• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      基于蒸滲儀群淮北平原凍融期裸土及麥田潛水蒸發(fā)規(guī)律研究

      2019-08-23 02:23:28王振龍呂海深胡永勝朱永華王怡寧
      農(nóng)業(yè)工程學(xué)報 2019年13期
      關(guān)鍵詞:砂姜參數(shù)值淮北

      王振龍,楊 秒,呂海深,胡永勝,朱永華,顧 南,王怡寧

      基于蒸滲儀群淮北平原凍融期裸土及麥田潛水蒸發(fā)規(guī)律研究

      王振龍1,楊 秒2,呂海深3,胡永勝1,朱永華3,顧 南2,王怡寧4

      (1. 安徽?。ㄋ炕次┧茖W(xué)研究院水利水資源安徽省重點實驗室,蚌埠 233000;2. 河海大學(xué)理學(xué)院,南京 211100;3. 河海大學(xué)水文水資源學(xué)院,南京 210098;4. 南京水利科學(xué)研究院,南京 210029)

      為研究淮北平原凍融期潛水蒸發(fā)規(guī)律,采用五道溝水文實驗站38套原狀土蒸滲儀1991—2018年試驗資料,采用非線性擬合方法,揭示了凍融期(12—2月)砂姜黑土和黃潮土有無作物潛水蒸發(fā)變化規(guī)律。結(jié)果表明,淮北平原凍融期多表現(xiàn)為晝?nèi)谝箖霈F(xiàn)象,砂姜黑土和黃潮土有無作物潛水蒸發(fā)均隨埋深的增大呈先增后減趨勢,在埋深0.1~0.3 m區(qū)間出現(xiàn)最大值,且種植小麥潛水蒸發(fā)量比裸地小。裸地情景下高斯函數(shù)擬合最好,擬合優(yōu)度2均大于0.9,其中砂姜黑土凍融期12—2月潛水蒸發(fā)量最大時埋深平均值在0.08 m左右,黃潮土在0.29 m左右。小麥生長情景下類高斯函數(shù)擬合最好,擬合優(yōu)度2均大于0.9,其中砂姜黑土凍融期潛水蒸發(fā)最大值對應(yīng)的埋深為0,潛水蒸發(fā)隨埋深遞減,而黃潮土對應(yīng)的埋深在0.23 m左右,2種土壤有作物時最大值對應(yīng)的埋深均比裸地小。擬合的函數(shù)形式可直接用于凍融期旬潛水蒸發(fā)量的計算。

      凍;融;蒸發(fā);地下水;淮北平原

      0 引 言

      潛水蒸發(fā)研究成果主要側(cè)重于非凍融期,許多專家學(xué)者對非凍融期潛水蒸發(fā)的影響因素[1-4]、規(guī)律機理[5-8]及計算方法[9-14]等方面做了大量研究。凍融期非飽和帶土壤水分遷移轉(zhuǎn)化異常復(fù)雜,使得凍融期潛水蒸發(fā)規(guī)律的研究較非凍融期困難且研究成果相對較少。目前,國內(nèi)外有關(guān)凍融期潛水蒸發(fā)的研究大多在室內(nèi)開展[15-19],少數(shù)在室外試驗[20],室外研究還比較薄弱。

      國內(nèi)外學(xué)者對凍融期潛水蒸發(fā)的研究多集中在內(nèi)蒙古河套灌區(qū)[21-26]和太谷均衡實驗站(山西)[27-28]等北方地區(qū),凍結(jié)層分別可達(dá)1.1和0.6 m,凍結(jié)層較厚,主要表現(xiàn)為連續(xù)凍結(jié)特征,試驗土樣分別為砂質(zhì)壤土和亞砂土。淮北平原以砂姜黑土(54%)和黃潮土(33%)為主,冬季干旱少雨,多表現(xiàn)為不穩(wěn)定凍結(jié)特征(晝?nèi)谝箖觯?,凍結(jié)層較薄。因此,本文利用五道溝水文實驗站歷年觀測資料,對砂姜黑土和黃潮土凍融期潛水蒸發(fā)規(guī)律進(jìn)行分析研究,采用非線性擬合方法構(gòu)建其計算模型,為凍融期潛水蒸發(fā)計算提供依據(jù)。

      1 材料與方法

      1.1 試驗區(qū)概況

      五道溝水文水資源實驗站是淮北平原區(qū)大型綜合實驗站,地處117°21′E,33°09′N,位于安徽省蚌埠市北28 km處的新馬橋原種場境內(nèi),屬于平原區(qū)封閉式小流域?qū)嶒炚?。淮北平?種代表性土壤是砂姜黑土(54%)和黃潮土(33%)。按國際制土壤質(zhì)地分級標(biāo)準(zhǔn),砂姜黑土土壤顆粒質(zhì)量百分?jǐn)?shù):黏粒(0~0.002 mm)占比13.1%,粉粒(>0.002~0.02 mm)占比49.4%,砂粒(>0.02~2 mm)占比37.5%;黃潮土土壤顆粒質(zhì)量百分?jǐn)?shù):黏粒(0~0.002 mm)占比2.0%,粉粒(>0.002~0.02 mm)占比11.5%,砂粒(>0.02~2 mm)占比86.5%。2種土壤容重由環(huán)刀實測,其他水力參數(shù)參照文獻(xiàn)[29],具體數(shù)據(jù)詳見表1。

      表1 研究區(qū)砂姜黑土和黃潮土土壤基本物理性質(zhì)

      1.2 試驗概況

      實驗站共62套大型地中蒸滲儀,建成于1989年,主要用于測定固定埋深狀態(tài)下的潛水蒸發(fā)。文中選用直徑為618 mm尺寸的38套蒸滲儀,該尺寸潛水埋深全,土壤有砂姜黑土和黃潮土2種。2種土壤和裸地、種植作物2種情景相組合,其中砂姜黑土裸地和種植作物蒸滲儀都為11套,黃潮土裸地和種植作物蒸滲儀都為8套,具體組合方案見表2。各蒸滲儀降水入滲量、潛水蒸發(fā)量及地表徑流量數(shù)據(jù)人工逐日觀測。蒸滲儀建成于1989年,1991年以后數(shù)據(jù)較完整,采用1991—2015年數(shù)據(jù)進(jìn)行分析擬合,2017—2018年數(shù)據(jù)進(jìn)行檢驗,2016年因蒸滲儀設(shè)備維修,停測1 a,2017年恢復(fù)正常。水面蒸發(fā)量采用E601型蒸發(fā)皿(面積0.3 m2)實測數(shù)據(jù),每日08:00人工觀測,數(shù)據(jù)時段選取與蒸滲儀觀測數(shù)據(jù)時段相一致。淺層(0、5、10、15、20 cm)不同深度地溫采用曲管地溫表(精度為0.5 ℃)實測數(shù)據(jù),每日08:00、14:00、20:00人工觀測;深層(40、80、160、320 cm)地溫采用直管地溫表(精度為0.2 ℃)實測數(shù)據(jù),每日14:00人工觀測。氣溫采用放于百葉箱中的氣溫儀表(精度為0.1 ℃)實測數(shù)據(jù),每日08:00、14:00、20:00人工觀測。

      表2 潛水蒸發(fā)試驗方案

      1.3 數(shù)據(jù)處理

      每經(jīng)過一次異常值的剔除,剩下的數(shù)據(jù)需重新計算值,再以新為依據(jù),進(jìn)一步判別是否還存在異常值,直至無異常值為止。

      2 結(jié)果與分析

      2.1 凍融期劃分及氣象因素分析

      為劃分淮北平原地區(qū)凍融期,因氣溫、地溫每年變化趨勢基本一致,以2011年11月1日—2016年4月30日近5 a實測氣溫、地溫數(shù)據(jù)為例,選取氣溫、地溫在0 ℃以下的月份作為該區(qū)凍融期進(jìn)行研究。由于晝夜溫差的影響,分別取每日08:00與14:00數(shù)據(jù)為依據(jù)進(jìn)行分析。2011年11月1日—2016年4月30日逐日08:00與14:00氣溫變化散點圖見圖1。由圖1可見,12—2月08:00氣溫多在0 ℃以下,最低可達(dá)-10 ℃,而14:00氣溫多在0 ℃以上。1月中旬為淮北平原溫度最低的時段。

      圖1 2011—2016年五道溝實驗站逐日氣溫及地溫變化

      近5 a(2011—2016年)12—2月0和10 cm土層08:00和14:00地溫隨時間變化過程線如圖1c~圖1f所示。從圖可見,0 cm土層12—2月08:00逐日地溫多在0 ℃以下,14:00多在0 ℃以上,與上述氣溫分析結(jié)果相一致。因此,將12—2月份定義為該區(qū)的凍融期。由于晝夜溫差的影響,該區(qū)凍融期多表現(xiàn)為晝?nèi)谝箖霈F(xiàn)象。10 cm土層12—2月08:00與14:00逐日地溫多在0 ℃以上。不同年份地溫在數(shù)值上有差異,但變化趨勢基本一致,且隨土層深度的增加,離散程度越來越小。因此,可選取其中任一年不同土層實測地溫進(jìn)行分析。

      以2011—2012年12—2月逐日08:00實測氣溫和地溫數(shù)據(jù)為例,展現(xiàn)地溫隨深度變化過程線,及氣溫對地溫的影響,圖中散點表示不同埋深的地溫,實線表示氣溫。從圖2可見,0、5 cm土層地溫多在0 ℃以下,且變化趨勢與氣溫(實線)基本一致;10、15 cm土層地溫在0 ℃上下波動,隨土層厚度的增大,地溫也逐漸增加,且波動幅度越來越小。土層越深,地溫變化越平緩,表層地溫易受氣象因素影響,故波動幅度較大。

      地溫影響潛水蒸發(fā)的重要因素,影響土層剖面水分的運移。凍融期夜晚地溫降至0 ℃以下,表層土壤水分凍結(jié)成冰,土水勢降低,產(chǎn)生自上而下的土水勢梯度,驅(qū)使下層土壤水分向凍結(jié)層遷移[32]。白天氣溫升高,由于太陽輻射的作用,表層土壤溫度緩慢升高,凍結(jié)層開始融化,如此反復(fù)循環(huán),形成該地區(qū)晝?nèi)谝箖龅默F(xiàn)象。

      圖2 2011—2012年五道溝實驗站凍融期不同土層氣溫和地溫逐日變化

      2.2 裸地及冬小麥凍融期潛水蒸發(fā)規(guī)律分析

      在水資源評價中,潛水蒸發(fā)系數(shù)指標(biāo)一般選取月或年時段進(jìn)行計算,本文從應(yīng)用角度及系統(tǒng)反映凍融期變化過程考慮,選用旬時段進(jìn)行分析、擬合。因文中選取數(shù)據(jù)系列較長,不可避免會存在隨機誤差。相關(guān)研究表明[33],通過對隨機誤差特性的分析,采用算術(shù)平均值的方法,可以得到真值的最佳估計。因此,通常情況下采用算術(shù)平均值作為最后的測量結(jié)果。在進(jìn)行算術(shù)平均值步驟前,首先要根據(jù)相應(yīng)的判別準(zhǔn)則,篩選出數(shù)據(jù)集中的異常值并剔除,確保數(shù)據(jù)集中無異常點的存在,因為異常點的取值會明顯歪曲測量結(jié)果。本文根據(jù)3準(zhǔn)則對原始數(shù)據(jù)集進(jìn)行預(yù)處理,對歷年數(shù)據(jù)按每個月份的上、中、下旬分類,再按照埋深分別進(jìn)行篩選,直到各埋深數(shù)據(jù)均滿足3σ準(zhǔn)則,對預(yù)處理后的數(shù)據(jù)再進(jìn)行算術(shù)平均值。由于實驗站潛水蒸發(fā)數(shù)據(jù)為每日觀測,先對1991—2015年的日潛水蒸發(fā)數(shù)據(jù)按旬進(jìn)行求和,計算歷年各個月的旬潛水蒸發(fā),再篩選出同一月份同一旬的數(shù)據(jù),求取平均值,得到多年平均旬潛水蒸發(fā)數(shù)據(jù)。

      裸地多年平均旬潛水蒸發(fā)隨埋深變化過程線如圖3所示。從圖可知,凍融期不同土壤質(zhì)地在不同潛水埋深情況下,裸地潛水蒸發(fā)并不是隨埋深的增加而減小,而是在0.1~0.3 m埋深區(qū)間出現(xiàn)最大值,在0~0.1 m埋深區(qū)間,隨著埋深的增大而增加;在0.3~5.0 m埋深區(qū)間,隨著埋深的增大而減小。該變化規(guī)律與非凍結(jié)期裸地潛水蒸發(fā)隨埋深增大遞減規(guī)律不一致,主要是因為凍融期溫度較低,裸地埋深0 m會直接凍結(jié),表層土壤先凍結(jié),潛水面距表層凍結(jié)土壤還有一段距離,因毛細(xì)管的存在,仍有一部分潛水通過毛細(xì)管上升到凍土層,使埋深0.1~0.3 m的潛水蒸發(fā)量比埋深0 m大,在曲線上表現(xiàn)出峰值,此后隨埋深增大而減小。從圖3可知,砂姜黑土與黃潮土隨埋深增大均表現(xiàn)出先增后減規(guī)律,但砂姜黑土隨埋深遞減較陡峭,黃潮土變化較平穩(wěn)。不同土壤質(zhì)地對潛水蒸發(fā)影響較大,砂姜黑土土壤顆粒較黃潮土粗,土壤顆粒越粗孔隙越大,越便于水分遷移,水分向凍結(jié)面聚集越快。黃潮土顆粒較細(xì),毛細(xì)管上升高度較高,凍結(jié)層持續(xù)向下移動,凍結(jié)層較砂姜黑土厚。

      小麥地多年平均旬潛水蒸發(fā)隨埋深變化過程線見圖3b,從圖可見,砂姜黑土和黃潮土旬潛水蒸發(fā)隨埋深變化規(guī)律與裸地基本一致,均隨埋深增大呈先增后減趨勢。2種土壤遞減速度雖有不同,但不像裸地那樣明顯。種植小麥情景下,作物覆蓋會減緩?fù)寥赖膬鼋Y(jié)速率,作物根系發(fā)育對土壤表層結(jié)構(gòu)有一定的影響。因此,小麥種植情景下,潛水蒸發(fā)隨埋深變化與裸地不太一致。

      2.3 冬小麥與裸地凍融期潛水蒸發(fā)差值變化分析

      3 凍融期潛水蒸發(fā)計算

      3.1 裸地凍融期潛水蒸發(fā)擬合方法

      采用1991—2015年據(jù)3準(zhǔn)則預(yù)處理后的數(shù)據(jù)進(jìn)行分析擬合,2017—2018年數(shù)據(jù)進(jìn)行檢驗。據(jù)上述砂姜黑土、黃潮土有無作物凍融期潛水蒸發(fā)隨埋深變化具有峰值的特點,考慮采用具有峰值的高斯函數(shù)、類高斯函數(shù)和三次函數(shù)型對其進(jìn)行非線性擬合,并與已有的3種經(jīng)典計算潛水蒸發(fā)的經(jīng)驗公式進(jìn)行比較,6種函數(shù)形式見式(2)~式(7)。采用1991—2015年凍融期潛水蒸發(fā)觀測數(shù)據(jù),計算砂姜黑土和黃潮土有無作物不同埋深的旬潛水蒸發(fā)。

      式中g(shù)為潛水蒸發(fā)量,mm;0為水面蒸發(fā)量,mm;為潛水埋深,m;0為極限潛水埋深,m;、、、為擬合參數(shù),無量綱。

      3.2 裸地潛水模擬結(jié)果分析

      3.2.1 模型選擇

      利用MATLAB軟件,采用上述6種曲線形式對平均旬潛水蒸發(fā)系數(shù)與埋深進(jìn)行非線性擬合,砂姜黑土和黃潮土裸地6種曲線各月中旬潛水蒸發(fā)擬合優(yōu)度和RMSE見表3。從表3可見,砂姜黑土、黃潮土裸地均為高斯函數(shù)擬合效果最好,擬合優(yōu)度2均大于0.9,均方根誤差均小于0.1,且能表現(xiàn)凍融期潛水蒸發(fā)隨埋深增大先增后減的規(guī)律。故可選用高斯曲線進(jìn)行該區(qū)裸地潛水蒸發(fā)的計算。

      3.2.2 裸地凍融期潛水蒸發(fā)模擬結(jié)果

      高斯函數(shù)型中的參數(shù)有著明確的數(shù)學(xué)含義,擬合結(jié)果及參數(shù)取值詳見表4。擬合參數(shù)值為潛水蒸發(fā)最大值對應(yīng)的埋深,從表4可見,砂姜黑土凍融期12—2月潛水蒸發(fā)量最大時埋深平均值在0.08 m左右,黃潮土在0.29 m左右。擬合參數(shù)值反映曲線陡緩程度,值越大,曲線越平緩。砂姜黑土值平均值約為0.33,黃潮土約為1.26,黃潮土值明顯大于砂姜黑土,擬合曲線較平緩,與圖3表現(xiàn)規(guī)律相一致。

      據(jù)表4分析裸地情景下2種土壤擬合參數(shù)隨時間變化規(guī)律。值表示峰值,從表4可見,擬合得到的參數(shù)值砂姜黑土平均值為1.04,黃潮土為1.07。與圖3a中黃潮土的峰值比砂姜黑土的峰值稍大相對應(yīng)。但還存在一定誤差,產(chǎn)生誤差的原因是在0~0.4 m埋深所測數(shù)據(jù)點太少,難以確定真正的峰值。在以后將要開展的試驗中,應(yīng)加測淺埋深的潛水蒸發(fā),從而確定真正的峰值及峰值所對應(yīng)的具體埋深。從時間上看,2種土壤參數(shù)值大致呈先增后減趨勢,在1月中旬達(dá)最大值。前面也分析到,1月中旬是淮北平原溫度最低的時段,表明值的大小與溫度呈相反趨勢,溫度越低值越大。值表示峰值位置,黃潮土各旬?dāng)M合得到的參數(shù)值比砂姜黑土大,實際中2種土壤具體的峰值位置還有待進(jìn)一步探尋。值表示曲線陡緩程度,值越大,曲線越平緩。黃潮土各旬?dāng)M合得到的參數(shù)值比砂姜黑土大,表明黃潮土潛水蒸發(fā)隨埋深變化較砂姜黑土平緩,與圖3a表現(xiàn)出的規(guī)律一致,前述解釋了產(chǎn)生該特點主要是由土壤質(zhì)地決定。從時間上看,2種土壤參數(shù)值基本平穩(wěn),隨時間而變化較小,可能由于土壤質(zhì)地是各種土壤所特有的,短期不隨時間改變。

      表3 裸地旬潛水蒸發(fā)擬合優(yōu)度和均方根誤差比較Table 3 Comparison of goodness of fit and root mean square error of 10-d based phreatic evaporation in bare land

      表4 裸地凍融期旬潛水蒸發(fā)曲線擬合結(jié)果

      采用2017—2018年凍融期砂姜黑土和黃潮土裸地各埋深實測潛水蒸發(fā)數(shù)據(jù)與水面蒸發(fā)實測數(shù)據(jù),對擬合的高斯函數(shù)型公式進(jìn)行驗證,具體驗證結(jié)果見表5。實測值與擬合值間平均相對誤差為0.02%~3.53%,表明模型擬合可靠。

      3.3 冬小麥地潛水模擬結(jié)果分析

      3.3.1 模型選擇

      砂姜黑土和黃潮土小麥6種曲線各月中旬潛水蒸發(fā)擬合優(yōu)度和均方根誤差見表6。從表可見,類高斯函數(shù)型擬合優(yōu)度最高(2>0.9),均方根誤差最小,且可反映潛水蒸發(fā)隨埋深先增大后減少的規(guī)律,故可選用類高斯曲線進(jìn)行該區(qū)凍融期小麥潛水蒸發(fā)計算。

      3.3.2 蒸發(fā)模擬結(jié)果

      類高斯函數(shù)曲線中的參數(shù)有著明確的數(shù)學(xué)含義,擬合結(jié)果及參數(shù)取值詳見表7。參數(shù)值為潛水蒸發(fā)最大值對應(yīng)的埋深,砂姜黑土值均為負(fù),表明潛水蒸發(fā)最大值對應(yīng)的埋深為0 m,潛水蒸發(fā)隨埋深遞減,黃潮土平均值在0.23 m左右。2種土質(zhì)種植小麥潛水蒸發(fā)最大值對應(yīng)的埋深均小于裸地,主要原因是作物覆蓋具有明顯保持地溫的作用,可減緩?fù)寥浪膬鼋Y(jié)速度,種植作物區(qū)域比裸地晚凍結(jié),且凍結(jié)厚度小于裸地,導(dǎo)致有作物時最大值對應(yīng)的埋深比裸地小。

      表5 裸地凍融期旬潛水蒸發(fā)實測值與擬合值的平均相對誤差

      注:—,由于實測值接近0,故未計算相對誤差。下同。

      Note: —, relative error is not calculated because the measured evaporation is about 0. Same as below.

      表6 小麥地凍融期旬潛水蒸發(fā)擬合優(yōu)度和均方根誤差比較

      表7 小麥凍融期旬潛水蒸發(fā)曲線擬合結(jié)果

      據(jù)表7分析種植小麥情景下2種土壤擬合參數(shù)隨時間變化規(guī)律。值表示峰值,從表7可見,擬合得到的參數(shù)值砂姜黑土的平均值為0.84,黃潮土為0.81。從時間上看,2種土壤參數(shù)值大致呈先增后減趨勢,在01月中旬達(dá)最大值,與裸地擬合參數(shù)值變化規(guī)律一致。裸地擬合參數(shù)值比種植小麥情景下稍大,與圖3b呈現(xiàn)規(guī)律一致。值表示峰值位置,黃潮土各旬?dāng)M合得到的參數(shù)值比砂姜黑土大,與裸地擬合參數(shù)值變化規(guī)律一致。

      采用2017—2018年凍融期砂姜黑土和黃潮土小麥各埋深實測潛水蒸發(fā)數(shù)據(jù)與水面蒸發(fā)實測數(shù)據(jù),對上述擬合公式進(jìn)行驗證,結(jié)果見表8。實測值與擬合值間平均相對誤差為0.02%~3.41%,表明采用類高斯模型擬合小麥地潛水蒸發(fā)規(guī)律的精度較高。

      表8 小麥凍融期旬潛水蒸發(fā)實測值與擬合值相對誤差Table 8 Relative error between measured and fitting value of 10-d based phreatic evaporation in freezing-thawing period of wheat land

      4 結(jié) 論

      1)淮北平原冬季干旱少雨,凍融期(12—2月)多表現(xiàn)為晝?nèi)谝箖鎏卣?,凍結(jié)層較薄。裸地條件下,砂姜黑土和黃潮土潛水蒸發(fā)均隨埋深的增大呈先增后減趨勢,在0.1~0.3 m埋深區(qū)間出現(xiàn)最大值,在0~0.1 m埋深區(qū)間,隨著埋深的增大而增加;在0.3~5.0 m埋深區(qū)間,隨著埋深的增大而減小。該變化規(guī)律與非凍結(jié)期裸地潛水蒸發(fā)隨埋深增大遞減規(guī)律不一致。

      2)種植小麥條件下,砂姜黑土和黃潮土凍融期潛水蒸發(fā)隨埋深變化規(guī)律與裸地一致,不同土質(zhì)遞減速度不同。砂姜黑土0~0.4 m埋深區(qū)間與黃潮土0~1.0 m埋深區(qū)間小麥潛水蒸發(fā)量均比裸地小,主要是因為作物的根系及土壤表層1~2 cm秸稈殘留在土壤,對表層土壤形成覆蓋,同時播前土地翻耕深度約20~30 cm,切斷了上層毛細(xì)管,影響毛管水的輸送,導(dǎo)致潛水蒸發(fā)量小。

      3)裸地條件高斯函數(shù)擬合效果最好,擬合優(yōu)度2均大于0.9,均方根誤差(root mean square error,RMSE)均小于0.1 mm。砂姜黑土裸地潛水蒸發(fā)量最大時的埋深在0.08 m左右,黃潮土在0.29 m左右,潛水蒸發(fā)達(dá)最大值的埋深主要受凍土層厚度和土質(zhì)的影響。黃潮土擬合曲線較平緩。

      4)種植小麥條件類高斯函數(shù)擬合效果最好,擬合優(yōu)度2均大于0.9, RMSE均小于0.1 mm。砂姜黑土水蒸發(fā)最大值對應(yīng)的埋深為0,黃潮土在0.23 m左右,2種土質(zhì)種植小麥潛水蒸發(fā)最大值對應(yīng)的埋深均比裸地小,主要是因為作物覆蓋對表土層具有明顯的保溫作用,可減緩?fù)寥浪膬鼋Y(jié)速度,凍土層厚度變薄,導(dǎo)致有作物時最大值對應(yīng)的埋深比裸地小。

      本文模型較好地反映了淮北平原裸地和冬小麥情景下凍融期潛水蒸發(fā)隨埋深變化規(guī)律,擬合參數(shù)意義明確,可直接用于凍融期旬潛水蒸發(fā)量的計算。但實際具體峰值位置有待進(jìn)一步研究,在0~0.4 m埋深所測數(shù)據(jù)點太少,難以確定真正的峰值,在以后將要開展的試驗中,應(yīng)加測淺埋深的潛水蒸發(fā),從而確定真正的峰值及峰值所對應(yīng)的具體埋深。

      [1] Gong Lebing, Xu Chongyu, Chen Deliang, et al. Sensitivity of the Penman–monteith reference evapotranspiration to key climatic variables in the Changjiang (Yangtze River) basin[J]. Journal of Hydrology, 2006, 329(3) : 620-629.

      [2] Unold G, Fank J. Modular design of field lysimeters for specific application needs[J]. Water,Air & Soil Pollution: Focus, 2008, 8 (2): 233-242.

      [3] 郝振純,陳璽,王加虎,等. 淮北平原裸土潛水蒸發(fā)趨勢及其影響因素分析[J]. 農(nóng)業(yè)工程學(xué)報,2011,27(6):73-78. Hao Zhenchun, Chen Xi, Wang Jiahu, et al.Trend and impact factors of evaporation from shallow phreatic groundwater of bare soil on Huaibei Plain in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(6): 73-78. (in Chinese with English Abstract)

      [4] 于海龍,姜峰,蘇浩. 氣象因素對潛水蒸發(fā)影響探討[J].水土保持應(yīng)用技術(shù),2011(3):24-25. Yu Hailong, Jiang Feng, Su Hao. Influence of meteorological factors on diving evaporation[J]. Technology of Soil and Water Conservation, 2011(3): 24-25. (in Chinese with English Abstract)

      [5] 寧娟. 干旱區(qū)潛水蒸發(fā)規(guī)律及土壤水分?jǐn)?shù)據(jù)同化研究[D].烏魯木齊:新疆大學(xué),2017. Ning Juan. Research on Evaporation Rules of Phreatic Water and Data Assimilation of Soil Moisture in Arid Area[D]. Urumchi: Xinjiang University, 2017. (in Chinese with English Abstract)

      [6] 賈瑞亮,周金龍,周殷竹,等. 干旱區(qū)高鹽度潛水蒸發(fā)條件下土壤積鹽規(guī)律分析[J]. 水利學(xué)報,2016,47(2):150-157. Jia Ruiliang, Zhou Jinlong, Zhou Yinzhu, et al. Analysis on law of soil salt accumulation under condition of high salinity phreatic water evaporation in arid areas[J]. The Journal of Hydraulic Engineering, 2016, 47(2): 150-157. (in Chinese with English Abstract)

      [7] 劉路廣,崔遠(yuǎn)來,馮躍華. 引黃灌區(qū)潛水蒸發(fā)規(guī)律與計算方法研究[J]. 灌溉排水學(xué)報,2011,30(3):18-33. Liu Luguang, Cui Yuanlai, Feng Yuehua. Study on phreatic evaporation law and calculation method in yellow river irrigation area[J].Journal of Irrigation and Drainage, 2011, 30(3): 18-33. (in Chinese with English Abstract)

      [8] 王振龍,劉淼,李瑞. 淮北平原有無作物生長條件下潛水蒸發(fā)規(guī)律試驗[J]. 農(nóng)業(yè)工程學(xué)報,2009,25(6):26-32. Wang Zhenlong, Liu Miao, Li Rui. Experiment on phreatic evaporation of bare soil and soil with crop in Huaibei plain[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009,25(6): 26-32.

      [9] 毛曉敏,雷志棟,尚松浩,等. 作物生長條件下潛水蒸發(fā)估算的蒸發(fā)面下降折算法[J]. 灌溉排水,1999, 18(2):26-29. Mao Xiaomin, Lei Zhidong, Shang Songhao, et al.Method of equivalent phreatic evaporation by lowering evaporation surface for estimation of the phreatic evaporation from farmland based on that from bare soil[J]. The irrigation and drainage, 1999, 18(2): 26-29. (in Chinese with English Abstract)

      [10] Babajimopoulos C, Panoras A, Georgoussis H, et al. Contri-bution to irrigation from shallow water table under field conditions[J]. Agricultural Water Management, 2007, 92(3): 205-210.

      [11] 習(xí)麗麗. EPIC模型在遼寧中部平原區(qū)潛水蒸發(fā)時空分布計算中的應(yīng)用研究[J]. 水利技術(shù)監(jiān)督,2018(1):106-109. Xi Lili. Application research of EPIC model in calculation of spatiotemporal distribution of diving evaporation in the central plain of Liaoning Province[J]. Technical Supervision in Water Resources, 2018(1): 106-109. (in Chinese with English Abstract)

      [12] 雷志棟,楊詩秀,謝森傳. 潛水穩(wěn)定蒸發(fā)的分析與經(jīng)驗公式[J]. 水利學(xué)報,1984(8):60-64.

      [13] 孔凡哲,王曉贊. 利用土壤水吸力計算潛水蒸發(fā)初探[J].水文,1997(3):45-48. Kong Fanzhe, Wang Xiaozan. Using soil water suction for phreatic evaporation evaluation[J]. Journal of Chinese Hydrology, 1997(3): 45-48. (in Chinese with English Abstract)

      [14] 史文娟,沈冰,汪志榮,等. 夾砂層狀土壤潛水蒸發(fā)特性及計算模型[J]. 農(nóng)業(yè)工程學(xué)報,2007,23(2):17-20. Shi Wenjuan, Shen Bing, Wang Zhirong, et al. Characte-ristics and calculation model of phreatic evaporation of sand-layered soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(2): 17-20. (in Chinese with English Abstract)

      [15] Kunio Watanabe, Yuki Kugisaki. Effect of macropores on soil freezing and thawing with infiltration[J]. Hydrological Processes,2017,31(2) : 270-278.

      [16] Iwata Y, Hirota T, Hayashi M, et al. Effects of frozen soil and snow cover on cold-season soil water dynamics in Tokachi, Japan[J]. Hydrology Process, 2010, 24(13): 1755-1765.

      [17] 雷志棟,尚松浩,楊詩秀,等. 地下水淺埋條件下越冬期土壤水熱遷移的數(shù)值模擬[J]. 冰川凍土,1998,20 (1):52-55. Lei Zhidong, Shang Songhao, Yang Shixiu,et al. Numerical simulation on simultaneous soil moisture and heat transfer under shallow ground water table in winter[J]. Journal of Glaciology and Geocryology, 1998, 20(1): 52-55. (in Chinese with English Abstract)

      [18] 尚松浩,雷志棟,楊詩秀,等. 凍融期地下水位變化情況下土壤水分運動的初步研究[J]. 農(nóng)業(yè)工程學(xué)報,1999,18 (2):70-74. Shang Songhao, Lei Zhidong, Yang Shixiu, et al. Study on soil water movement with changeable groundwater levei during soil freezing and thawing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 1999, 18 (2): 70-74. (in Chinese with English Abstract)

      [19] 陳軍鋒,楊軍耀,鄭秀清,等. 地下水淺埋條件下單向凍結(jié)土壤水熱變化試驗[J].農(nóng)業(yè)機械學(xué)報,2014,45(12):146-151,248. Chen Junfeng, Yang Junyao, Zheng Xiuqing, et al. Variation of soil temperature and moisture under unidirectional freezing with shallow groundwater[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(12): 146-151,248. (in Chinese with English Abstract)

      [20] 付強,顏培儒,李天霄,等. 凍融期不同覆蓋和氣象因子對土壤導(dǎo)熱率和熱通量的影響[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(20):98-105. Fu Qiang, Yan Peiru, Li Tianxiao, et al. Influence of different coverage and meteorological factors on soil thermal conductivity and heat flux during freezing and thawing period[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(20): 98-105. (in Chinese with English Abstract)

      [21] Kaneko Takemasa, Kobayashi Tetsuo, Wang Weizhen, et al. Estimating evaporation in winter at a field irrigated late in autumn in Inner Mongolia,China[J]. Journal of the Faculty of Agriculture Kyushu University, 2006, 51(2): 407-411.

      [22] Wu Mousong, Huang Jiesheng, Wu Jingwei, et al. Experimental study on evaporation from seasonally frozen soils under various water,soluteand groudwater conditions in Inner Mongolia,China[J]. Journal of Hydrology, 2016, 535: 46-53.

      [23] 童菊秀,楊金忠,岳衛(wèi)峰,等. 凍結(jié)期與融解期潛水蒸發(fā)系數(shù)模擬研究[J]. 灌溉排水學(xué)報,2007,26 (2):21-24,40. Tong Juxiu, Yang Jinzhong, Yue Weifeng. Simulative study on groundwater evaporation coefficient in freezing and thawing period[J]. Journal of Irrigation and Drainage, 2007,26 (2): 21-24,40. (in Chinese with English Abstract)

      [24] 雷志棟,尚松浩,楊詩秀,等. 土壤凍結(jié)過程中潛水蒸發(fā)規(guī)律的模擬研究[J]. 水利學(xué)報,1999(6):8-12. Lei Zhidong, Shang Songhao, Yang Shixiu, et al. Simulation on phreatic evaporation during soil freezing[J].The Journal of Hydraulic Engineering, 1999(6): 8-12. (in Chinese with English Abstract)

      [25] 劉佳帥,楊文元,郝培凈,等. 季節(jié)性凍融區(qū)地下水位預(yù)測方法研究[J]. 灌溉排水學(xué)報,2017,36(6):95-99. Liu Jiashuai, Yang Wenyuan, Hao Peijing, et al. Predicting change of groundwater table in seasonal permafrost[J]. Journal of Irrigation and Drainage, 2017, 36(6): 95-99. (in Chinese with English Abstract)

      [26] 梁建財,李瑞平,史海濱,等. 河套灌區(qū)覆蓋對鹽漬土壤養(yǎng)分遷移與分布的影響[J]. 農(nóng)業(yè)機械學(xué)報,2016,47(2):113-121. Liang Jiancai, Li Ruiping, Shi Haibin, et al. Effect of mulching on transfer and distribution of salinizated soil nutrient in hetao irrigation district[J].Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(2): 113-121. (in Chinese with English Abstract)

      [27] 苗春燕,陳軍鋒,鄭秀清. 凍融期氣溫與土壤凍融過程的關(guān)系研究[J]. 太原理工大學(xué)學(xué)報,2018,49(3):412-417. Miao Chunyan, Chen Junfeng, Zheng Xiuqing. Relationship between air temperatures and soil freezing-thawing process[J]. Journal of Taiyuan University of technology, 2018, 49(3): 412-417. (in Chinese with English Abstract)

      [28] 單小琴,鄭秀清.地表覆蓋對季節(jié)性凍融期土壤水分特征的影響[J]. 水電能源科學(xué),2018,36(7):99-103. Shang Xiaoqin, Zheng Xiuqing. Impacts of surface covering on soil water characteristics during seasonal freeze-thaw period[J]. Water Resources and Power, 2018, 36(7): 99-103. (in Chinese with English Abstract)

      [29] 王振龍,章啟兵,李瑞. 淮北平原區(qū)水文實驗研究[M].合肥:中國科學(xué)技術(shù)大學(xué)出版社,2011.

      [30] 薛薇. SPSS統(tǒng)計分析方法及應(yīng)用[M]. 北京:電子工業(yè)出版社,2013.

      [31] 楊茂,孟玲建,李大勇,等. 基于類3準(zhǔn)則的光伏功率異常數(shù)據(jù)識別[J]. 可再生能源,2018,36(10) :1443-1448. Yang Mao,Meng Lingjian,Li Dayong, et al. Identification of abnormal data of photovoltaic power based on class 3[J]. Renewable Energy Resources, 2018, 36(10): 1443-1448. (in Chinese with English Abstract)

      [32] 付強,侯仁杰,李天霄,等. 凍融土壤水熱遷移與作用機理研究[J]. 農(nóng)業(yè)機械學(xué)報,2016,47(12):99-110. Fu Qiang, Hou Renjie, Li Tianxiao, et al. Soil moisture-heat transfer and its action mechanism of freezing and thawing soil[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(12): 99-110. (in Chinese with English Abstract)

      [33] 丁勇. 隨機誤差對線性回歸相關(guān)系數(shù)的影響[J]. 中國衛(wèi)生統(tǒng)計,2016,33(6):1063-1065,1067.Ding Yong. Influence of random error on linear regr-ession correlation coefficient[J]. Chinese health statistics, 2016, 33(6): 1063-1065, 1067. (in Chinese with English Abstract)

      Phreatic evaporation in bare and wheat land during freezing-thawing period of Huaibei Plain based on lysimeters experiments

      Wang Zhenlong1, Yang Miao2, Lü Haishen3, Hu Yongsheng1, Zhu Yonghua3, Gu Nan2, Wang Yining4

      (1.,233000,2.211100,3.210098,4.210029,)

      This paper was aimed to study phreatic evaporation in Huaibei Plain during freezing-thawing period. The data was collected from long-term experiments at Wudaogou Hydrological Experimental Station from 1990 to 2018. In the experiments, a total of 38 lysimeters were installed. About half of them were planted with winter wheat. The others were bare lands. The soils in lysimeters were typical local soils: undisturbed lime concretion black soil and yellow moist soil. Soil temperature and air temperature were measured. The phreatic evaporation was determined and its relationship with soil depth was fitted with non-linear regression equations. According to the air temperature, the freezing-thawing period in the Huaibei Plain was from December to the next February. During the period, the soil was characterized with freezing at night and thawing during the day. The freezing layer was thin. In bare land, the phreatic evaporation increased firstly with depth and then decreased. The maximum phreatic evaporation occurred in the depth range of 0.1-0.3 m in the both soils. When the depth was smaller than the 0.1 m, phreatic evaporation increased with depth while it decreased with the depth when the depth was higher than 0.3 m. The characteristics of phreatic evaporation in soil profile during the freezing-thawing period was different from that in the period. The change of phreatic evaporation in the wheat land was similar with that in the bare land. However, the phreatic evaporation in the wheat land was smaller than that in the bare land when the depth was smaller than 0.4 m in lime concretion black soil and smaller than 1.0 m in the yellow moist soil. It was because the capillary was probably cut off due to covering on soil surface caused by roots or stalk residues or tillage before sowing, which affected the transport of water along the capillary and caused small phreatic evaporation. There was a peak in the phreatic evaporation curves. Therefore, 3 forms of distribution functions were selected to fit the change of phreatic evaporation with depth. Meanwhile, popular phreatic evaporation equations were compared. The Gaussian function could yield the best simulation for the phreatic evaporation in the bare land with the determination coefficient higher than 0.9 and the root mean square error smaller than 0.1. During the freezing-thawing period, the maximum phreatic evaporation from the lime concretion black soil occurred at 0.08 m below ground surface but at 0.29 m in yellow moist soil below ground surface. For wheat lands, the quasi-Gauss function was the best for constructing phreatic evaporation simulation formula with the determination coefficient higher than 0.9. The maximums of phreatic evaporation from the lime concretion black soil and the yellow moist occurred on the soil surface and 0.23 m below the soil surface, respectively. The soil depth corresponding to maximum phreatic evaporation was smaller in the wheat land than bare land.

      freezing; thaw; evaporation; groundwater depth; Huaibei Plain

      10.11975/j.issn.1002-6819.2019.13.014

      TV213.9

      A

      1002-6819(2019)-13-0129-09

      2018-10-01

      2019-05-01

      國家重點研發(fā)計劃課題“湖沼系統(tǒng)生態(tài)需水核算及調(diào)控技術(shù)”(2017YFC0404504);國家自然科學(xué)基金項目(41830752、41571015)

      王振龍,教授級高工,博士,主要從事水文水資源研究。 Email:skywzl@sina.com

      王振龍,楊 秒,呂海深,胡永勝,朱永華,顧 南,王怡寧. 基于蒸滲儀群淮北平原凍融期裸土及麥田潛水蒸發(fā)規(guī)律研究[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(13):129-137. doi:10.11975/j.issn.1002-6819.2019.13.014 http://www.tcsae.org

      Wang Zhenlong, Yang Miao, Lü Haishen, Hu Yongsheng, Zhu Yonghua, Gu Nan, Wang Yining. Phreatic evaporation in bare and wheat land during freezing-thawing period of Huaibei Plain based on lysimeters experiments[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(13): 129-137. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.13.014 http://www.tcsae.org

      猜你喜歡
      砂姜參數(shù)值淮北
      隆堯縣砂姜黑土的系統(tǒng)分類歸屬研究
      河北省砂姜黑土分類及綜合治理
      長期施肥對砂姜黑土可溶性碳淋溶的影響
      淮北平原砂姜黑土區(qū)砂姜的空間分布及其驅(qū)動因素*
      例談不等式解法常見的逆用
      不等式(組)參數(shù)取值范圍典例解析
      《淮北師范大學(xué)學(xué)報》(自然科學(xué)版)征稿簡則
      《淮北師范大學(xué)學(xué)報》(自然科學(xué)版)征稿簡則
      2020 Roadmap on gas-involved photo- and electro- catalysis
      逆向思維求三角函數(shù)中的參數(shù)值
      新巴尔虎左旗| 西和县| 公主岭市| 陈巴尔虎旗| 子长县| 和田市| 宁波市| 沅江市| 平泉县| 宁安市| 富平县| 咸丰县| 汶上县| 万全县| 博乐市| 万宁市| 富川| 临安市| 新河县| 黄浦区| 增城市| 贵定县| 拉萨市| 石门县| 麻阳| 沐川县| 濮阳市| 通化市| 东乡族自治县| 灵台县| 水城县| 明光市| 营口市| 蓬溪县| 原阳县| 英德市| 铁岭县| 新乡市| 南和县| 封丘县| 沂南县|