• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    氰基橋聯(lián)的Fe2Ni雙之字鏈的合成與磁性

    2019-09-09 08:08:00賀艷麗孟銀杉孫慧瑩姜文靜矯成奇
    無機(jī)化學(xué)學(xué)報 2019年9期
    關(guān)鍵詞:大連理工大學(xué)精細(xì)化工文靜

    賀艷麗 孟銀杉 孫慧瑩 姜文靜 矯成奇 劉 濤

    (大連理工大學(xué)精細(xì)化工國家重點(diǎn)實(shí)驗(yàn)室,大連 116024)

    0 Introduction

    Single-chain magnets(SCMs),which can exhibit slow magnetic relaxation and magnetic hysteresis below blocking temperature,have attracted considerable attention and great interests because of their potential application in high-density information storage and spintronic devices[1-8]. This conception was firstly proposed by Glauber in 1960s that Ising magnetic chain was expected to exhibits low magnetic relaxation behavior[9].However,it was not until 2001 Gatteschi and co-workers reported the first single-chain magnet[Co(hfac)2(NITPHOMe)][10].In recent decades,considerable SCMs with chirality,porosity,spin-crossover,photo-switchable properties have been reported[10-16].In order to obtain high-performance SCMs,two challenges have to be solved:(1)constructing magnetic chains with strong intrachain ferromagnetic interactions so as to meet the Ising chain requirement;(2)minimizing the interchain interaction to avoid the long-range magnetic ordering.Utilizing metallocyanate building blocks as multidentate ligands is an effective approach for constructing SCMs for that it is helpful to form the one-dimensional structure and transmit the intrachain magnetic interactions[14,17-19].Particularly,tetracyanometallate building block facilitates the construction of one-dimensional chain structure,wherein two of the four cyano groups can coordinate with appropriate metal ions to form a double-zigzag chain,and the other two cyano groups can form hydrogen bonding interactions with solvent molecules.The recent study have also dedicated the important role of tetracyanometallate building blocks in the construction of photo-switchable single-chain magnets[20-21].

    In order to obtain the SCMs,we plan to use tetracyanometallate building block to link spin carriers such as Co2+,Ni2+,Mn3+and Fe2+into a ferromagnetic chain.The interchain magnetic interaction should be minimized to avoid the long-range ordering.Therefore,suitable diamagnetic auxiliary ligands should be carefully selected to make chains magnetically wellisolated and ensure the uniaxial anisotropy of the transition metal ions[11,13,22-25].In this work,we selected Li[Fe(Ⅲ)(bpy)(CN)4](bpy=2,2′-bipyridine) as the building block to react with Ni(Ⅱ) ions.The Ni(Ⅱ) ion was chosen because the interactions between low-spin Fe(Ⅲ) and high-spin Ni(Ⅱ) are generally ferromagnetic.Three auxiliary ligands 4-phenylpyridine (bp),4-(phenyldiazenyl)pyridine(papy),and 1,2-di(pyridin-4-yl)diazene (azp)were applied,forming three cyanobridged FeⅢ2NiⅡdouble-zigzag chain complexes:{[Fe(bpy)(CN)4]2[Ni(bp)2]·2H2O}n(1),{[Fe(bpy)(CN)4]2[Ni(papy)2]·H2O}n(2)and{[Fe(bpy)(CN)4]2[Ni(azp)]·4H2O}n(3).Herein,we reported the synthesis,crystal structures and magnetic properties of compounds 1~3.

    1 Experimental

    1.1 Materials and methods

    All organic reagents were commercially obtained and used without further purification.Li[Fe(bpy)(CN)4]and the ancillary ligands L(L=bp,papy and azp)were synthesized according to the literature methods[26].Elemental analyses(C,H and N)were performed on an ElementarVario ELⅢanalyzer.Magnetic measurements of the samples were performed on a Quantum Design SQUID(MPMS XL-7)magnetometer.Data were corrected for the diamagnetic contribution calculated from Pascal constants.

    1.2 Synthesis of{[Fe(bpy)(CN)4]2[Ni(bp)2]·2H2O}n(1)

    A 1.0 mL aqueous solution of Ni(BF4)2·6H2O(0.005 mmol)was placed at the bottom of a test tube,a mixture of methanol and water(1:4,V/V,2 mL)was gently layered on the top of the solution,and then a 1.0 mL methanol solution of Li[Fe(bpy)(CN)4](0.01 mmol)and 4-phenylpyridine(0.01 mmol)was carefully added as the third layer.After four weeks,red crystals of 1 were obtained and collected after washed with water and air dried.Yield:57% based on Ni(BF4)2·6H2O.Anal.Calcd.for C50H38Fe2N14NiO2(%):C 57.84,H 3.66,N 18.89;Found(%):C 57.76,H 3.62,N 18.72.

    1.3 Synthesis of{[Fe(bpy)(CN)4]2[Ni(papy)2]·H2O}n(2)

    Red crystals of compound 2 were obtained and collected in the same way as for compound 1,except using 4-(phenyldiazenyl)pyridine(0.01 mmol)to replace 4-phenylpyridine(0.01 mmol).Red crystals appeared after four weeks.Yield:61%based on Ni(BF4)2·6H2O.Anal.Calcd.for C50H36Fe2N18NiO(%):C 55.79,H 3.35,N 23.43;Found(%):C 55.68,H 3.40,N 23.39.

    1.4 Synthesis of{[Fe(bpy)(CN)4]2[Ni(azp)]·4H2O}n(3)

    One milliliter aqueous solution of Ni(ClO4)2·6H2O(0.005 mmol)was placed at the bottom of a test tube.A mixture of methanol and water(1∶2,V/V,2 mL)was gently layered on the top of the solution,and then 1.0 mL methanol solution of Li[Fe(bpy)(CN)4](0.01 mmol)and 1,2-di(pyridin-4-yl)diazene(0.01 mmol)was carefully added as the third layer.After few weeks,red crystals of 3 were obtained and collected after washed with water and air dried.Yield:54%based on Ni(ClO4)2·6H2O.Anal.Calcd.for C38H32Fe2N16NiO4(%):C 48.14,H 3.38,N 23.65;Found(%):C 48.20,H 3.32,N 23.58.

    1.5 X-ray crystallography

    The data were collected on a Bruker Smart APEXⅡX-diffractometer equipped with graphite monochromated Mo Kα radiation(λ=0.071 073 nm)using the SMART and SAINT[27]programs at 298 K for compounds 1~3.Final unit cell parameters were based on all observed reflections from integration of all frame data.The structures were solved in the space group by direct method and refined by the full-matrix least-squares using SHELXTL-97 fitting on F2[28].For compounds 1~3,all non-hydrogen atoms were refined anisotropically.The hydrogen atoms of organic ligands were located geometrically and fixed isotropic thermal parameters.The crystal data and details of the structure refinement of compounds 1~3 are summarized in Table 1.Selected bond distances and angles of compounds 1~3 are listed in Table 2.

    CCDC:1904149,1;1904150,2;1904151,3.

    Table 1 Crystal data and structure refinements for compounds 1~3

    Table 2 Selected bond lengths(nm)and angles(°)for compounds 1~3

    Symmetry transformations used to generate equivalent atoms:#1:-x+2,-y+1,-z+2;#2:x,-y+1,z+1/2;#3:x+2,y,-z+3/2 for 1;#1:-x+1,-y+1,-z+1;#2:x-1,y,z;#3:-x,-y+1,-z+1;#4:x+1,y,z for 2;#1:-x,-y,-z;#2:x,-y,z;#3:-x,y,-z;#4:-x+1,y,-z for 3.

    2 Results and discussion

    2.1 Structure characterization

    Single-crystal X-ray diffraction analysis revealed that 1 crystallizes in the monoclinic space group C2/c,2 in the triclinic space group P1,and 3 in the monoclinic space group I2/m,respectively(Table 1).All of them show a similar skeleton,constructed by the cyano-bridged FeⅢ2NiⅡdouble-zigzag chains.Uncoordinated water molecules are located between the chains.Each repeating unit comprises of neutral[Fe(bpy)(CN)4]2Ni(L)2,in which each nickel ion is coordinated with two ligands L along the apical direction.Different from compounds 1 and 2,the neutral layer of compound 3 is further linked by the bidentate ligands along the apical direction of the Ni(Ⅱ)centers.Within the repeating unit,the nickel ion is coordinated by two nitrogen atoms from the ligands L and four cyanide nitrogen atoms from two contiguous[Fe(bpy)(CN)4]-portions.Each iron ion is located in an octahedral environment,comprising four carbon atoms from the cyanide groups and two nitrogen atoms from the bidentate ligand bpy.

    For compound 1,the Fe-N and Fe-C bond lengths are 0.197(5)~0.198(5)nm and 0.189(7)~0.195(10)nm,respectively,which are characteristic of the LS Fe(Ⅲ)ions.The Ni-N bond distances are in a range of 0.204(6)~0.210(7)nm,which are in good agreement with those of high-spin Ni(Ⅱ)compounds.The Fe-C≡N angles are almost linear with bond angles of 174.9(7)°~179.1(7)°.The values of the C≡N-Ni angles are 161.4(5)°~170.1(6)°.Meanwhile,the π…π (0.376 1 nm)stacking interactions exist between the pyridine rings of adjacent bpy ligands and aromatic rings of the adjacent 4-phenylpyridine ligands. The nearest distance between the adjacent pyridine rings is 0.376 1(2)nm,and the nearest distance of aromatic rings of the 4-phenylpyridine ligands is 0.384 8(2)nm.The shortest intrachain Fe…Fe,F(xiàn)e…Ni and Ni…Ni distances are 0.707 8(3),0.502 9(2)and 0.675 9(3)nm,respectively.The nearest interchain Ni…Ni distance is 1.454 8(6)nm,which indicates that interchain magnetic interactions should be weak.

    For compound 2,the Fe-N and Fe-C bond lengths are in a range of 0.197 7(15)~0.197 9(15)nm and 0.190 9(19)~0.196 4(2)nm,respectively.The Ni-N distances range from 0.209 8(15)to 0.214 6(15)nm.The Fe-C≡N linkages are close to linearity with bond angles of 172.2(16)°~178.1(18)°.The bond lengths and bond angles of compound 2 confirm that the Fe(Ⅲ)is in the low-spin state.In comparison with compound 1,the C≡N-Ni angles fall in a range of 149.08(14)°~163.85(14)°,which depart significantly from linearity.The shortest intrachain Fe…Fe,F(xiàn)e…Ni and Ni…Ni distances are 0.646 1(20),0.507 0(34)and 0.646 1(47)nm,respectively.The nearest interchain Ni…Ni distance is 1.403 2(41)nm.

    For compound 3,the Fe-N(0.197 7(4)nm)and Fe-C(0.191 1(4)~0.194 6(5)nm)bond lengths are in good agreement with the reported LS Fe(Ⅲ)compounds.The Ni-N bond distances are 0.207 6(4)~0.210 5(5)nm.The Fe-C≡N angles deviate slightly from linearity,which are in a range of 172.3(4)°~178.1(5)°.The values of the C≡N-Ni angles are 160.7(4)°.The shortest intrachain Fe…Fe,F(xiàn)e…Ni and Ni…Ni distances are 0.662 2(5),0.500 9(7)and 0.662 2(5)nm,respectively.The nearest interchain Ni…Ni distance is 1.322 9(8)nm.Compared with compounds 2 and 3,compound 1 exhibits longer interchain distances,which may diminish the interchain magnetic interactions and benefit for slow magnetic relaxation of SCMs.To further elucidate the differences of them,we applied geometry analysis to see how the ancillary ligands influence the coordination environment of Ni(Ⅱ)ion(Table 3).One can note that coordination environments of Ni(Ⅱ) in compounds 1~3 are all octahedron type and the CShM value of Ni for compound 1 is the highest.This indicates that the Ni(Ⅱ)ion in 1 locates in a more distorted octahedron environment.

    Table 3 SHAPE analysis of Ni six-coordinated geometry in compound 1~3

    2.2 Magnetic characterizations

    Fig.3 Temperature-dependent magnetic susceptibilities of 1(a),2(b)and 3(c)in a temperature range of 2~300 K under an applied field of 1 000 Oe and field-dependent magnetizations of 1(d),2(e)and 3(f)

    Temperature-dependent magnetic susceptibilities data of 1~3 were collected under a DC field of 1 000 Oe in a temperature range of 2~300 K(Fig.3).The χT values for 1,2 and 3 were 2.90,2.74 and 3.06 cm3·mol-1·K at 300 K,respectively,which are approximatively in a range of 2.48~2.80 cm3·mol-1·K expected for two LS Fe(Ⅲ) (S=1/2,g=2.6~2.8)and one HS Ni(Ⅱ)(S=1,g=2.2~2.3).When the temperature went down,χT values of 1~3 first increased smoothly and then increased rapidly at 80 ,60 and 50 K,respectively,reaching the maximum values of 52.16,35.68 and 14.59 cm3·mol-1·K at 4.2,3.9 and 2.4 K.The χT vs T plots indicate the typical ferromagnetic interaction between Fe(Ⅲ) and Ni(Ⅱ) ions within the chain.When the temperature decreased further to 2 K,the χT values of 1 and 2 decreased and reached the values of 33.1 and 25.50 cm3·mol-1·K,respectively.It is probably caused by the zero-field splitting of Ni(Ⅱ)ions and/or weak interchain antiferromagnetic interactions.In the temperature range of 30~300 K,the magnetic susceptibility data of 1~3 were fitted with the Curie-Weiss law,giving Curie constant C of 2.78,2.65 and 2.55 cm3·mol-1·K and Weiss constant θ of 11.27,9.29 and 3.05 K,respectively.The positive Weiss constants of 1~3 further confirm the ferromagnetic coupling interactions between Fe(Ⅲ) and Ni(Ⅱ) ions.Meanwhile,the field-dependent magnetization at 2 K also confirms the ferromagnetic behavior.The isothermal magnetization of 1~3 first increased linearly and then increased gradually,reaching a maximum value of 4.35Nβ,4.20Nβ and 4.52Nβ at 50 kOe,respectively.The values are close to the saturation value for two magnetically isolated low-spin Fe(Ⅲ)ions and one magnetically isolated high-spin Ni(Ⅱ)ion.

    Fig.4 Frequency dependence of ac magnetic signals of compounds 2(a)and 3(b)at H ac=3.5 Oe and H dc=0 Oe;Frequency dependence of ac magnetic signals of compound 1(c,d)

    To further probe the dynamics of the magnetization of the three compounds,the alternating current(ac)magnetic susceptibilities were studied.For compounds 2 and 3,no obvious frequency-dependent in-phase (χ′)and out-of-phase signals(χ″)were observed,indicating that compounds 2 and 3 are not single-chain magnets(Fig.4(a)and(b)).For compound 1,temperature-and frequency-dependent in-phase components(χ′)were observed below 2.8 K,as shown in Fig.4(c).Moreover,the plots of field-cooled magnetization(FC)and zero-field-cooled magnetization(ZFC)under a field of 100 Oe of 1 showed no bifurcation(Fig.5),excluding the spontaneous magnetization above 1.8 K.The generalized Debye model was used to extract the energy barrier based on the relationship of ln(χ′/χ″)=ln(ωτ0)+Ea/(kBT).The obtained energy barrier Ea/kBwas 10.9 K and the relaxation time τ0was 7.8×10-4s(Fig.6),which are in the typical range for SCMs.

    Fig.5 Field-cooled magnetization(FC)and zero fieldcooled magnetization(ZFC)curves of compound 1

    Fig.6 Plots of ln(χ″/χ′)vs 1/T for 1

    Three cyano-bridged FeⅢ2NiⅡdouble-zigzag chains show different magnetic behaviors. The neutral ancillary ligands should be the main reason for the different magnetic behaviors of them.For compounds 1~3,ferromagnetic interactions exist between the Fe(Ⅲ)and Ni(Ⅱ) ions,which can be rationalized according to the orthogonality of the magnetic orbitals of the lowspin Fe(Ⅲ) and high-spin Ni(Ⅱ) ions[29-35].Compared to compounds 2 and 3,the Ni-N≡C bending angle of compound 1 is smaller,which presents a stronger ferromagnetic interaction.In addition,when the Ni-N≡C angles further decrease,an antiferromagnetic contribution will arise and the overall magnetic coupling would be weakened[35].Although there exist π…π stacking interactions between the interchain in compound 1,the nearest interchain Ni…Ni distance 1.454 8(6)nm is the largest among the three compounds.Such a large interchain distance will diminish the interchain magnetic interactions and benefit for the SCM behavior.It is worth noting that steric hindrance can enhance the bending of the C≡N-Ni angle and elongate the Ni-N bond lengths.The smaller bending angle of C≡N-Ni and shorter Ni-N bond length should be also responsible for the singlechain magnet behavior of compound 1.For the ligand shape,these results indicate that the introduction of long monodentate ligand plays an important role for obtaining SCMs.

    3 Conclusions

    In summary,three new cyano-bridged FeⅢ2NiⅡdouble-zigzag chains,{[Fe(bpy)(CN)4]2[Ni(bp)2]·2H2O}n(1),{[Fe(bpy)(CN)4]2[Ni(papy)2]·H2O}n(2)and{[Fe(bpy)(CN)4]2[Ni(azp)]·4H2O}n(3)were synthesized.The magnetic studies demonstrate the existence of ferromagnetic interactions between Fe(Ⅲ) and Ni(Ⅱ) ions and slow magnetic relaxation behavior of compound 1.Compounds 2 and 3 show ferromagnetic behavior but no single-chain magnets property.Our results demonstrate that ancillary ligands play an important role in influencing the intra-and interchain interactions as well as the local coordination environments.This work is useful for the design of new SCMs in the future.

    猜你喜歡
    大連理工大學(xué)精細(xì)化工文靜
    北京華立精細(xì)化工公司
    泉州永春駿能精細(xì)化工有限公司
    中國造紙(2022年8期)2022-11-24 09:43:40
    呵護(hù)
    Research on the Globalization of English in the Internet era
    大東方(2019年1期)2019-09-10 20:30:40
    精細(xì)化工車間“三字訣” 讓精益安全理念落地生根
    An analysis of Speech Act Theory in Horton Hears a Who
    西部論叢(2019年10期)2019-03-20 05:18:14
    Lexical Approach in Language Teaching and Learning
    精細(xì)化工廢水污染特性分析及控制策略
    化工管理(2017年23期)2017-03-04 07:59:02
    偽隨機(jī)碼掩蔽的擴(kuò)頻信息隱藏
    the reanalyze of PPP approach and application in practical teaching
    国产视频内射| 国产探花极品一区二区| 熟女电影av网| 草草在线视频免费看| 亚洲av一区综合| 亚洲av二区三区四区| 2022亚洲国产成人精品| 一级a做视频免费观看| videossex国产| 女的被弄到高潮叫床怎么办| 99re6热这里在线精品视频| 天天躁夜夜躁狠狠久久av| 久久久成人免费电影| 久久精品久久精品一区二区三区| 国产精品蜜桃在线观看| 岛国毛片在线播放| 精品一区二区免费观看| 六月丁香七月| 久久精品国产亚洲av天美| 国产欧美亚洲国产| 少妇人妻 视频| 亚洲色图综合在线观看| 啦啦啦啦在线视频资源| 国产精品不卡视频一区二区| 精品人妻视频免费看| 日韩强制内射视频| 国产精品久久久久久精品电影小说 | 亚洲精品国产av成人精品| 亚洲久久久久久中文字幕| 99re6热这里在线精品视频| 国产黄频视频在线观看| 久久久精品欧美日韩精品| 狂野欧美白嫩少妇大欣赏| 中文字幕久久专区| 男女边摸边吃奶| 日韩av免费高清视频| 亚洲四区av| 国产v大片淫在线免费观看| 国产色爽女视频免费观看| 日韩欧美一区视频在线观看 | 老司机影院成人| 久久久a久久爽久久v久久| 网址你懂的国产日韩在线| 五月伊人婷婷丁香| av国产久精品久网站免费入址| 欧美高清性xxxxhd video| 亚洲国产日韩一区二区| 草草在线视频免费看| 一个人观看的视频www高清免费观看| 国产精品蜜桃在线观看| 亚洲成色77777| 亚洲欧美成人综合另类久久久| 亚洲aⅴ乱码一区二区在线播放| 特大巨黑吊av在线直播| 久久女婷五月综合色啪小说 | 色视频www国产| 熟女av电影| 亚洲精品久久久久久婷婷小说| 欧美另类一区| 国产精品久久久久久精品古装| 色5月婷婷丁香| 久久99精品国语久久久| 国产黄片视频在线免费观看| 久久精品国产亚洲av天美| 黄色日韩在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日韩,欧美,国产一区二区三区| 国产午夜精品久久久久久一区二区三区| 中国国产av一级| 韩国av在线不卡| 97超碰精品成人国产| 午夜日本视频在线| 一级二级三级毛片免费看| 干丝袜人妻中文字幕| 搞女人的毛片| 亚洲综合色惰| 免费观看的影片在线观看| 国产一区有黄有色的免费视频| 国产精品久久久久久久电影| 丰满人妻一区二区三区视频av| 免费观看的影片在线观看| 国产色婷婷99| 自拍偷自拍亚洲精品老妇| 91久久精品国产一区二区三区| 亚洲欧美日韩另类电影网站 | 成年版毛片免费区| xxx大片免费视频| 男人爽女人下面视频在线观看| 国产淫语在线视频| 日韩人妻高清精品专区| 国产精品爽爽va在线观看网站| 亚洲精品第二区| kizo精华| 日韩不卡一区二区三区视频在线| 日韩亚洲欧美综合| 欧美97在线视频| 国内少妇人妻偷人精品xxx网站| 色哟哟·www| 国产片特级美女逼逼视频| 男女无遮挡免费网站观看| 欧美精品人与动牲交sv欧美| 黄色怎么调成土黄色| 国产91av在线免费观看| 纵有疾风起免费观看全集完整版| 午夜免费鲁丝| 狠狠精品人妻久久久久久综合| 一个人看的www免费观看视频| 日韩制服骚丝袜av| 高清欧美精品videossex| 男人添女人高潮全过程视频| 日本与韩国留学比较| 国精品久久久久久国模美| 熟妇人妻不卡中文字幕| 精品国产一区二区三区久久久樱花 | 如何舔出高潮| 日本三级黄在线观看| 国产在线男女| 日韩一区二区视频免费看| 欧美+日韩+精品| 最近中文字幕2019免费版| 亚洲激情五月婷婷啪啪| 亚洲欧美精品专区久久| 免费电影在线观看免费观看| 国产高清国产精品国产三级 | 大香蕉97超碰在线| 亚洲精品成人av观看孕妇| 亚洲av成人精品一区久久| 交换朋友夫妻互换小说| 欧美高清成人免费视频www| 日日啪夜夜撸| 亚洲欧美日韩卡通动漫| 国产成人精品一,二区| 国产永久视频网站| 69人妻影院| 99久久人妻综合| 亚洲av日韩在线播放| 久久精品综合一区二区三区| 国产69精品久久久久777片| 看十八女毛片水多多多| 国产黄a三级三级三级人| 日韩一区二区三区影片| 免费av不卡在线播放| 日韩三级伦理在线观看| 国产精品99久久99久久久不卡 | 午夜老司机福利剧场| 精品久久久噜噜| 婷婷色麻豆天堂久久| 亚洲欧美日韩卡通动漫| 日韩欧美一区视频在线观看 | 国产黄色免费在线视频| 亚洲国产精品成人综合色| 国产大屁股一区二区在线视频| 麻豆久久精品国产亚洲av| 久久ye,这里只有精品| 午夜精品国产一区二区电影 | 亚洲婷婷狠狠爱综合网| 国产午夜精品一二区理论片| 国产精品秋霞免费鲁丝片| 国内精品宾馆在线| 精品少妇黑人巨大在线播放| 精品午夜福利在线看| 99热全是精品| 肉色欧美久久久久久久蜜桃 | 成人高潮视频无遮挡免费网站| 我的女老师完整版在线观看| 免费看av在线观看网站| 日本黄大片高清| 精品一区在线观看国产| av黄色大香蕉| 欧美精品一区二区大全| 卡戴珊不雅视频在线播放| 99热这里只有是精品50| 哪个播放器可以免费观看大片| videossex国产| 伊人久久国产一区二区| 免费人成在线观看视频色| 69av精品久久久久久| 婷婷色综合www| 国产91av在线免费观看| 天天一区二区日本电影三级| 亚洲精品日韩av片在线观看| 久久综合国产亚洲精品| 最近的中文字幕免费完整| 少妇的逼水好多| 交换朋友夫妻互换小说| 成人国产av品久久久| 亚洲va在线va天堂va国产| 99热全是精品| a级一级毛片免费在线观看| av网站免费在线观看视频| 国国产精品蜜臀av免费| 亚洲欧美日韩另类电影网站 | 国产免费又黄又爽又色| 在线播放无遮挡| 在线观看一区二区三区| 成人特级av手机在线观看| 久久久久九九精品影院| 国产大屁股一区二区在线视频| kizo精华| 五月伊人婷婷丁香| 精品酒店卫生间| 国产成人免费观看mmmm| 久久久色成人| 欧美变态另类bdsm刘玥| 白带黄色成豆腐渣| 色吧在线观看| 国产 精品1| 亚洲av成人精品一区久久| 成人亚洲欧美一区二区av| 少妇人妻久久综合中文| 午夜老司机福利剧场| 97在线人人人人妻| 色网站视频免费| 国产精品一及| 一区二区三区乱码不卡18| 亚洲国产精品国产精品| 看免费成人av毛片| 日韩中字成人| 性色avwww在线观看| 99热这里只有是精品50| 久久久久久久久久成人| 久久精品国产亚洲网站| 最近最新中文字幕大全电影3| 国产精品一区二区在线观看99| 亚洲欧美精品自产自拍| 蜜臀久久99精品久久宅男| 久久精品综合一区二区三区| 春色校园在线视频观看| 色视频www国产| 国产在线男女| 国产成人精品久久久久久| 亚洲综合色惰| 最近手机中文字幕大全| 天堂网av新在线| 国产精品一区二区三区四区免费观看| 欧美xxⅹ黑人| xxx大片免费视频| 久久久久九九精品影院| 国产亚洲av片在线观看秒播厂| 国产高清不卡午夜福利| 爱豆传媒免费全集在线观看| 日韩免费高清中文字幕av| 亚洲精品一区蜜桃| 国产成人freesex在线| 国产真实伦视频高清在线观看| av在线天堂中文字幕| 久久久a久久爽久久v久久| 亚洲精品日韩av片在线观看| a级毛色黄片| 国产欧美另类精品又又久久亚洲欧美| 久久久久久久国产电影| 久久国产乱子免费精品| 久久99热6这里只有精品| 肉色欧美久久久久久久蜜桃 | 成人午夜精彩视频在线观看| 97超视频在线观看视频| 久久精品国产亚洲av天美| 亚洲精品,欧美精品| 亚洲精品日本国产第一区| 九草在线视频观看| 久久人人爽av亚洲精品天堂 | 22中文网久久字幕| 免费观看的影片在线观看| 免费大片黄手机在线观看| 精品久久久久久久久av| 又爽又黄a免费视频| 国产乱人视频| 在线免费十八禁| 国产男女超爽视频在线观看| 日日摸夜夜添夜夜爱| 国产又色又爽无遮挡免| 九色成人免费人妻av| 又爽又黄a免费视频| 精华霜和精华液先用哪个| 午夜激情福利司机影院| 永久免费av网站大全| 六月丁香七月| 一个人看视频在线观看www免费| 国产成人福利小说| 精品视频人人做人人爽| 我的女老师完整版在线观看| 国产在线一区二区三区精| av播播在线观看一区| 水蜜桃什么品种好| 我的老师免费观看完整版| av国产久精品久网站免费入址| 内射极品少妇av片p| 欧美另类一区| 亚洲av中文字字幕乱码综合| 一本色道久久久久久精品综合| 国产v大片淫在线免费观看| 亚洲精品自拍成人| 久久精品夜色国产| 国产永久视频网站| 精品一区二区三区视频在线| 肉色欧美久久久久久久蜜桃 | 午夜福利网站1000一区二区三区| 亚洲va在线va天堂va国产| 99久久九九国产精品国产免费| 99九九线精品视频在线观看视频| kizo精华| 在线观看国产h片| 国产 一区 欧美 日韩| 少妇丰满av| 最近的中文字幕免费完整| 亚洲第一区二区三区不卡| 91久久精品国产一区二区成人| 在线播放无遮挡| 一级片'在线观看视频| 国产 一区 欧美 日韩| 亚洲怡红院男人天堂| 女的被弄到高潮叫床怎么办| eeuss影院久久| 亚洲成人一二三区av| 午夜福利在线在线| 一级黄片播放器| 91久久精品电影网| 亚洲av免费高清在线观看| 夫妻性生交免费视频一级片| videossex国产| 女人久久www免费人成看片| 亚洲av一区综合| 91精品一卡2卡3卡4卡| 男女边吃奶边做爰视频| 老女人水多毛片| 2022亚洲国产成人精品| 最近最新中文字幕免费大全7| 亚洲美女视频黄频| 精品一区二区三区视频在线| 亚洲国产精品999| 亚洲av福利一区| 亚洲精品456在线播放app| 亚洲成人av在线免费| 久久久久久久午夜电影| 国产 一区 欧美 日韩| 欧美精品一区二区大全| 嫩草影院新地址| 乱码一卡2卡4卡精品| 中文字幕av成人在线电影| 国产精品精品国产色婷婷| 欧美日韩亚洲高清精品| 人人妻人人澡人人爽人人夜夜| 大片电影免费在线观看免费| 在线免费十八禁| 久久精品国产亚洲av涩爱| 最新中文字幕久久久久| 大香蕉97超碰在线| 少妇的逼水好多| 免费播放大片免费观看视频在线观看| 日本欧美国产在线视频| 午夜视频国产福利| 亚洲真实伦在线观看| 91精品伊人久久大香线蕉| 在线观看一区二区三区激情| 91aial.com中文字幕在线观看| 男插女下体视频免费在线播放| 黄色日韩在线| 日韩免费高清中文字幕av| 美女脱内裤让男人舔精品视频| 一区二区三区免费毛片| 欧美区成人在线视频| 欧美成人a在线观看| 日韩国内少妇激情av| 久久精品综合一区二区三区| 日本一本二区三区精品| 各种免费的搞黄视频| videos熟女内射| 最近最新中文字幕免费大全7| 中文在线观看免费www的网站| 国产精品一及| 成人综合一区亚洲| 男女边吃奶边做爰视频| 熟女av电影| 偷拍熟女少妇极品色| 国产又色又爽无遮挡免| 视频中文字幕在线观看| 久久鲁丝午夜福利片| 久久99热这里只频精品6学生| 国产一区二区三区综合在线观看 | 国产精品久久久久久精品电影小说 | 亚洲精品乱码久久久久久按摩| 狂野欧美激情性bbbbbb| 国产黄频视频在线观看| 亚洲av不卡在线观看| 日韩人妻高清精品专区| 最后的刺客免费高清国语| 久久亚洲国产成人精品v| 亚洲av国产av综合av卡| 久久人人爽av亚洲精品天堂 | 国产日韩欧美亚洲二区| 久久久亚洲精品成人影院| 亚洲一级一片aⅴ在线观看| av又黄又爽大尺度在线免费看| 日韩一区二区三区影片| 肉色欧美久久久久久久蜜桃 | 亚洲精品乱码久久久v下载方式| 日本-黄色视频高清免费观看| 欧美性猛交╳xxx乱大交人| 新久久久久国产一级毛片| 神马国产精品三级电影在线观看| 亚洲精品国产av成人精品| 伦精品一区二区三区| 精品久久久久久久久av| 又爽又黄a免费视频| 亚洲成人av在线免费| 永久免费av网站大全| 国产精品一及| 嘟嘟电影网在线观看| 久久精品国产a三级三级三级| 制服丝袜香蕉在线| 久久久精品欧美日韩精品| 国产 一区 欧美 日韩| 97人妻精品一区二区三区麻豆| 男人爽女人下面视频在线观看| 白带黄色成豆腐渣| av又黄又爽大尺度在线免费看| 精品99又大又爽又粗少妇毛片| 亚洲一区二区三区欧美精品 | 在线播放无遮挡| 免费电影在线观看免费观看| 亚洲精品456在线播放app| 久久久久久九九精品二区国产| 男男h啪啪无遮挡| kizo精华| 欧美精品国产亚洲| 欧美成人午夜免费资源| av在线观看视频网站免费| 国产亚洲av嫩草精品影院| 国产毛片a区久久久久| 舔av片在线| 亚洲三级黄色毛片| 日韩不卡一区二区三区视频在线| 国产真实伦视频高清在线观看| 国内精品宾馆在线| 日韩在线高清观看一区二区三区| 亚洲av男天堂| 国产美女午夜福利| 国产老妇女一区| 最近中文字幕高清免费大全6| 中文字幕人妻熟人妻熟丝袜美| av免费观看日本| av女优亚洲男人天堂| 老司机影院毛片| 观看美女的网站| 国产亚洲av片在线观看秒播厂| 美女主播在线视频| 免费在线观看成人毛片| 你懂的网址亚洲精品在线观看| av在线播放精品| 亚洲欧美成人精品一区二区| 午夜激情久久久久久久| 精品亚洲乱码少妇综合久久| 黄片无遮挡物在线观看| 精品人妻熟女av久视频| 午夜福利在线观看免费完整高清在| 好男人视频免费观看在线| 国产成人freesex在线| 永久网站在线| 女人十人毛片免费观看3o分钟| 另类亚洲欧美激情| 亚洲国产欧美在线一区| 老师上课跳d突然被开到最大视频| 免费播放大片免费观看视频在线观看| 成人二区视频| 只有这里有精品99| 狂野欧美激情性bbbbbb| 成人毛片a级毛片在线播放| 美女cb高潮喷水在线观看| 99精国产麻豆久久婷婷| 久久久久久久久久人人人人人人| 亚洲精品国产成人久久av| 成人综合一区亚洲| 中国三级夫妇交换| 欧美成人午夜免费资源| 五月伊人婷婷丁香| 韩国高清视频一区二区三区| 国产精品福利在线免费观看| 成年免费大片在线观看| 免费看a级黄色片| 少妇人妻精品综合一区二区| 我的老师免费观看完整版| 男插女下体视频免费在线播放| 三级国产精品欧美在线观看| 禁无遮挡网站| 国产一区二区三区综合在线观看 | 黄色一级大片看看| 国产男女内射视频| 男女那种视频在线观看| 久久99精品国语久久久| 久久久色成人| 国产精品久久久久久久电影| 国精品久久久久久国模美| 麻豆成人av视频| 超碰av人人做人人爽久久| 日韩成人伦理影院| 狂野欧美激情性xxxx在线观看| 国产欧美日韩精品一区二区| 国产亚洲91精品色在线| 黄色欧美视频在线观看| 777米奇影视久久| 精品久久久噜噜| 精品午夜福利在线看| 国产成人a区在线观看| 色吧在线观看| 又黄又爽又刺激的免费视频.| 亚洲av.av天堂| 亚洲天堂国产精品一区在线| 亚洲国产av新网站| 亚洲av在线观看美女高潮| 亚洲av男天堂| videos熟女内射| 国产精品国产三级国产av玫瑰| 久久精品国产鲁丝片午夜精品| 亚洲精品成人久久久久久| 啦啦啦啦在线视频资源| 国产精品无大码| 久久精品久久久久久久性| 自拍偷自拍亚洲精品老妇| 亚洲国产色片| 亚洲av日韩在线播放| 亚洲精品国产av成人精品| 老司机影院毛片| 一本久久精品| 在线天堂最新版资源| 亚洲va在线va天堂va国产| av.在线天堂| 一本一本综合久久| 永久网站在线| 下体分泌物呈黄色| 在线观看av片永久免费下载| 国产美女午夜福利| 久久久午夜欧美精品| 日本黄色片子视频| 亚洲精品成人久久久久久| 亚洲精品国产av蜜桃| 日韩精品有码人妻一区| 熟妇人妻不卡中文字幕| 国产精品av视频在线免费观看| 成年av动漫网址| 一级毛片 在线播放| 丝袜喷水一区| 国产成人精品婷婷| 免费人成在线观看视频色| 一级毛片电影观看| av黄色大香蕉| 亚洲性久久影院| 在线观看国产h片| 尾随美女入室| 日本av手机在线免费观看| 尤物成人国产欧美一区二区三区| 伦精品一区二区三区| 亚洲精品国产色婷婷电影| 中国美白少妇内射xxxbb| 超碰av人人做人人爽久久| 内射极品少妇av片p| 一区二区三区四区激情视频| h日本视频在线播放| 王馨瑶露胸无遮挡在线观看| 日本免费在线观看一区| 美女cb高潮喷水在线观看| 1000部很黄的大片| 免费黄色在线免费观看| 午夜日本视频在线| 久久久久久久国产电影| 亚洲精品国产色婷婷电影| 精品国产露脸久久av麻豆| 99热这里只有是精品在线观看| 爱豆传媒免费全集在线观看| 人妻制服诱惑在线中文字幕| 国产美女午夜福利| 日日撸夜夜添| 十八禁网站网址无遮挡 | 欧美另类一区| 国产av码专区亚洲av| 免费看日本二区| 国产精品三级大全| 国产老妇女一区| 国产在视频线精品| 汤姆久久久久久久影院中文字幕| 丝袜喷水一区| 欧美zozozo另类| 亚洲av中文av极速乱| 丝袜喷水一区| 欧美激情在线99| 日韩一本色道免费dvd| 新久久久久国产一级毛片| 色视频在线一区二区三区| 九九在线视频观看精品| 成人鲁丝片一二三区免费| 2018国产大陆天天弄谢| 夫妻性生交免费视频一级片| 免费看av在线观看网站| 精品久久久久久久久av| 99精国产麻豆久久婷婷| 嘟嘟电影网在线观看| 久久久久久久午夜电影| 欧美日韩一区二区视频在线观看视频在线 | 久久久精品免费免费高清| 美女内射精品一级片tv| 国产精品无大码| 99久久精品一区二区三区| 丰满少妇做爰视频| 免费观看a级毛片全部| 国产伦精品一区二区三区四那| 性色avwww在线观看| 婷婷色综合大香蕉| 18+在线观看网站| 在现免费观看毛片| 久久99热这里只有精品18| 高清视频免费观看一区二区| 久久久久网色| 亚洲怡红院男人天堂| 99re6热这里在线精品视频| 国产美女午夜福利| 黑人高潮一二区|