李煜姍,李 平,楊再強1,,汪 甫
低溫寡照影響番茄幼苗根系有機酸代謝和養(yǎng)分吸收*
李煜姍1,2,李 平3,楊再強1,3,汪 甫2
(1.南京信息工程大學(xué)氣象災(zāi)害預(yù)報預(yù)警與評估協(xié)同創(chuàng)新中心,南京 210044;2.江西省氣象服務(wù)中心,南昌 330096; 3.江蘇省農(nóng)業(yè)氣象重點實驗室,南京 210044)
低溫寡照氣象災(zāi)害嚴重制約設(shè)施番茄產(chǎn)量和品質(zhì),本研究擬從番茄根系有機酸代謝和養(yǎng)分吸收的角度,探究低溫寡照影響番茄生長的潛在機制。通過人工控制試驗,設(shè)置不同低溫(最高溫/最低溫:12℃/2℃、14℃/4℃、16℃/6℃、18℃/8℃)和弱光(200、400μmol·m?2·s?1)的交互處理,研究低溫寡照處理2、4、6、8、10d后苗期番茄根系活力、氮磷鉀含量、植株干重以及根系分泌低分子量有機酸(LMWOAs)的動態(tài)變化。結(jié)果表明:低溫寡照顯著抑制番茄根系活力和氮、磷、鉀吸收,抑制根、莖葉干重增加,溫度越低抑制作用越強;最低溫(12℃/2℃)和最弱光(200μmol·m?2·s?1)處理下,番茄根系活力僅為對照的7.70%~22.1%,根系氮、磷、鉀的凈吸收量分別為對照的3.75%~18.1%、1.28%~27.1%和19.1%~35.5%,根系、莖葉干重分別為對照的23.4%~55.9%和42.6%~66.5%。低溫寡照脅迫下番茄根系分泌低分子量有機酸的總量顯著降低,土壤pH值升高,其中草酸的分泌量最大,下降幅度最明顯。表明低溫寡照對番茄生長的抑制作用可能與根系活力下降,草酸分泌減少和養(yǎng)分吸收降低有關(guān),推測在低溫寡照脅迫初期施加適量草酸或氮、磷、鉀復(fù)合肥料或許可提高番茄的抗災(zāi)能力。
低溫寡照;番茄;根系活力;土壤養(yǎng)分;有機酸
低溫寡照是一種復(fù)合型氣象災(zāi)害,一般發(fā)生在每年10月?翌年3月。番茄生長的最適溫度和光合有效輻射(PAR)分別為15~25℃和550~650μmol·m?2·s?1[1],低溫寡照勢必會影響番茄植株生長。鄒雨伽等[2]發(fā)現(xiàn),晝/夜溫12/2℃,PAR 200μmol·m?2·s?1低溫寡照處理10d后花期番茄株高和莖粗的增長量較正常植株分別下降70.1%和94.9%。同時,番茄果實發(fā)育和品質(zhì)形成也會受到影響,江夢圓等[3]發(fā)現(xiàn)花期番茄在晝/夜溫12/2℃,PAR 200μmol·m?2·s?1低溫寡照處理10d,成熟期果實體積較正常果實減小49.5%,果實內(nèi)維生素C、可溶性固形物和糖酸等營養(yǎng)物質(zhì)含量均顯著下降[4]。低溫寡照災(zāi)害嚴重制約了設(shè)施番茄產(chǎn)業(yè)的經(jīng)濟效益,但由于國內(nèi)多數(shù)溫室不具備控溫、控光功能,目前仍難以通過調(diào)整溫度和光強來緩解低溫寡照脅迫[5]。因此,迫切需要了解低溫寡照抑制番茄生長和果實形成的內(nèi)在機制,進而提出合理的應(yīng)急方案。
關(guān)于低溫寡照對設(shè)施作物的致災(zāi)機制,國內(nèi)外研究主要聚焦于低溫寡照對葉片光合作用和氧化脅迫等方面的影響。低溫寡照會抑制番茄葉片的光合作用,進而減少植株干物質(zhì)累積[6]。低溫寡照對番茄葉片光合作用的抑制主要體現(xiàn)在3個方面:(1)改變番茄葉片形態(tài),Nieuwhof等[7]發(fā)現(xiàn)晝/夜溫19℃/6℃,弱光照脅迫下番茄葉片的相對生長率和葉面積比率較正常植株顯著下降,不利于葉片進行光合作用;(2)降低番茄葉片葉綠素含量,如高冠等[8]發(fā)現(xiàn)晝/夜溫12℃/2℃,PAR 200μmol·m?2·s?1低溫寡照脅迫下花期番茄葉片葉綠素a和葉綠素b均下降了36.0%左右;(3)弱化葉片對光能的利用效率,張淑杰等[9]研究指出低溫寡照脅迫下,花期番茄葉片最大凈光合速率、PSII最大光能轉(zhuǎn)化效率、光化學(xué)淬滅系數(shù)均顯著降低,導(dǎo)致光合作用受阻。另外,低溫寡照還會刺激植物葉片產(chǎn)生活性氧,降低抗氧化酶活性,積累丙二醛,造成葉片的氧化損傷[10]?;诘蜏毓颜找种品讶~片光合作用并造成氧化脅迫的致災(zāi)機制,Zhang等[11]提出通過轉(zhuǎn)基因手段,將擬南芥中基因[C-repeat(CRT)and dehydration- responsive element(DRE)binding factor 1]引入番茄,加強低溫寡照脅迫下葉片的光合作用和抗氧化能力,可有效促進番茄植株生長。但由于目前轉(zhuǎn)基因蔬菜在國內(nèi)仍未被公眾接受,利用轉(zhuǎn)基因手段加強番茄抵抗低溫寡照能力的應(yīng)對方案還難以實施。因此,僅僅關(guān)注番茄葉片對低溫寡照的響應(yīng)機制難以形成簡單易行、可推廣的應(yīng)對措施,而番茄根系對低溫寡照的響應(yīng)目前還缺乏研究。
植物根系對外界環(huán)境變化較為敏感,在遭受脅迫后根系活力及根系代謝過程也會發(fā)生變化[12?14]。根系活力與植物吸收土壤水分和養(yǎng)分的能力有關(guān),根系活力越弱,植物吸收水分和養(yǎng)分的能力越差。在根系代謝過程中,植物會向環(huán)境中分泌一些代謝物質(zhì),其中低分子量有機酸(LMWOAs)是植物根系分泌物的主要成分[15],它有利于難溶性養(yǎng)分的活化,促進植物養(yǎng)分吸收[16?17],還能提高根系活力,促進植物根系的生長發(fā)育[18]。逆境條件下,根系活力和低分子量有機酸代謝的變化均可能影響植物對土壤養(yǎng)分的吸收[19],這可能也是低溫寡照抑制番茄生長的重要原因。
因此,本研究擬通過低溫寡照脅迫試驗了解番茄根系活力、低分子量有機酸代謝及氮磷鉀等養(yǎng)分吸收的變化,通過分析上述指標與植株生長的關(guān)系,從番茄根系角度探究低溫寡照對番茄的致災(zāi)機制,以期提出一種應(yīng)對低溫寡照脅迫的農(nóng)藝方案,為緩解設(shè)施番茄低溫寡照災(zāi)害提供創(chuàng)新思路。
試驗于2016年9月?2017年6月在南京信息工程大學(xué)農(nóng)業(yè)氣象試驗站進行,以“金粉5號”為供試番茄品種。于Venlo可控溫室進行育苗,待兩葉一心時,選擇生長健壯、長勢一致的幼苗定植于PVC塑料花盆(口徑25cm,高20cm)中,每盆種植2株。供試土壤為黃棕壤,基本理化性質(zhì)為:pH值6.75,有機質(zhì)含量11.6g·kg?1,有效氮69.4mg·kg?1,有效磷32.0mg·kg?1,有效鉀180mg·kg?1。每盆裝干土3kg,均勻拌入基肥:尿素0.78g、氯化鉀11.1g和一水磷酸鈣0.64g。
待番茄幼苗生長至第4片真葉展開、株高達15cm以上時將其移至人工氣候箱(TPG-1260 Australian)內(nèi),進行為期10d的低溫寡照處理。設(shè)置4個低溫水平,即18℃/8℃(最高/最低溫度)、16℃/6℃、14℃/4℃、12℃/2℃,模擬自然溫度變化特征,當(dāng)日5:00?14:00從最低溫均勻上升至最高溫,當(dāng)日14:00?次日5:00均勻下降至最低溫,變溫過程由程序自動控制,具體參照朱麗云等[4]的設(shè)計;光合有效輻射(PAR)設(shè)置200、400μmol·m?2·s?1兩個弱光水平;以28℃/18℃、PAR 1000μmol·m?2·s?1為對照,人工氣候箱內(nèi)空氣濕度均設(shè)為75%,溫度誤差控制在±0.5℃范圍內(nèi)。低溫寡照交互共8個處理,具體見表1,每個處理15盆。
表1 試驗設(shè)計
分別于低溫寡照脅迫后的第2、4、6、8、10天采集各處理根際土壤和番茄植株樣品,各處理每個采樣時期采集3盆樣品,采樣方法為破壞性采樣,具體操作為:采樣前2d不澆水或少量澆水,避免土壤過濕,將塑料盆用剪刀從側(cè)邊剪開,取出完整土體,將外圍非根際土去除,利用抖根法將番茄根際微域范圍內(nèi)的土壤取出,視為根際土[20],分析根際土壤中低分子量有機酸含量;每盆取出2株完整番茄植株,1株用于測定根系和地上部干重、根冠比、根系氮磷鉀濃度,另1株用于測定根系活力。
(1)根冠比
番茄植株按根系和莖葉分開,洗凈后擦干。放入烘箱中105℃殺青30min后,75℃烘干至恒重,記錄干重。根冠比的計算式為
根冠比=DW根系/DW莖葉(1)
式中,DW根系、DW莖葉分別為根系、莖葉干重(g)。
(2)根際土壤pH值及低分子量有機酸
根際土壤pH值(土水比為1:2.5)通過pH計(USA)測定[21]。
根際土壤中低分子量有機酸利用0.1M NaOH溶液和飽和NaCl溶液浸提,乙酸乙酯萃取,旋轉(zhuǎn)蒸發(fā)后采用高效液相色譜法(LC-600,南京)進行測定[22],測定的低分子量有機酸種類包括草酸、甲酸、蘋果酸、丙酸、琥珀酸和乙酸。
(3)根系活力及根系氮磷鉀濃度
根系活力指根系的生長狀況和代謝水平,可反映植物根系吸收水分和養(yǎng)分的能力,采用TTC法測定[23]。
根系氮磷鉀的測定:將烘干后的根系用不銹鋼磨樣機磨成粉末,采用H2SO4?H2O2進行消解,消解液中全氮及全磷采用酶標儀法測定,全鉀則采用火焰光度計法測定[21]。
低溫寡照處理期內(nèi)番茄根系氮、磷、鉀凈吸收量計算式為
Tnet=Tn?Tn?2(2)
式中,n為第2、4、6、8、10天,Tn為第n天時番茄根系氮、磷、鉀總量,Tn?2為第n?2天時番茄根系氮、磷、鉀總量,Tnet為第n?2天至第n天的氮、磷、鉀凈吸收量。
數(shù)據(jù)分析及圖表繪制采用SPSS16.0及Excel2010,液相色譜數(shù)據(jù)用伍豪色譜數(shù)據(jù)工作站進行處理。采用Duncan檢驗法(a=0.05)進行顯著性分析。
根系活力是反應(yīng)根系生長和代謝水平狀況的綜合性指標,可直接影響植物地上部的生長和營養(yǎng)狀況,根系活力高表示植物生長狀況良好、代謝旺盛,反之則說明植物生長不良。低溫寡照脅迫下番茄幼苗根系活力的變化如圖1所示。由圖可見,CK的根系活力在觀測期內(nèi)基本不變,保持在3000μg·g?1·h?1左右。而低溫寡照處理下,觀測期內(nèi)根系活力顯著低于CK(L2T4處理中第6、8天除外),且隨脅迫時間呈先升高后降低趨勢,在第6天達到峰值。在光照強度相同時,番茄根系活力與溫度呈正比;在溫度相同時,400μmol·m?2·s?1光照強度下根系活力在前8d高于200μmol·m?2·s?1處理,第10天二者差異變小。L1T1處理對根系活力的抑制最為明顯,其根系活力在232~660μg·g?1·h?1范圍內(nèi),為同期CK處理的7.7%~22.1%。說明低溫寡照會抑制番茄根系活力,不利于根系代謝和養(yǎng)分吸收。
圖1 各低溫寡照脅迫處理10d期間番茄幼苗根系活力的動態(tài)變化
圖2顯示,觀測期內(nèi)對照(CK)處理單株番茄根系對氮的凈吸收量保持在0.53~1.37mg水平,且隨著生育進程先快速升高后輕微下降。低溫寡照處理中,每次觀測時根系對氮的凈吸收量均明顯低于CK,且隨著溫度和光照的降低,根系對氮的凈吸收量也不斷降低,在脅迫第6天時表現(xiàn)最明顯;觀測期內(nèi),L1T1和L2T1(溫度最低處理)根系對氮的凈吸收量僅為同期CK處理的3.75%~18.1%和12.1%~37.1%??梢?,低溫寡照明顯抑制根系對土壤氮素的吸收。
圖2 各低溫寡照處理不同時段單株番茄幼苗根系對氮(a)、磷(b)、鉀(c)的凈吸收量
正常條件下(CK),觀測期單株番茄根系對磷的凈吸收量保持在0.025~0.120mg水平,前4d吸收量較低,后期較高。低溫寡照處理時,根系對磷的凈吸收量的變化規(guī)律與氮相似,L1T1和L2T1(溫度最低處理)處理根系對磷的凈吸收量僅為同期CK處理的1.28%~27.1%和19.1%~35.5%。可見,低溫寡照明顯抑制根系對土壤磷素的吸收。
正常條件下(CK),觀測期單株番茄根系對鉀的凈吸收量保持在0.441~0.755mg水平,隨著生育進程緩慢上升。低溫寡照處理時,根系對鉀的凈吸收量的變化規(guī)律與氮、磷相似,L1T1和L2T1(溫度最低處理)處理根系對鉀的凈吸收量僅為同期CK處理的2.15%~7.41%和7.02%~22.4%。可見,低溫寡照明顯抑制根系對土壤鉀素的吸收,且抑制作用強于氮磷。
圖3顯示,觀測期內(nèi)對照(CK)處理單株番茄根系干重在0.070~0.245g范圍內(nèi),且隨著生育進程不斷上升。低溫寡照處理中,每次觀測時干重均明顯低于CK,且溫度越低根系干重越低,光照越低根系干重也越低,隨著生育進程,各處理與CK的差異不斷增大;觀測期內(nèi),L1T1和L2T1(溫度最低處理)根系干重為同期CK處理的23.4%~55.9%和33.8%~73.3%。可見,低溫寡照明顯抑制根系生長。
正常條件下(CK),觀測期單株番茄莖葉干重在0.756~1.686g范圍內(nèi),且隨著生育進程不斷上升。低溫寡照處理中,番茄莖葉干重的變化規(guī)律與根系相似,L1T1和L2T1(溫度最低處理)處理莖葉干重為同期CK處理的42.6%~66.5%和63.1%~87.4%。可見,低溫寡照明顯抑制莖葉生長,但弱于對根系的抑制作用。
正常條件下(CK),觀測期番茄根冠比在0.093~0.145范圍內(nèi),隨著生育進程緩慢上升。低溫寡照處理中,每次觀測時根冠比均明顯低于CK,隨著生育進程,各處理與CK的差異不斷增大;各低溫寡照處理間根冠比差異較小,但L1T1和L2T1(溫度最低處理)處理根冠比仍最低,為同期CK處理的49.5%~84.1%和53.6%~85.8%??梢?,低溫寡照對番茄根冠比也有一定的抑制作用。
由表2可見,CK處理根際土壤中,6種低分子量有機酸中草酸含量最高,占80.2%~88.3%,試驗期間,草酸含量保持在34.6~58.9μg·g?1水平,且隨生育進程草酸含量不斷上升。低溫寡照處理中,每次觀測時草酸含量均明顯低于CK,且溫度越低土壤中的草酸含量越低,在觀測期間(第6天)草酸含量達到峰值時該特點最明顯,L1T1和L2T1(溫度最低處理)處理土壤中的草酸含量僅為同期CK處理的6.31%~10.4%和7.38%~11.6%??梢姡蜏毓颜彰黠@抑制根系對草酸的分泌。
圖3 各低溫寡照脅迫處理10d期間單株番茄幼苗根系(a)、莖葉干重(b)和根冠比(c)的變化
表2 不同處理觀測期間根際土壤低分子量有機酸濃度(μg·g?1)
注:數(shù)據(jù)均為平均值±標準差,nd表示未檢測到。
Note: The data is mean±SD, nd indicates no detection.
正常情況下(CK),根區(qū)琥珀酸含量位列低分子量有機酸中第二,在3.79~4.61μg·g?1范圍,隨生育進程變化趨勢不明顯。在12℃/2℃以上時,低溫寡照對土壤中琥珀酸含量的影響不大,與CK間差異不顯著,當(dāng)溫度下降到12℃/2℃時土壤中觀測不到琥珀酸,說明此時根系停止分泌琥珀酸或分泌量過少難以檢測到。
正常情況下(CK),根區(qū)乙酸含量位列低分子量有機酸中第三,在1.23~3.37μg·g?1范圍,隨生育進程變化趨勢不明顯。當(dāng)溫度為18℃/8℃時,低溫寡照處理顯著提高乙酸含量,L1T4和L2T4處理土壤中乙酸含量為同期CK處理的2.69~4.70倍和1.78~13.3倍,而當(dāng)溫度降至18℃/8℃以下時土壤中觀測不到乙酸,說明此時根系停止分泌乙酸或分泌量過少難以檢測到。
正常情況下(CK),根區(qū)丙酸含量位列低分子量有機酸中第四,在0.44~0.94μg·g?1范圍,隨生育進程變化趨勢不明顯。低溫寡照處理中,每次觀測時丙酸含量均明顯高于CK,且整體表現(xiàn)為溫度越低土壤中丙酸含量越高,在觀測期間(第6天)丙酸含量達到峰值時該特點最明顯,L1T1和L2T1(溫度最低處理)處理土壤中丙酸含量為同期CK處理的3.66~5.11倍和2.64~9.25倍??梢?,低溫寡照明顯促進根系對丙酸的分泌。
正常情況下(CK),根區(qū)甲酸和蘋果酸含量較低,分別在0.55~0.68μg·g?1和0.17~0.35μg·g?1范圍,隨生育進程變化趨勢不明顯。在12℃/2℃以上時,低溫寡照處理對甲酸和蘋果酸含量的影響不明顯,當(dāng)溫度降至12℃/2℃時,在第4天觀測期后,甲酸和蘋果酸含量顯著上升,說明此時低溫寡照明顯促進根系對甲酸和蘋果酸的分泌。
由圖4可見,對照(CK)處理根際土壤中總有機酸濃度為43.1~68.5μg·g?1,且隨生育進程有機酸分泌量不斷上升。低溫寡照處理中,每次觀測時總有機酸濃度均明顯低于CK,溫度越低總有機酸濃度越低,且觀測期內(nèi)呈先升高后降低趨勢,在第6天達到峰值。在觀測期內(nèi),L1T1和L2T1(溫度最低處理)處理土壤總有機酸濃度為同期CK處理的12.0%~16.9%和14.9%~22.7%??梢?,低溫寡照會明顯抑制根系對低分子量有機酸的分泌。
圖4 各低溫寡照脅迫處理10d期間根際土壤低分子量有機酸總濃度的動態(tài)變化
根際微域范圍內(nèi)土壤pH值的變化規(guī)律與總有機酸的變化規(guī)律正好相反(圖5),對照(CK)處理根際范圍土壤pH值最低,為5.34~5.62,且隨著生育期推進而不斷降低。低溫寡照處理中,每次觀測時土壤pH值均高于CK,溫度越低土壤pH值越高,隨生育進程呈先降低后升高的趨勢,在第6天達到最低值。觀測期內(nèi),L1T1和L2T1(溫度最低處理)處理土壤pH值比同期CK處理高13.2%~19.1%和12.3%~18.5%??梢姡蜏毓颜諘狗迅H土壤pH值明顯升高。
圖5 各低溫寡照脅迫處理10d期間根際土壤pH值的動態(tài)變化
低溫寡照不利于植物葉片的光合作用,顯著影響植物生長[24?26]。除此之外,本研究發(fā)現(xiàn)低溫寡照對番茄幼苗生長的抑制作用還與根系活力的降低有關(guān)。根系活力反映了根系的代謝能力,它的變化直接影響植株生長和抗逆性[27]。番茄根系活力對溫度和光照的變化較敏感[13?14]。本研究發(fā)現(xiàn)低溫寡照脅迫下,番茄根系活力受到明顯抑制。但在脅迫初期根系活力有所增加,這可能是由于番茄幼苗為適應(yīng)環(huán)境脅迫而作出的應(yīng)激反應(yīng),但這種反應(yīng)隨著脅迫時間的延長會不斷減弱[28]。根系活力會影響根系養(yǎng)分吸收,而低溫寡照脅迫導(dǎo)致根系活力下降,可能是造成番茄植株生長受阻的主要原因之一。
低溫寡照脅迫下番茄根系對土壤氮、磷、鉀等養(yǎng)分吸收減弱也是造成番茄生長受阻的重要原因。本研究發(fā)現(xiàn)低溫寡照顯著抑制了根系對氮、磷、鉀的吸收,這對番茄幼苗生長極為不利。除了抑制根系活力,低溫寡照還會通過破壞根系韌皮部和木質(zhì)部形態(tài)[29],限制根系對養(yǎng)分的吸收,進而影響番茄幼苗根系和莖葉的干物質(zhì)累積[30?31]。Bingham等[32]研究發(fā)現(xiàn),低溫對番茄根系生長的抑制作用大于地上部,導(dǎo)致根冠比下降,本研究結(jié)果進一步證實了這一點。發(fā)育不良的根系不僅不利于養(yǎng)分和水分吸收,更會阻礙養(yǎng)分和水分向地上部運輸[33],因此,低溫寡照脅迫下,根冠比下降進一步抑制了番茄地上部生長。
外界環(huán)境(溫度、光照等)的變化還將對植物的根系代謝過程造成影響,低分子量有機酸(LMWOAs)是植物根系通過代謝過程向土壤分泌的一類常見小分子有機物。研究表明,LMWOAs對降低土壤pH值,活化根際微域土壤礦質(zhì)養(yǎng)分有重要作用[34]。根際土壤中LMWOAs主要來源于根系分泌、微生物分泌以及凋落物的降解[35?36],并會被微生物分解,處于動態(tài)變化中。但Gunina等[37]指出,在較短時間內(nèi)(10d),微生物利用的有機酸僅占土壤總有機酸的0.1%~0.2%。而本研究中番茄幼苗只接受了10d的低溫寡照處理,因此不考慮微生物對LMWOAs的分解作用。本研究發(fā)現(xiàn)草酸是番茄根系分泌物中主要的有機酸,這與Yang等[14,38]的研究結(jié)果一致。低溫寡照脅迫顯著降低了LMWOAs尤其是草酸的分泌。LMWOAs主要來源于線粒體中的三羧酸循環(huán)和乙醛酸循環(huán)的中間產(chǎn)物[39],易受植物呼吸作用和光合作用影響。在低溫寡照條件下,番茄的光合速率降低,光合作用受到抑制,必然導(dǎo)致三羧酸循環(huán)和乙醛酸循環(huán)受阻[40],造成中間產(chǎn)物減少,進而使得LMWOAs分泌減少。LMWOAs分泌減少會導(dǎo)致根際土壤pH值升高,進而抑制土壤中氮、磷等養(yǎng)分的有效性[41?42],弱化植物對養(yǎng)分的吸收。研究發(fā)現(xiàn),除了對根際礦質(zhì)養(yǎng)分的活化作用,草酸本身對植物和微生物生長也有利[43?45]。因此,低溫寡照處理下,草酸分泌量減少將對番茄幼苗生長產(chǎn)生諸多不利影響。另外,有研究表明丙酸會抑制燈籠椒的生長[46],而低溫寡照脅迫下丙酸分泌增多,可能是造成番茄植株生長受抑制的另一個潛在原因。
低溫寡照脅迫顯著抑制番茄根系活力,阻礙根系吸收氮磷鉀,抑制根系分泌低分子量有機酸尤其是草酸,并提高了根際土壤pH值,這可能是低溫寡照抑制番茄生長的重要原因?;诒狙芯拷Y(jié)果推測,在低溫寡照發(fā)生初期向土壤施加適量草酸和氮、磷、鉀復(fù)合肥可能會緩解低溫寡照對番茄的不利影響,但仍需要進一步通過試驗加以驗證。
[1] 高援獻.番茄茄子栽培技術(shù)[M].北京:中國盲文出版社,1999: 10-11.
Gao Y X.The cultivation techniques of tomato and eggplant [M].Beijing:China Braille Press,1999:10-11.(in Chinese)
[2] 鄒雨伽,高冠,楊再強,等.低溫寡照對番茄花期植株生長及干物質(zhì)分配的影響[J].江蘇農(nóng)業(yè)科學(xué),2016,44(12):178-184.
Zou Y J,Gao G,Yang Z Q,et al.Effect of low temperature and weak light at flowering stage on plant growth and dry weight distribution[J].Jiangsu Agricultural Science,2016,44(12): 178-184.(in Chinese)
[3] 江夢圓,楊再強,王明田,等.花期低溫寡照對番茄植株生長及果實發(fā)育的影響[J].江蘇農(nóng)業(yè)科學(xué),2018,46(7):125-131.
Jiang M Y,Yang Z Q,Wang M T,et al.Effect of low temperature and weak light at flowering stage on plant growth and fruit development[J].Jiangsu Agricultural Science,2018, 46(7):125-131.(in Chinese)
[4] 朱麗云,楊再強,李軍,等.花期低溫寡照對番茄開花坐果特性及果實品質(zhì)的影響[J].中國農(nóng)業(yè)氣象,2017,38(7):456-465.
Zhu L Y,Yang Z Q,Li J,et al.Effect of low temperature and weak light at flowering stage on flower-fruit characteristics of tomato[J].Chinese Journal of Agrometeorology, 2017,38(7): 456-465.(in Chinese)
[5] 魏瑞江.日光溫室低溫寡照災(zāi)害指標[J].氣象科技,2003, 31(1):50-53.
Wei R J.The disaster grades of low temperature and spare sunlight in greenhouse[J].Mereological Science and Technology, 2003,31(1):50-53.(in Chinese)
[6] 于紅,黎貞發(fā),羅新蘭,等.低溫寡照對日光溫室番茄幼苗生長的影響[J].北方園藝,2011,(24):56-60.
Yu H,Li Z F,Luo X L,et al.Effect of low temperature and less sunlight on the growth of tomato seedling in solar greenhouse [J].Northern Horticulture,2011,(24):56-60.(in Chinese)
[7] Nieuwhof M,Garretsen F,van Oeveren J C.Growth analysis of tomato genotypes grown under low energy conditions[J]. Netherlands Journal of Agricultural Science,1991,39(3): 191-196.
[8] 高冠,鄒雨伽,楊再強,等.低溫寡照脅迫對設(shè)施番茄花期葉片衰老特性的影響[J].北方園藝,2016,(5):49-55.
Gao G,Zou Y J,Yang Z Q,et al.Effect of low temperature and low irradiation stress on senescence of greenhouse tomato during flowering period[J].Netherlands Journal of Agricultural Science,2016,(5):49-55.(in Chinese)
[9] 張淑杰,楊再強,陳艷秋,等.低溫?弱光?高濕脅迫對日光溫室番茄花期生理生化指標的影響[J].生態(tài)學(xué)雜志,2014,33(11): 2995-3001.
Zhang S J,Yang Z Q,Chen Y Q,et al. Effects of low temperature,weak light and high humidity stresses on the physiological and biochemical indicators of greenhouse tomato during flowering period[J].Chinese Journal of Ecology, 2014,33(11):2995-3001.(in Chinese)
[10] Asada K.The water-water cycle in chloroplasts:scavenging of active oxygens and dissipation of excess photons [J].Annual Review of Plant Biology,1999,50(50):601-639.
[11] Zhang Y J,Yang J S,Guo S J,et al.Over-expression of the Arabidopsis CBF1 gene improves resistance of tomato leaves to low temperature under low irradiance[J].Plant Biology,2010,13(2011):362-367.
[12] Dresb?ll D B,Thorup-Kristensen K.Spatial variation in root system activity of tomato (L.) in response to short and long-term waterlogging as determined by 15 N uptake[J].Plant & Soil,2012,357(1-2):161-172.
[13] Adil M,Abbasi B H,Khan T.Interactive effects of melatonin and light on growth parameters and biochemical markers in adventitious roots ofL[J].Plant Cell Tissue & Organ Culture,2015,123(2):405-412.
[14] Yang Z Q,Li Y S,Li P,et al.Effect of difference between day and night temperature on tomato(Mill.)root activity and low molecular weight organic acid secretion[J].Soil Science & Plant Nutrition,2016,62(5-6): 423-431.
[15] Wu Y Y,Xing D K.Effect of bicarbonate treatment on photosynthetic assimilation of inorganic carbon in two plant species of Moraceae[J].Photosynthetica,2012,50(4):587-594.
[16] 黃建鳳,吳昊.植物根系分泌的有機酸及其作用[J].現(xiàn)代農(nóng)業(yè)科技,2008,(20):323-324.
Huang J F,Wu H.Organic acids secreted by plant roots and their functions[J].Modern Agricultural Technology,2008,(20): 323-324.(in Chinese)
[17] Huang Q Y,Zhao Z H,Chen W L.Effects of several low-molecular weight organic acids and phosphate on the adsorption of acid phosphatase by soil colloids and minerals[J].Chemosphere,2003,52(3):571-579.
[18] 王文波.凋落物源有機酸對暗棕壤磷的活化及對水曲柳生理和生長的影響[D].哈爾濱:東北林業(yè)大學(xué),2010:79-81.
Wang W B.Organic acids from forest litters and the effects on P release from dark brown forest soil and physiological characteristics and growth of.seedings [D].Haerbin:Northeast Forestry University,2010:79-81.(in Chinese)
[19] Yan Q Y,Duan Z Q,Mao J D,et al.Effects of root-zone temperature and N,P,and K supplies on nutrient uptake of cucumber(L.) seedlings in hydroponics [J].Soil Science and Plant Nutrition,2012,58:707-717.
[20] Chen M C,Wang M K,Chiu C Y,et al.Determination of low molecular weight dicarboxylic acids and organic functional groups in rhizosphere and bulk soils of Tsuga and Yushania in a temperate rain forest[J].Plant and Soil,2001,231(1): 37-44.
[21] 魯如坤.土壤農(nóng)業(yè)化學(xué)分析方法[M].北京:中國農(nóng)業(yè)科技出版社,2000:12-14,308-315.
Lu R K.Analytical methods of agricultural chemistry in soil[M].Beijing:China Agricultural Science and Technology Press,Beijing,2000:12-14,308-315.(in Chinese)
[22] 李煜姍,楊再強,李平,等.高效液相色譜法測定設(shè)施番茄土壤低分子量有機酸的色譜條件研究[J].土壤通報,2016, 47(1):73-78.
Li Y S,Yang Z Q,Li P,et al.Study on chromatographic condition in determination of low molecular weight organic acids in tomato-planted soil under greenhouse with HPLC[J].Chinese Journal of Soil Science,2016,47(1):73-78. (in Chinese)
[23] Knievel D P.Procedure for estimating ratio of live to dead root dry-matter in root core samples[J].Crop Science,1973, 13(1):124-126.
[24] Dongsansuk A,Lütz C,Neuner G.Effects of temperature and irradiance on quantum yield of PSII photochemistry and xanthophyll cycle in a tropical and a temperate species [J].Photosynthetica,2013,51(1):13-21.
[25] Fujimoto M,Nishihara G N,Terada R.The effect of irradiance and temperature on the photosynthesis of two agarophytesand(Gelidiales) from Kagoshima,Japan[J].Fisheries Science,2014,80(4):695-703.
[26] 朱雨晴,薛曉萍.遮陰及復(fù)光對花果期番茄葉片光合特性的影響[J].中國農(nóng)業(yè)氣象,2019,40(2):126-134.
Zhu Y Q,Xue X P.Effect of shading and light restoration on photosynthetic characteristics of tomato leaves during flowering and fruit period[J].Chinese Journal of Agrometeorology, 2019,40(2):126-134.(in Chinese)
[27] Ruf M,Brunner I.Vitality of tree fine roots:reevaluation of the tetrazolium test[J].Tree Physiology,2003,23(4):257-263.
[28] Ellingson K A,Rajapakse N C,Riley M B.Phytochemical profile changes of tomatoes in response to altered light environments[J].Hortscience,2004,39(4):759.
[29] Ou L J,Wei G,Zhang Z Q,et al.Effects of low temperature and low irradiance on the physiological characteristics and related gene expression of different pepper species[J]. Photosynthetica,2015,53(1):85-94.
[30] Khuankaew T,Tanabata S,Yamamoto M,et al.Temperature affects N and C assimilation and translocation inGagnep[J].Journal of Horticultural Science & Biotechnology,2014,89(3):287-292.
[31] Ylivainio K,Peltovuori T.Phosphorus acquisition by barley (L.) at suboptimal soil temperature [J].Agricultural Food Science,2012,21(4): 453-461.
[32] Bingham I J,Cumbus I P.Influence of root temperature on the potassium requirements of young tomato plants[J].Plant & Soil,1991,133(2):227-237.
[33] 吳立群,蔡志歡,張桂蓮,等.低溫對不同耐冷性水稻品種秧苗生理特性及根尖解剖結(jié)構(gòu)的影響[J].中國農(nóng)業(yè)氣象, 2018,39(12):805-813.
Wu L Q,Cai Z H,Zhang G L,et al.Effects of low temperature on physiological characteristics of rice seedlings with different cold tolerance an anatomical structure of root tip[J].Chinese Journal of Agrometeorology,2018,39(12): 805-813.(in Chinese)
[34] Vítková M,Komárek M,Tejnecky V,et al.Interactions of nano-oxides with low-molecular-weight organic acids in a contaminated soil[J].Journal Hazardous Materials,2015, 293:7-14.
[35] Bahn M,Schmitt M,Siegwolf R,et al.Does photosynthesis affect grassland soil-respired CO2and its carbon isotope composition on a diurnal timescale[J].New Phytologist,2008, 182(2):451-460.
[36] Mencuccini M,H?ltt? T.The significance of phloem transport for the speed with which canopy photosynthesis and belowground respiration are linked[J].New Phytologist,2010, 185(1):189-203.
[37] Gunina A,Dippold M A,Glaser B,et al.Fate of low molecular weight organic substances in an arable soil:from microbial uptake to utilisation and stabilization[J].Soil Biology & Biochemistry,2014,77:304-313.
[38] Str?m L,Olsson T,Tyler G.Differences between calcifuge and acidifuge plants in root exudation of low-molecular organic acids[J].Plant and Soil,1994,167(2):239-245.
[39] López-Bucio J,Nieto-Jacobo M F,Ram??Rez-Rodr??Guez V,et al.Organic acid metabolism in plants: from adaptive physiology to transgenic varieties for cultivation in extreme soils[J].Plant Science,2000,160(1):1-13.
[40] Mangiapia M,Scott K.From CO2to cell:energetic expense of creating biomass using the Calvin-Benson-Bassham and reductive citric acid cycles based on genome data[J].Fems Microbiology Letters,2016,363(7):fnw054.
[41] 張星,劉杏認,林國林,等.生物炭和秸稈對華北農(nóng)田表層土壤礦質(zhì)氮和pH值的影響[J].中國農(nóng)業(yè)氣象,2016,37(2): 131-142.
Zhang X,Liu X R,Lin G L,et al. Effects of biochar and straw return on mineral nitrogen and pH of the surface soil in farmland of the north China plain[J].Chinese Journal of Agrometeorology,2016,37(2):131-142.(in Chinese)
[42] 張皓禹,黃志華,王娟,等.不同酸化劑對石灰性土壤pH值?磷有效性的影響[J].中國土壤與肥料,2019,(1):145-150.
Zhang H Y,Huang Z H,Wang J,et al. Effects of different acidifiers on pH and phosphorus availability in calcareous soil[J].Chinese Journal of Soil and Fertilizer,2019,(1): 145-150.(in Chinese)
[43] Pan F J,Liang Y M,Zhang W,et al.Enhanced nitrogen availability in karst ecosystems by oxalic acid release in the rhizosphere[J].Frontiers in Plant Science,2016,7:687.
[44] Wang Y Z,Whalen J K,Chen X,et al.Mechanisms for altering phosphorus sorption characteristics induced by low- molecular-weight organic acids[J].Canadian Journal of Soil Science,2016,96(3):289-298.
[45] Wani M A.Oxalic acid effect on potassium release from typical rice soils of Kashmir[J].Communications in Soil Science & Plant Analysis,2012,43(8):1136-1148.
[46] 徐慧敏.低分子有機物質(zhì)對辣椒生長發(fā)育過程的效應(yīng)研究[D].楊凌:西北農(nóng)林科技大學(xué),2009:20-29.
Xu H M.Studies on the effects of low molecular organic matter on the growth and development process of pepper[D].Yangling:Northwest A&F University,2009:20-29. (in Chinese)
Low Temperature and Low Irradiation Affected the Metabolism of Low-Molecular- Weight Organic Acids and Nutrients Uptake in Tomato Seedling Root
LI Yu-shan1,2, LI Ping3, YANG Zai-qiang1,3, WANG Fu2
(1.Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing 210044, China; 2.Meteorological Service Center of Jiangxi, Nanchang 330096; 3.Jiangsu Key Laboratory of Agricultural Meteorology, Nanjing 210044)
Combined low temperature and low irradiation(LTLI) conditions seriously affect the yield and quality of tomato, the present study aimed to clarify the underlying mechanisms through investigating the changes of organic acids metabolism and nutrients uptake in tomato root. A pot experiment in artificially controlled environments was conducted to study the dynamic changes of root activity, nitrogen(N), phosphorus(P), and potassium(K) uptake by the root, dry weights of the root and shoot, and the secretion of low-molecular-weight organic acids(LMWOAs) by the root, under different LTLI conditions (maximum/minimum temperature: 12/2℃, 14/4℃, 16/6℃, 18/8℃; weak irradiation: 200, 400μmol·m?2·s?1). Results showed that the LTLI strongly inhibited the root activity, net absorption of N, P and K, and dry weights of the root and shoot, and the effects were enhanced with the decrease of temperature. Under the condition of 12/2℃ and 200μmol·m?2·s?1, the root activities were 7.70%?22.1% of the control, net absorption of N, P and K in the root were 3.75%?18.1%, 1.28%?27.1%, and 19.1%?35.5% of the control, respectively, dry weights of the root and shoot were 23.4%?55.9% and 42.6%?66.5% of the control, respectively. The LTLI also inhibited the secretion of LMWOAs and increased the soil pH, oxalic acid was the main acid which decreased most obviously. This study indicates that the inhibition of the LTLI on the growth of tomato seedling was related to the decrease of root activity, secretion of oxalic acid, and the nutrients uptake. Therefore, suitable application of oxalic acid or complex fertilizer (including N, P, K) at the initial stage of the LTLI occurrence, may enhance the resistance ability of tomato seedling to the LTLI.
Low temperature low irradiation; Tomato; Root activity; Soil nutrient; Organic acid
10.3969/j.issn.1000-6362.2019.08.004
李煜姍,李平,楊再強,等.低溫寡照影響番茄幼苗根系有機酸代謝和養(yǎng)分吸收[J].中國農(nóng)業(yè)氣象,2019,40(8):512-522
2019?01?09
。E-mail:yzq@nuist.edu.cn
國家自然科學(xué)基金(41475107;41775104);“十二五”國家支撐計劃(2014BAD10B07)
李煜姍(1993?),女,瑤族,碩士,助理工程師,主要從事氣象災(zāi)害與氣象服務(wù)研究。E-mail:liyu shan529@163.com