杜 靜,奚永蘭,靳紅梅,錢(qián)玉婷,常志州,葉小梅
水葫蘆固液分離機(jī)脫水參數(shù)優(yōu)化及中試運(yùn)行效果
杜 靜,奚永蘭,靳紅梅,錢(qián)玉婷,常志州,葉小梅※
(江蘇省農(nóng)業(yè)科學(xué)院循環(huán)農(nóng)業(yè)研究中心;江蘇省有機(jī)固體廢棄物資源化協(xié)同創(chuàng)新中心,南京 210014)
為了獲得低成本、高效率的水葫蘆規(guī)?;幚硖幹眉夹g(shù)參數(shù),該研究基于50 t/d處理能力的工況,以自主研發(fā)的SHJ-400型水葫蘆固液分離機(jī)和臥式甩刀粉碎機(jī)為基礎(chǔ),通過(guò)單因素試驗(yàn)研究了粉碎粗細(xì)、進(jìn)料量和擠壓脫水停留時(shí)間對(duì)水葫蘆規(guī)模化脫水效果的影響,同時(shí)獲得了脫水殘?jiān)c擠壓汁液中的干物質(zhì)、氮磷鉀養(yǎng)分分布規(guī)律,為水葫蘆脫水作業(yè)后殘?jiān)爸旱馁Y源化利用提供參考。結(jié)果表明,適宜的水葫蘆固液分離技術(shù)參數(shù),即水葫蘆適宜粉碎粗細(xì)為20~30 mm、進(jìn)料量為8 t/h和擠壓脫水停留時(shí)間為3 min;水葫蘆脫水殘?jiān)蛿D壓汁液中的干物質(zhì)分布比例分別為61.67%~65.48%和34.52%~38.33%,而大部分氮磷鉀養(yǎng)分保留于擠壓汁液中,水葫蘆粉碎和固液分離環(huán)節(jié)的減容率分別為50.25%和93.70%。此外,以處理能力50 t/d示范工程為試驗(yàn)平臺(tái),獲得了實(shí)際運(yùn)行工況的脫水作業(yè)運(yùn)行效果參數(shù),即在水葫蘆初始含水率95.08%條件下,經(jīng)固液分離后水葫蘆脫水殘?jiān)蕿?3.21%,脫水率為78.59%,水葫蘆固液分離機(jī)處理能力為6.25 t/h,并通過(guò)成本測(cè)算得到水葫蘆固液分離成本為4.40元/t。該研究所獲得低成本、高效率的水葫蘆規(guī)?;幚砻撍鳂I(yè)技術(shù)方案,為形成水葫蘆規(guī)?;幚硖幹霉こ陶w解決方案提供技術(shù)支撐。
脫水;優(yōu)化;成本;水葫蘆;技術(shù)參數(shù);中試運(yùn)行
水葫蘆()繁殖能力強(qiáng),易于擴(kuò)散,取代土著植物群,并在水庫(kù)、漁業(yè)、灌溉和水上方面造成嚴(yán)重影響。因此,水葫蘆被列為地球上繁殖能力最高的植物之一,也被認(rèn)為是世界上最難治理的水生植物之一[1]。通常對(duì)水葫蘆采用的管理控制策略主要以防治為主,為控制其擴(kuò)散,各國(guó)采取了各種方法,例如物理去除、化學(xué)方法(使用除草劑)和釋放生物控制劑。過(guò)去幾十年,世界上許多生態(tài)學(xué)家都在研究水葫蘆控制技術(shù),但這些方法通常費(fèi)用昂貴[2]。然而,水葫蘆具有很好的利用價(jià)值。由于水葫蘆對(duì)污水中養(yǎng)分和重金屬具有較好的吸收和去除能力,使得在污水凈化處理中被廣泛應(yīng)用[3-7];水葫蘆可以用作生產(chǎn)乙醇和沼氣等可再生能源的原料[8-9];此外,水葫蘆還可以用來(lái)制作有機(jī)肥和動(dòng)物飼料。因此,如何高效合理地利用水葫蘆,實(shí)現(xiàn)水葫蘆資源的綜合利用,變廢為寶,成為當(dāng)前迫切需要解決的問(wèn)題。
研究表明,栽種并將水葫蘆收獲使其離開(kāi)水體,是從污染廢水或富營(yíng)養(yǎng)化湖泊中去除營(yíng)養(yǎng)物質(zhì)的一種有效技術(shù)途徑[10],水葫蘆如果打撈不及時(shí),死亡后的殘?bào)w腐爛分解過(guò)程中將釋放大量的氮、磷等物質(zhì),導(dǎo)致水體二次污染[11]。水葫蘆植株的含水率通常大于95%,由于纖維組織的中空結(jié)構(gòu),使其體積較大,增加了運(yùn)輸成本和利用難度,這些弊端嚴(yán)重阻礙了水葫蘆后續(xù)的資源化利用。目前國(guó)內(nèi)外對(duì)水葫蘆利用的脫水或干燥技術(shù)研究較多,Innocent等[12]采用直接烘干方式研究了水葫蘆烘干脫水特性,而Solly等[13]將初始含水率為95.8%的水葫蘆在25 ℃、相對(duì)濕度68%條件下自然晾干處理15 d后,其含水率降低至72%??梢?jiàn),采用自然晾干與直接烘干等方式,可以有效降低水葫蘆水分,且水葫蘆中氮、磷等養(yǎng)分損失有限,但因其脫水時(shí)間長(zhǎng)或成本高均難在實(shí)踐中大規(guī)模應(yīng)用。與傳統(tǒng)的風(fēng)干、自然晾曬相比,機(jī)械脫水不僅占地小、效率高、處理及時(shí),而且產(chǎn)生的水葫蘆汁便于收集,不會(huì)產(chǎn)生二次污染。王巖等[14]將輥輪式壓榨機(jī)應(yīng)用于水葫蘆脫水,經(jīng)3次擠壓后水葫蘆渣含水率為65%~68%,季文杰等[11]研究機(jī)械壓濾對(duì)水葫蘆脫水效果的影響,結(jié)果表明水葫蘆含水率隨壓力和時(shí)間增加而降低,8 MPa壓力條件下水葫蘆含水率為66.35%;而Cifuentes等[10]設(shè)計(jì)了一種螺旋壓榨脫水方法,經(jīng)過(guò)試驗(yàn)得出最優(yōu)限壓600 kPa 條件下,水葫蘆殘?jiān)蕿?4%。然而,以上關(guān)于水葫蘆脫水方式和效果的研究大多基于實(shí)驗(yàn)室規(guī)模,難以為水葫蘆規(guī)?;幚砉こ烫峁┛煽康拿撍夹g(shù)參數(shù)。
筆者在前期工作中針對(duì)水葫蘆脫水方式、螺旋式固液分離養(yǎng)分損失規(guī)律以及不同粉碎度等影響因素[15-18]已開(kāi)展了相關(guān)研究,同時(shí)還進(jìn)行了水葫蘆規(guī)模化處理過(guò)程中的粉碎預(yù)處理中試方案比選[19]。上述研究主要基于小試平臺(tái)對(duì)脫水環(huán)節(jié)進(jìn)行了效果、處理效率及成本分析,同時(shí)也基于中試規(guī)模比選了水葫蘆粉碎作業(yè)環(huán)節(jié)的技術(shù)方案,著重探討了粉碎作業(yè)技術(shù)方案對(duì)脫水效果的影響及運(yùn)行成本分析,但對(duì)于規(guī)?;幚矸绞较滤J脫水環(huán)節(jié)的技術(shù)參數(shù)尚缺乏相關(guān)研究。因此,本文開(kāi)展了水葫蘆規(guī)模化處理工況下脫水作業(yè)的技術(shù)參數(shù)比選研究,并通過(guò)物料減容率、脫水前后干物質(zhì)及養(yǎng)分分布、殘?jiān)实让撍Ч治?,以期獲得低成本、高效率的水葫蘆規(guī)?;幚砻撍鳂I(yè)技術(shù)方案,為形成水葫蘆規(guī)?;幚硖幹霉こ陶w解決方案提供技術(shù)支撐。
新鮮水葫蘆采自江蘇省常州武進(jìn)水葫蘆示范基地,其基本性狀見(jiàn)表1。
表1 新鮮水葫蘆基本性狀(養(yǎng)分以干基計(jì))
1.2.1 水葫蘆機(jī)械打撈船
采用張家港市海豐水面環(huán)保機(jī)械有限公司生產(chǎn)的HF226B-PT型水葫蘆機(jī)械打撈船。船上配備有粉碎設(shè)備,即江蘇省農(nóng)業(yè)科學(xué)院自行研發(fā)的漂浮植物高效減容裝置[20]。
1.2.2 水葫蘆布料設(shè)備及傳輸生產(chǎn)線
采用江蘇省農(nóng)業(yè)科學(xué)院委托常州市蘇風(fēng)機(jī)械廠訂制生產(chǎn)的水葫蘆粗粉碎料布料裝置,以便供給2條傳輸粉碎生產(chǎn)線均勻喂料作業(yè),其布料原理采用雙軸異向螺旋絞龍方式向兩側(cè)均勻供料。傳輸生產(chǎn)線采用不銹鋼鏈條網(wǎng)帶,并配合地下嵌入式安裝,傳送帶長(zhǎng)度=10 m。
1.2.3 水葫蘆二次粉碎機(jī)
采用自行研制的水生植物專用粉碎機(jī),即臥式甩刀粉碎機(jī)[21],型號(hào)SHJ-400型,處理能力20~30 t/h,電動(dòng)機(jī)功率=7.5 kW。通過(guò)調(diào)節(jié)水葫蘆粉碎機(jī)的作業(yè)轉(zhuǎn)速來(lái)獲得不同粉碎粗細(xì)效果的水葫蘆。
1.2.4 固液分離機(jī)
試驗(yàn)所用的水葫蘆脫水設(shè)備采用自主研發(fā)的SHJ-400型水葫蘆固液分離機(jī),功率=11 kW,螺旋擠壓通道有效直徑=400 mm,處理量為6~10 t/h,如圖1所示。
1.3.1 水葫蘆脫水處理各環(huán)節(jié)及工藝說(shuō)明
1)水葫蘆打撈及水上運(yùn)輸方式:試驗(yàn)采用機(jī)械打撈船進(jìn)行水葫蘆打撈,然后將水葫蘆粗粉碎物料(粉碎粗細(xì)約5~10 cm)裝入1 m3尼龍袋并通過(guò)運(yùn)輸船運(yùn)送到岸(通常1艘運(yùn)輸船單趟運(yùn)送12袋)。
1. 電動(dòng)機(jī)2. 變速箱3. 螺旋擠壓裝置4. 出液通道5. 過(guò)濾篩網(wǎng)6.機(jī)架 7. 出料機(jī)構(gòu)8. 進(jìn)料裝置9. 系統(tǒng)控制柜
2)水葫蘆轉(zhuǎn)駁方式:采用岸基航吊轉(zhuǎn)駁。
3)水葫蘆粉碎方式:水葫蘆經(jīng)打撈船粗粉碎后再經(jīng)水生植物專用粉碎機(jī)[21]進(jìn)行二次粉碎處理。
4)水葫蘆脫水工藝:采用即時(shí)粉碎即時(shí)脫水方式,即新鮮水葫蘆粗粉碎料經(jīng)二次粉碎處理后被投入調(diào)節(jié)池,然后加水混合(僅初次加水,后續(xù)則采取汁液回用)后經(jīng)立式潛污泵[22]抽吸入螺旋式固液分離機(jī)進(jìn)行脫水處理,擠壓汁液一部分回用至調(diào)節(jié)池(回用量以調(diào)節(jié)粉碎水葫蘆與水比例為1∶0.6),多余部分則進(jìn)入擠壓汁貯存池,作為后續(xù)資源化利用環(huán)節(jié)的原料。
1.3.2 水葫蘆脫水效果及設(shè)備性能影響研究
為了獲得水葫蘆固液分離機(jī)最佳的脫水效果,以固液分離機(jī)處理能力、脫水殘?jiān)屎湍芎臑槊撍Ч笜?biāo),針對(duì)水葫蘆粉碎粗細(xì)程度、進(jìn)料量和擠壓持續(xù)時(shí)間3個(gè)影響因素,分別開(kāi)展了單因素脫水效果優(yōu)化研究,每次試驗(yàn)按照處理能力50 t/d計(jì),每批次試驗(yàn)重復(fù)3次,記錄相關(guān)參數(shù)并采集水葫蘆粉碎前后樣品、固液分離殘?jiān)皵D壓汁樣品,進(jìn)行含水率、懸浮物(mixed liquid suspended solids, MLSS)、化學(xué)需氧量(chemical oxygen demand, COD)、氮磷鉀養(yǎng)分等分析。
水葫蘆粉碎粗細(xì)測(cè)定:以10、20、30、40 mm為分界,將粉碎后水葫蘆按照長(zhǎng)度大小分類稱取質(zhì)量,然后采用各部分質(zhì)量占總質(zhì)量的百分比分布來(lái)表示粗細(xì)程度,試驗(yàn)重復(fù)5次,取平均值;電耗:采用單相電子式電能表DDSY879-D測(cè)定;殘?jiān)|(zhì)量:用保衡電子秤TCS-100稱質(zhì)量;懸浮物濃度和擠壓汁養(yǎng)分分析:參照《水和廢水監(jiān)測(cè)分析方法》第三版[23];殘?jiān)B(yǎng)分測(cè)定:參照《土壤農(nóng)化分析》[24]。采用Excel 2003進(jìn)行數(shù)據(jù)分析。
水葫蘆固液分離機(jī)脫水技術(shù)參數(shù)優(yōu)化的試驗(yàn)結(jié)果見(jiàn)表2。結(jié)果表明,當(dāng)設(shè)定試驗(yàn)進(jìn)料量8 t/h,擠壓持續(xù)時(shí)間3 min,隨著水葫蘆粉碎粗細(xì)程度由10至40 mm逐漸增大,水葫蘆固液分離機(jī)的處理能力呈先增大后減小趨勢(shì),而脫水殘?jiān)食手饾u增加趨勢(shì),分析其原因可能是由于較大顆粒的水葫蘆粉碎料容易漂浮,難以與水混合均勻,造成吸料泵難以吸入更多有效的水葫蘆粉碎物料,從而導(dǎo)致固液分離處理能力下降。而從單位處理能力能耗角度分析發(fā)現(xiàn),粉碎環(huán)節(jié)能耗隨著水葫蘆粉碎物料粗細(xì)程度的增加而逐漸降低,固液分離環(huán)節(jié)能耗則呈現(xiàn)先降低后增加趨勢(shì)。綜合考慮處理能力、脫水殘?jiān)室约皢挝惶幚砟芰δ芎牡戎笜?biāo),得出水葫蘆適宜的粉碎粗細(xì)程度為20~30 mm。
表2 水葫蘆固液分離機(jī)脫水工藝技術(shù)參數(shù)優(yōu)化
注:相同因素下同列數(shù)據(jù)不同小寫(xiě)字母表示差異顯著(<0.05),不同大寫(xiě)字母表示差異極顯著(<0.01),=3
Note: There was significant difference between different lowercase letters in the same column data under the same factors (< 0.05), and significant differences in different capital letters (< 0.01),=3.
在水葫蘆進(jìn)料量對(duì)比試驗(yàn)中,設(shè)定水葫蘆粉碎粗細(xì)為20~30 mm, 擠壓持續(xù)時(shí)間3 min,結(jié)果表明,隨著單位時(shí)間水葫蘆進(jìn)料量增加,固液分離機(jī)的處理能力先逐漸增加后降低,水葫蘆脫水殘?jiān)食手饾u增加趨勢(shì),單位處理能力能耗在粉碎環(huán)節(jié)不變的條件下,固液分離環(huán)節(jié)能耗呈先降低后增加趨勢(shì)。綜合考慮處理能力、脫水殘?jiān)室约皢挝惶幚砟芰δ芎牡戎笜?biāo),得出水葫蘆適宜的進(jìn)料量為8 t/h。
在水葫蘆擠壓持續(xù)時(shí)間對(duì)比試驗(yàn)中,設(shè)定試驗(yàn)進(jìn)料量8 t/h, 水葫蘆粉碎粗細(xì)為20~30 mm,結(jié)果表明,水葫蘆處理能力呈先增加后逐漸降低趨勢(shì),水葫蘆脫水殘?jiān)蕜t呈逐漸減低趨勢(shì),單位處理能力能耗在粉碎環(huán)節(jié)基本不變的條件下,固液分離環(huán)節(jié)能耗呈先降低后增加趨勢(shì)。綜合考慮處理能力、脫水殘?jiān)室约皢挝惶幚砟芰δ芎牡戎笜?biāo),得出水葫蘆適宜的擠壓停留時(shí)間為3 min。
為了考察水葫蘆專用固液分離機(jī)規(guī)?;こ虘?yīng)用中的分離效果,在2.1中所優(yōu)化出的參數(shù)指標(biāo)中優(yōu)選水葫蘆粉碎粗細(xì)程度為20~30 mm,進(jìn)料量為8 t/h,擠壓停留時(shí)間為3 min,試驗(yàn)的水葫蘆量為50 t,試驗(yàn)重復(fù)3個(gè)批次。表3和表4分別為固液分離過(guò)程中干物質(zhì)和養(yǎng)分在脫水殘?jiān)蛿D壓汁液中的分布情況。
如表3所示,在本次試驗(yàn)中,所用水葫蘆粉碎渣含水率為95.94%,高于前述脫水技術(shù)參數(shù)比選試驗(yàn)所用水葫蘆的含水率,導(dǎo)致水葫蘆脫水殘?jiān)暮试?2.67%~85.23%之間波動(dòng),水葫蘆擠壓汁混合液懸浮固形物含量在8.76~9.12 g/L之間波動(dòng);從干物質(zhì)分布角度分析,其中61.67%~65.48%的干物質(zhì)分布于水葫蘆脫水殘?jiān)?,?4.52%~38.33%的干物質(zhì)分布于擠壓汁中。從表4中氮磷鉀養(yǎng)分分布來(lái)看,氮、磷、鉀在脫水殘?jiān)械姆植急壤謩e為26.74%~37.83%、24.62%~26.27%和11.40%~15.94%,而大部分的氮磷鉀養(yǎng)分均分布于擠壓汁液中。此外,脫水殘?jiān)牡租涬S著脫水殘?jiān)实慕档投档?,可能由于隨著固液分離過(guò)程擠壓程度增加和脫水效果的提升,使得水葫蘆組織細(xì)胞破裂比例增加,導(dǎo)致更多的胞內(nèi)氮磷鉀養(yǎng)分被釋放并轉(zhuǎn)移至擠壓汁中,這一結(jié)果與筆者之前的研究相一致[22-23]。
表3 水葫蘆固液分離過(guò)程中的干物質(zhì)分布
試驗(yàn)中對(duì)水葫蘆粉碎和固液分離環(huán)節(jié)的減容率進(jìn)行了研究,設(shè)定試驗(yàn)進(jìn)料量8 t/h,水葫蘆粉碎粗細(xì)為20~30 mm, 擠壓持續(xù)時(shí)間3 min,在此工況下,水葫蘆粉碎和固液分離環(huán)節(jié)的減容率分別為50.25%和93.70%。舉例如下:水葫蘆的高度為100~120 cm,體積為5 m3/t,粉碎后的體積約為2.48 m3,脫水后的體積僅為0.3 m3??梢?jiàn),開(kāi)展水葫蘆粉碎和固液分離環(huán)節(jié)的規(guī)?;幚砑夹g(shù)為后續(xù)資源化利用提供了便利,大大節(jié)省了運(yùn)輸和堆放場(chǎng)地等成本。
為了考察水葫蘆固液分離設(shè)備的規(guī)模化運(yùn)行可靠性及實(shí)際運(yùn)行效果,本研究基于50 t/d處理能力條件下模擬試驗(yàn)所優(yōu)化的脫水作業(yè)運(yùn)行效果參數(shù),并進(jìn)行了成本測(cè)算。結(jié)果表明,經(jīng)固液分離后水葫蘆脫水殘?jiān)蕿?3.21%,脫水率為78.59%(即水葫蘆脫水過(guò)程中被擠壓并進(jìn)入擠壓汁液中的水葫蘆水分與水葫蘆原料所含有水分之間的比值),水葫蘆專用固液分離機(jī)處理能力為6.25 t/h,水葫蘆固液分離的成本為4.4元/t(表5),這一結(jié)果可為水葫蘆規(guī)?;幚硖幹霉こ淘O(shè)計(jì)提供數(shù)據(jù)支撐。
利用水葫蘆提取富營(yíng)養(yǎng)化水體中氮磷等養(yǎng)分資源,并運(yùn)用實(shí)用的規(guī)?;幚硖幹眉夹g(shù),最終實(shí)現(xiàn)氮磷養(yǎng)分資源高值化利用,既減輕水體污染,又起到了變廢為寶的目的。有關(guān)水葫蘆修復(fù)污染水體效果與機(jī)理方面的研究已取得眾多成果,但有關(guān)水葫蘆生態(tài)修復(fù)污染水體工程化技術(shù),特別是規(guī)?;踩N養(yǎng)技術(shù)、機(jī)械化打撈技術(shù)、工廠化加工處置技術(shù)和資源化利用技術(shù)方面的研究較為缺乏。因此,今后的研究應(yīng)著重圍繞以下幾個(gè)方面:從技術(shù)研究層面上,后續(xù)還將圍繞水葫蘆脫水作業(yè)規(guī)模化運(yùn)行的相關(guān)技術(shù)參數(shù)開(kāi)展組合優(yōu)化研究,從政策層面上,一是建議政府部門(mén)加大對(duì)富營(yíng)養(yǎng)化水體的治理力度,推廣運(yùn)用水葫蘆修復(fù)水體及資源化利用技術(shù),二是建議完善生態(tài)補(bǔ)償政策,盡快建立生態(tài)補(bǔ)償機(jī)制,吸引社會(huì)資本參與污染水體治理工作。
表4 固液分離過(guò)程中的養(yǎng)分分布
表5 水葫蘆規(guī)?;幚砉r下脫水作業(yè)效果分析
注:固液分離機(jī)處理能力按照1 d處理50 t水葫蘆需要運(yùn)行8 h進(jìn)行計(jì)算得出;固液分離環(huán)節(jié)處理成本計(jì)算方法:整套設(shè)備(粉碎+脫水)總能耗約為100 kW·h,折合120元(以工業(yè)用電1.2元/kW·h計(jì));每天運(yùn)行需人工1人,折合100元(以用工成本100元/d計(jì)),即日處理50 t水葫蘆的固液分離成本為4.40元。
Note:The treatment capacity of the solid-liquid separator is calculated according to the operation time of 50 tons of water hyacinth in one day, and the calculation method of the treatment cost of the solid-liquid separation link is as follows: the total energy consumption of the whole equipment (crushing and dehydration) is about 100 kW ·h, equivalent to 120 yuan (measured by industrial electricity consumption of 1.2 yuan / kW ·h). It takes 1 person to run every day, equivalent to 100 yuan (based on the labor cost of 100 yuan / d), that is, the solid-liquid separation cost of 50 tons of water hyacinth per day is 4.40 yuan.
1)通過(guò)水葫蘆固液分離效果單因素優(yōu)化研究,獲得了較適宜的固液分離技術(shù)參數(shù),即水葫蘆粉碎粗細(xì)程度為20~30 mm,進(jìn)料量為8 t/h,擠壓停留時(shí)間為3 min。
2)獲得了基于50 t/d處理能力工況下的水葫蘆脫水干物質(zhì)和養(yǎng)分分布規(guī)律,水葫蘆脫水殘?jiān)蛿D壓汁液中的干物質(zhì)分布比例分別為61.67%~65.48%和34.52%~38.33%,而氮磷鉀養(yǎng)分在脫水殘?jiān)械姆植急壤謩e為26.74%~37.83%、24.62%~26.27%和11.40%~15.94%,大部分養(yǎng)分保留于擠壓汁液中。此外,水葫蘆粉碎和固液分離環(huán)節(jié)的減容率分別為50.25%和93.70%。
3)以處理能力50 t/d 示范工程為試驗(yàn)平臺(tái),獲得了實(shí)際運(yùn)行工況的脫水作業(yè)運(yùn)行效果參數(shù), 水葫蘆脫水殘?jiān)蕿?3.21%,脫水率為78.59%,水葫蘆固液分離機(jī)處理能力為6.25 t/h,并通過(guò)成本測(cè)算得到水葫蘆固液分離成本為4.40元/t,這些參數(shù)為水葫蘆規(guī)模化處理處置工程設(shè)計(jì)提供了數(shù)據(jù)支撐。
[1] Ogwang J A, Molo R. Threat of water hyacinth resurgence after a successful biological control program[J]. Biocontrol Science and Technology, 2004, 14(6): 623-626.
[2] Elias S, Mohamed M, Ankur AN, et al. Water hyacinth bioremediation for ceramic industry wastewater treatment application of rhizofiltration system[J]. Sains Malaysiana, 2014, 43(9): 1397-1403.
[3] Gupta P, Roy S, Amit B, et al. Treatment of water using water hyacinth, water lettuce and vetiver grass: A review[J]. Resour Environ, 2012, 2(5): 202-215.
[4] Swarnalatha K, Radhakrishnan B. Studies on removal of Zn & Cr from aqueous solutions using water hyacinth[J]. Pollution, 2015, 1(2): 193-202.
[5] Abhang R M, Wani K S, Patil V S, et al. Nanofiltration for recovery of heavy metal ions from wastewater: A review[J]. Int J Res Environ Sci Technol, 2013, 3(1): 29-34.
[6] Ajibade F O, Adeniran K A, Egbunac K. Phytoremediation efficiencies of water hyacinth in removing heavy metals in domestic sewage (a case study of University of Ilorin, Nigeria)[J]. Int J Eng Sci, 2013, 2(12): 16-27.
[7] Vijaykumar G, Manikandan I, M.G.Ananthaprasad, et al. Water hyacinth: A unique source for sustainable materials and products[J]. ACS Sustainable Chem.Eng, 2017, 5(6): 4478-4490.
[8] Shailendra M M. Water hyacinth (Eichhornia crassipes) chopper cum crusher: A solution for lake water environment [J]. Journal of Energy Technologies and Policy, 2013, 3(11): 299-306.
[9] Szczeck M M. Suppressiveness of vermicompost against fusarium wilt of tomato[J]. Journal of Phytopathology, 2010, 147(3): 155-161.
[10] Cifuentes J, Baganall L O. Pressing characteristics of water hyacinth[J]. Journal of Aquatic Plant Management, 1976,14: 71-75.
[11] 季文杰,姚寰琰,陳斌,等. 水葫蘆壓濾脫水與鮮汁強(qiáng)化除磷工藝[J]. 環(huán)境工程學(xué)報(bào),2019,13(1):195-203. Ji Wenjie, Yao Huanyan, Chen Bin, et al. Process of mechanical dewatering of water hyacinth and enhanced phosphorus removal from its fresh juice[J]. Chinese Journal of Environmental Engineering, 2019, 13(1): 195-203. (in Chinese with English Abstract)
[12] Innocent C O A, Lawrence O G, Ayub N. Gitau “dewatering and drying characteristics of water hyacinth (Eichhornia Crassipes) petiole. part II) drying characteristics”[J]. Agricultural Engineering International, 2008, 3(6): 7-33.
[13] Solly R K. Integrated Rural Development With Water Hyacinth[C]. In: Proceedings of The International Conference On Water hyacinth, 1984: 70-78.
[14] 王巖,張志勇,張迎穎,等. 一種新型水葫蘆脫水方式的探索[J]. 江蘇農(nóng)業(yè)科學(xué),2013,41(10):286-288. Wang Yan, Zhang Zhiyong, Zhang Yingying, et al. Study on a new dewatering method of water hyacinth[J]. Jiangsu Agricultural Sciences, 2013, 41(10): 286-288. (in Chinese with English Abstract)
[15] 杜靜,常志州,黃紅英. 水葫蘆脫水工藝參數(shù)優(yōu)化研究[J].江蘇農(nóng)業(yè)科學(xué),2010,38(2):267-269. Du Jing, Chang Zhizhou, Huang Hongying. Study on optimization of technological parameters of dehydrated with water hyacinth [J]. Jiangsu Agricultural Sciences, 2010,38(2): 267-269. (in Chinese with English Abstract)
[16] 杜靜,常志州,葉小梅,等. 壓榨脫水中水葫蘆氮磷鉀養(yǎng)分損失研究[J]. 福建農(nóng)業(yè)學(xué)報(bào),2010,25(1):104-107. Du Jing, Chang Zhizhou, Ye Xiaomei, et al. Losses in nitrogen, phosphorus and potassium of water hyacinth dehydrated by mechanical press[J]. Fujian Journal of Agricultural Sciences, 2010, 25(1): 104-107. (in Chinese with English Abstract)
[17] 杜靜,常志州,葉小梅,等. 水葫蘆粉碎程度對(duì)脫水效果影響的中試[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(5):207-212. Du Jing, Chang Zhizhou, Ye Xiaomei, et al. Pilot-scale study on dewatering effect of water hyacinth with different pulverization degree[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(5): 207-212. (in Chinese with English Abstract)
[18] 葉小梅,常志州,錢(qián)玉婷,等. 鮮水葫蘆與其汁液厭氧發(fā)酵產(chǎn)沼氣效率比較[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(4):208-214. Ye Xiaomei, Chang Zhizhou, Qian Yuting, et al. Comparison of biogas production efficiency of anaerobic digestion using water hyacinth and its juice from solid-liquid separation as feedstock[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(4): 208-214. (in Chinese with English Abstract)
[19] 杜靜,錢(qián)玉婷,靳紅梅,等. 水葫蘆規(guī)模化脫水作業(yè)前粉碎預(yù)處理方案中試比選[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2017,33(15):266-271. Du Jing, QianYuting, Jin Hongmei, et al. Comparison and selection of smash pretreatment scheme before dewatering in large scale for water hyacinth[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(15): 266-271. (in Chinese with English Abstract)
[20] 張志勇,劉海琴,劉國(guó)鋒,等. 漂浮植物高效減容裝置.中國(guó)專利:201020100683. 5 [P]. 2010-11-17. Zhang Zhiyong, Liu Haiqin, Liu Guofeng, et al. An efficient volume reduction device for floating plants. Chinese patent: 201020100683. 5 [P]. 2010-11-17.
[21] 杜靜,楊新寧,常志州,等. 一種專用于水生植物的粉碎機(jī). 中國(guó)專利:201120099076. 6 [P]. 2011-11-16. Du Jing, Yang Xinning, Chang Zhizhou, et al. A special aquatic plant mill. Chinese patent:201120099076.6 [P]. 2011-11-16.
[22] 杜靜,楊新寧,常志州,等. 抽取高濃度污料的立式潛污泵. 中國(guó)專利:201120099096.3[P]. 2011-11-16. Du Jing, Yang Xinning, Chang Zhizhou, et al. Extraction of high concentration sewage material vertical submerged pump. Chinese patent: 201120099096.3[P]. 2011-11-16.
[23] 國(guó)家環(huán)保局《水和廢水監(jiān)測(cè)分析方法》編委會(huì). 水和廢水監(jiān)測(cè)分析方法[M]. 北京:中國(guó)環(huán)境科學(xué)出社,1989.
[24] 鮑士旦. 土壤農(nóng)化分析[M]. 北京:中國(guó)農(nóng)業(yè)出版社,2000:264-271.
Dehydration parameters optimization of water hyacinth solid-liquid separator and pilot operation effect
Du Jing, Xi Yonglan, Jin Hongmei, Qian Yuting, Chang Zhizhou, Ye Xiaomei※
(210014,)
Water hyacinth is one of the most fertile plants in the world and is considered to be one of the most difficult aquatic plants to control because of its strong reproductive ability and easy diffusion. As the moisture content of water hyacinth plant is up to 95%, the dewatering of water hyacinth becomes the key technical link to realize its subsequent resource and harmless utilization, and the degree of dehydration becomes the bottleneck restricting its subsequent treatment. In the previous work, the influence factors such as dehydration mode of water hyacinth, nutrient loss rule of spiral solid-liquid separation and different degree of comminution are studied. At the same time, the pilot-scale pretreatment scheme of water hyacinth in large-scale treatment is compared, but research on the technical parameters of water hyacinth dehydration in large-scale treatment is limited. In order to obtain the technical parameters of large-scale treatment and disposal of water hyacinth with low cost and high efficiency, this study was based on the working condition of 50 t/d processing ability, based on the SHJ- 400 water hyacinth solid-liquid separator and horizontal cutter shaker developed independently. The effects of crushing size, feed amount and extrusion dewatering residence time on the large-scale dehydration effect of water hyacinth were studied by single factor test, and the distribution of dry matter, nitrogen, phosphorus and potassium nutrients in dewatering residue and extruded juice were obtained at the same time. The results showed that the suitable solid-liquid separation technical parameters of water hyacinth were obtained, that was, the suitable comminution diameter of water hyacinth was 20 - 30 mm, the feed quantity was 8 t / h, and the retention time of extrusion and dehydration was 3 min. The percentage of dry matter in dewatered residue and extruded juice of hyacinth was 61.67% - 65.48% and 34.52%-38.33%, respectively, while most nitrogen, phosphorus and potassium nutrients remained in extruded juice. The capacity reduction rates of water hyacinth crushing and solid-liquid separation were 50.25% and 93.70%, respectively. In addition, taking the treatment capacity 50 t/d demonstration project as the test platform, the operating effect parameters of the dehydration operation under the actual operation condition were obtained, that was, under the condition of the initial moisture content of the water hyacinth 95.08%, after solid-liquid separation, the moisture content of dewatered residue of water hyacinth was 83.21%, the dewatering rate was 78.59%, and the treatment capacity of water hyacinth solid-liquid separator was 6.25 t / h. The cost of solid-liquid separation of water hyacinth was 4.40 yuan/t. We obtained low cost and high efficiency water hyacinth large-scale treatment dewatering operation technical scheme, and provided the technical support for forming the whole solution of the water hyacinth large-scale treatment and disposal project.
dehydration; optimization; cost; water hyacinth; technical parameter; pilot run
10.11975/j.issn.1002-6819.2019.13.024
X705
A
1002-6819(2019)-13-0204-06
2018-12-08
2019-04-22
國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFD0800802-02); 江蘇省農(nóng)業(yè)自主創(chuàng)新項(xiàng)目(CX(18)3060)
杜 靜,男(漢族),四川眉山人,副研究員,主要從事農(nóng)業(yè)廢棄物資源循環(huán)利用技術(shù)研究。Email:dj1982111@126.com
葉小梅,女(漢族),福建長(zhǎng)汀人,研究員,主要從事農(nóng)業(yè)廢棄物資源化及循環(huán)利用模式研究。Email:yexiaomei610@126.com
杜靜,奚永蘭,靳紅梅,錢(qián)玉婷,常志州,葉小梅.水葫蘆固液分脫水離機(jī)參數(shù)優(yōu)化及中試運(yùn)行效果[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(13):204-209. doi:10.11975/j.issn.1002-6819.2019.13.024 http://www.tcsae.org
Du Jing, Xi Yonglan, Jin Hongmei, Qian Yuting, Chang Zhizhou, Ye Xiaomei.Dehydration parameters optimization of water hyacinth solid-liquid separator and pilot operation effect[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(13): 204-209. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.13.024 http://www.tcsae.org