久久性生活片| 一级爰片在线观看| 搞女人的毛片| 夫妻性生交免费视频一级片| 男人舔女人下体高潮全视频| 亚洲最大成人手机在线| 青春草视频在线免费观看| 大话2 男鬼变身卡| 黑人高潮一二区| 春色校园在线视频观看| 亚洲在线自拍视频| 天堂中文最新版在线下载 | 看免费成人av毛片| 看非洲黑人一级黄片| 色播亚洲综合网| 直男gayav资源| 中文资源天堂在线| 免费看a级黄色片| 亚洲一级一片aⅴ在线观看| 亚洲精品国产av成人精品| 老师上课跳d突然被开到最大视频| 精品国产露脸久久av麻豆 | 久久精品久久久久久噜噜老黄| 又大又黄又爽视频免费| 国产精品久久久久久av不卡| 精品久久久久久久久久久久久| 九九在线视频观看精品| 丰满人妻一区二区三区视频av| 性色avwww在线观看| 丝瓜视频免费看黄片| 亚洲成色77777| 亚洲一级一片aⅴ在线观看| 国内精品宾馆在线| 免费观看精品视频网站| 中文字幕av成人在线电影| 国产成年人精品一区二区| 亚洲四区av| 国产久久久一区二区三区| 97超碰精品成人国产| 国产精品久久久久久久电影| 国产一区亚洲一区在线观看| 麻豆成人午夜福利视频| 亚洲av在线观看美女高潮| 夜夜看夜夜爽夜夜摸| 高清av免费在线| 人妻系列 视频| 伦理电影大哥的女人| 亚洲av.av天堂| 在线免费十八禁| 国产成人午夜福利电影在线观看| 日本午夜av视频| 能在线免费看毛片的网站| 一级毛片aaaaaa免费看小| 街头女战士在线观看网站| 嫩草影院入口| 夜夜爽夜夜爽视频| 男女啪啪激烈高潮av片| 一夜夜www| 国产综合懂色| 男人舔奶头视频| 免费观看无遮挡的男女| 午夜久久久久精精品| 久久热精品热| 啦啦啦中文免费视频观看日本| 日日啪夜夜爽| 国产女主播在线喷水免费视频网站 | 日韩av在线大香蕉| 日韩欧美国产在线观看| 国产精品综合久久久久久久免费| 青青草视频在线视频观看| 午夜久久久久精精品| 久久热精品热| 色播亚洲综合网| 国产淫语在线视频| 亚洲国产精品sss在线观看| 天天躁日日操中文字幕| 中文字幕人妻熟人妻熟丝袜美| 国内精品美女久久久久久| 我要看日韩黄色一级片| 亚洲精品乱码久久久v下载方式| 插逼视频在线观看| 色综合站精品国产| 精品99又大又爽又粗少妇毛片| 我的老师免费观看完整版| 偷拍熟女少妇极品色| 又爽又黄a免费视频| 日韩人妻高清精品专区| 六月丁香七月| 国产成人精品一,二区| 我的老师免费观看完整版| 青春草亚洲视频在线观看| av线在线观看网站| 国产免费一级a男人的天堂| 在线观看美女被高潮喷水网站| 亚洲国产精品国产精品| 亚洲精品亚洲一区二区| 国产精品久久久久久av不卡| av专区在线播放| 精华霜和精华液先用哪个| 亚洲精品影视一区二区三区av| 免费观看精品视频网站| 久久热精品热| 女人十人毛片免费观看3o分钟| 夜夜爽夜夜爽视频| 深夜a级毛片| 99久久精品国产国产毛片| 中文资源天堂在线| 久久99热这里只有精品18| kizo精华| 只有这里有精品99| av国产久精品久网站免费入址| 日韩视频在线欧美| av免费观看日本| 一本久久精品| 高清视频免费观看一区二区 | 亚洲av二区三区四区| 99久久精品热视频| 日韩成人av中文字幕在线观看| 97热精品久久久久久| 国产成人a∨麻豆精品| 国产亚洲精品久久久com| 日韩中字成人| 91午夜精品亚洲一区二区三区| 一级片'在线观看视频| 最近的中文字幕免费完整| 成人高潮视频无遮挡免费网站| 久久久精品94久久精品| 亚洲美女搞黄在线观看| 国产永久视频网站| 久久97久久精品| 亚洲在线自拍视频| av免费观看日本| 国产精品熟女久久久久浪| 国产午夜精品论理片| 亚洲av免费在线观看| 亚洲精品中文字幕在线视频 | 久久久久精品性色| 一个人看视频在线观看www免费| 97超视频在线观看视频| 亚洲精品456在线播放app| 大话2 男鬼变身卡| 成人漫画全彩无遮挡| 丝袜喷水一区| 美女主播在线视频| 能在线免费观看的黄片| 黄色日韩在线| 舔av片在线| 国产日韩欧美在线精品| 五月伊人婷婷丁香| 国产成人aa在线观看| 女人久久www免费人成看片| 亚洲欧洲日产国产| 乱系列少妇在线播放| 赤兔流量卡办理| 色综合亚洲欧美另类图片| 久久97久久精品| 国产综合懂色| 91av网一区二区| 日本欧美国产在线视频| 国产探花极品一区二区| 精品久久久久久久久av| 中文字幕制服av| 久久99蜜桃精品久久| 国产精品久久久久久精品电影小说 | 国产女主播在线喷水免费视频网站 | 少妇熟女欧美另类| 国产熟女欧美一区二区| 观看美女的网站| 波多野结衣巨乳人妻| 黑人高潮一二区| 精品99又大又爽又粗少妇毛片| 只有这里有精品99| 乱系列少妇在线播放| 欧美三级亚洲精品| 一二三四中文在线观看免费高清| av在线亚洲专区| 国国产精品蜜臀av免费| 午夜久久久久精精品| 男人舔女人下体高潮全视频| 秋霞在线观看毛片| ponron亚洲| 国内精品宾馆在线| 三级男女做爰猛烈吃奶摸视频| 青青草视频在线视频观看| 欧美潮喷喷水| 国产男人的电影天堂91| 日韩欧美国产在线观看| 亚洲精品久久久久久婷婷小说| 精品欧美国产一区二区三| 欧美不卡视频在线免费观看| 淫秽高清视频在线观看| 亚洲丝袜综合中文字幕| 日韩中字成人| 女人被狂操c到高潮| 神马国产精品三级电影在线观看| 精品久久久精品久久久| 不卡视频在线观看欧美| 乱人视频在线观看| 国产免费又黄又爽又色| 在线观看一区二区三区| 秋霞在线观看毛片| 国产免费一级a男人的天堂| 嫩草影院入口| 欧美不卡视频在线免费观看| 美女xxoo啪啪120秒动态图| 欧美变态另类bdsm刘玥| 亚洲18禁久久av| 天堂影院成人在线观看| 久久精品国产自在天天线| 一级黄片播放器| 国产免费一级a男人的天堂| 久久国内精品自在自线图片| 精品国产露脸久久av麻豆 | 韩国高清视频一区二区三区| 久久久亚洲精品成人影院| 亚洲欧美中文字幕日韩二区| 国产女主播在线喷水免费视频网站 | 免费看日本二区| 免费看a级黄色片| 国产视频内射| 国内少妇人妻偷人精品xxx网站| 亚洲国产精品成人久久小说| 国内精品美女久久久久久| 国内精品宾馆在线| 国产免费福利视频在线观看| 好男人在线观看高清免费视频| 欧美最新免费一区二区三区| 大片免费播放器 马上看| 波野结衣二区三区在线| av国产久精品久网站免费入址| 大陆偷拍与自拍| 卡戴珊不雅视频在线播放| 三级经典国产精品| 国产精品久久视频播放| 在线a可以看的网站| 精品久久久精品久久久| 免费av不卡在线播放| 亚洲婷婷狠狠爱综合网| 成人亚洲欧美一区二区av| 国产精品久久视频播放| 最近中文字幕2019免费版| 插阴视频在线观看视频| 免费观看在线日韩| 老司机影院成人| 久久热精品热| 麻豆精品久久久久久蜜桃| 自拍偷自拍亚洲精品老妇| 国产精品国产三级国产专区5o| 街头女战士在线观看网站| 久热久热在线精品观看| 精品国产三级普通话版| 日韩欧美国产在线观看| 国产精品人妻久久久影院| 中文字幕久久专区| 97在线视频观看| 久久久久免费精品人妻一区二区| 18禁在线播放成人免费| 国产成人freesex在线| 在线观看免费高清a一片| 欧美日韩综合久久久久久| 亚洲四区av| 日韩一本色道免费dvd| 久久99热6这里只有精品| av免费观看日本| 伊人久久国产一区二区|