• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Improved Integration for Trimmed Geometries in Isogeometric Analysis

    2019-08-13 05:54:44JinlanXuNingningSunLaixinShuTimonRabczukandGangXu
    Computers Materials&Continua 2019年8期

    Jinlan Xu,Ningning Sun,Laixin Shu,Timon Rabczuk and Gang Xu,

    Abstract: Trimming techniques are efficient ways to generate complex geometries in Computer-Aided Design (CAD).In this paper,an improved integration for trimmed geometries in isogeometric analysis (IGA) is proposed.The proposed method can improve the accuracy of the approximation and the condition number of the stiffness matrix.In addition,comparing to the traditional approaches,the trimming techniques can reduce the number of the integration elements with much fewer integration points,which improves the computational efficiency significantly.Several examples are illustrated to show the effectiveness of the proposed approach.

    Keywords: Isogeometric analysis,trimming curves,trimmed geometry,computational efficiency.

    1 Introduction

    IGA is an numerical method,combining the computer aided design (CAD) and finite element analysis (FEA) with the same NURBS basis functions.Geometries in CAD are usually represented by splines (B-splines,NURBS,T-splines,PHT-splines for instance),with the geometries in FEA are commonly based on Lagrange polynomials.These two different geometry descriptions introduce inconsistencies in CAD and CAE designs which require reapproximating the CAD geometries in CAE.This does not only introduce errors in the geometry but increase the entire design-to-analysis time.It was demonstrated in Cohen et al.[Cohen,Martin,Kirby et al.(2015);Xu,Mourrain,Duvigneau et al.(2013);Xu,Mourrain,Duvigneau et al.(2011)] that the mesh quality has a big impact on the analysis results,and meshing operation occupies a large percentage in the entire analysis procedure.IGA unifies the geometry representation of design and analysis,by using the same CAD spline functions in CAE simplifying the design-analyze process,and ensuring the exact geometry during the analysis.If a high precision numerical solution is requested,mesh refinement is inevitable.In FEA,posterior error is often used to guide the refinement,and the refinement based on the mesh is sometimes not appropriate,so re-meshing will be needed which have to be interact with original model.In practical engineering analysis,this is a severe bottleneck.IGA applies the same spline basis functions for the geometry generation and the numerical analysis without remeshing procedure.The geometry is represented exactly at the coarse level,which avoid introducing the geometrical errors.Refinement at any level can take place completely within the analysis framework,which eliminates the necessity to communicate with the geometry.

    Most of CAD models cannot be represented by a single tensor-product spline surface but several patches of spline surfaces are needed [Xu,Chen and Deng (2015)].However,it is not easy to construct a complex geometry with multiple patches of spline surfaces,especially a certain continuity is required.In such cases,trimming techniques are usually employed.But trimming technology brings gaps and overlaps between surfaces because of inaccuracies along the intersection.Other techniques to approximate the geometry without gaps and overlaps are proposed,including T-splines [Sederberg,Zheng,Bakenov et al.(2003);Brovka,López,Escobar et al.(2014)],PHT-splines [Deng,Chen,Li et al.(2008);Chan,Anitescu and Rabczuk (2017)],THB-splines [Falini,Speh and Jüttler(2015)],and LR B-splines [Johannessen,Kvamsdal and Dokken (2014)] etc.If trimming techniques are used,normal elements and trimmed elements will be considered separately during isogeometric analysis.Kim et al.[Kim,Seo and Youn (2009)] proposed a method to solve this problem.Schmidt et al.[Schmidt,Wüchner and Bletzinger (2012)] proposed a reconstruction method using geometric bases to evaluate the finite element constituents of trimmed elements.This method covers both bases of a single patch and multi-patches.Shen et al.[Shen,Kosinka,Sabin et al.(2014)] introduced a method to convert trimmed NURBS surfaces to subdivision surfaces,and their method can produce gap-free models which are mandatory for numerical analysis.Moreover,the resulting models areG1continuous between two adjacent surfaces.Zhu et al.[Zhu,Hu and Ma (2016)] proposed a spline called B++ spline,to express the trimmed NURBS patch in an analytic form.They solved the problem of implementing essential boundary conditions in isogeometric analysis.The basis functions of B++ spline satisfy the Kronecker delta property which allows imposing essential boundary condition strongly,and this is similar with FEM.Other interesting approaches on isogeometric analysis for trimmed surfaces,can be found in Kang et al.[Kang and Youn (2016);Breitenberger,Bletzinger and Roland (2013);Beer,Marussig,Zechner et al.(2014);Ruess,Schillinger,?zcan et al.(2014);Wang,Benson and Nagy (2015);Zhu,Ma and Hu (2017);Marussig,Zechner,Beer et al.(2016)]and references therein.In this paper,we improve the method proposed by Kim et al.[Kim,Seo and Youn (2010)].

    The original method in Kim et al.[Kim,Seo and Youn (2010)] is based on NURBS-enhanced integration.Both surface and trimming curve are represented using NURBS.For the trimming curve,there are two kinds of curve information in IGES files,which are defined in physical and parametric domain respectively.They classified the trimmed elements in parametric domain into three types,which correspond to the following three types in parametric domain:a pentagon with one curved side;a quadrilateral with one curved side;a triangle with one curved side.For the integration of trimmed element,Gauss quadrature points are chosen as integration points.In their method,curved triangles are parameterized by rectangles which make the integration simple.Pentagons are decomposed into three triangles where two of the triangles are normal,the other one is with one curved side.Quadrilaterals are decomposed into two triangles where one is normal triangle and the other one is triangle with one curved side.To summarize,the final integration elements are:(a) triangles with one NURBS curved side,(b) normal triangles.Triangular Gauss integration points are used for normal triangles.But for triangles with one NURBS curved side,they are transformed to a rectangular domain through several mappings,hence Gauss quadratures in quadrilateral are used during integration.

    In the method proposed in this paper,the procedure of isogeometric analysis on trimmed geometries is similar,but the integration elements are a little different from the original method.Based on the three types of trimmed elements in parametric domain,the integration elements are classified into (a) triangles with one NURBS curved side,(b)quadrilaterals.The pentagon will be decomposed to two quadrilaterals and the quadrilaterals will not be decomposed into two triangles in our method,therefore the integration elements are less than original methods and integration points will be reduced at the same time which can improve the computational efficiency.

    The paper is organized as follows.In Section 2,we summarize the basics of the IGA formulation on trimmed geometries presented in Kim et al.[Kim,Seo and Youn (2010)].In Section 3,we describe our method to deal with trimmed element in details.Section 4 gives several examples of our proposed method,and comparison to the method in Kim et al.[Kim,Seo and Youn (2010)] are also presented.We end this paper with conclusions in Section 5.

    2 Preliminaries

    NURBS bases are the most common basis functions for representing free-form objects.However,tensor product form of NURBS surfaces makes the representation of complex objects non-trivial.Trimming techniques eliminate this limitation of NURBS.There are many research works of isogeometric analysis for trimmed geometries [Zhu,Ma and Hu(2017);Guo,Ruess and Schillinger (2017);Ruess,Schillinger,Bazilevs et al.(2013);Breitenberger (2016);Marussig,Zechner,Beer et al.(2017)].But the earliest work is proposed by Kim et al.[Kim,Seo and Youn (2009)],which is simple and direct.As our method is based on this work,we will give a brief introduction about the flowchart of this work in this section.

    2.1 Flowchart of trimmed isogeometric analysis

    Trimming techniques employ NURBS curves to trim unwanted parts of geometries from NURBS surfaces as shown in Fig.1.And trimming technique not only simplifies the construction of complex models,but also keeps the smoothness of the untrimmed parts.If both trimming curves and untrimmed surfaces are NURBS,the resulting trimmed surface is called trimmed NURBS surface.For a trimmed surface,the CAD files contain the surface information in the parametric space and physical space.Fig.1 shows two surfaces in physical space trimmed by shapes of butterfly and sheep.

    Figure1:Two examples of trimmed NURBS surfaces

    Suppose a trimmed surface is represented by a NURBS surface and a NURBS curve:

    If the physical equation defined on trimmed surface is a Poisson equation with Dirichlet boundary condition,

    where Ωis the trimmed geometry represented by a NURBS surface and several trimming NURBS curves.

    The coefficient matrix of the weak form is given by

    Figure2:Three types of elements:(a) type A with one corner trimmed out;(b) type B with two corners trimmed out;(c) type C with three corners trimmed out

    Figure3:Segmentation of elements with type A and type B

    Figure4:Transformation of curved triangular cell

    2.2 Imposition of essential boundary condition

    In isogeometric analysis,essential boundary conditions cannot be imposed as in FEM,because NURBS basis functions do not satisfy the Kronecker delta property.For homogeneous essential boundary conditions,the coefficients of basis functions corresponding to boundary are set to zero.The imposition of non-homogeneous essential boundary conditions requires special techniques such as modification of the weak form or the solution of an interpolation problem at the boundary,see e.g.,[Ruess,Schillinger,?zcan et al.(2014)].

    In trimmed isogeometric analysis,additional challenges occur for imposing essential boundary condition.The boundary conditions need to be imposed on the trimming curves but the degree of freedom (DOF) is defined on the NURBS surface.Furthermore,there is no mathematical relationship between these two representations.In Kim et al.[Kim,Seo and Youn (2010)],they use Lagrange multiplier method to impose essential boundary conditions on trimming curves.And we use the same method in our algorithm.

    The Lagrange multipliersλ(u)are supposed to be expressed as

    KU+ATλ=f,AU=b,

    where

    3 Improved integration on trimmed geometry

    The main contribution of our method is to modify the integration rules for the trimmed elements.For type C in Kim et al.[Kim,Seo and Youn (2010)],a similar method is applied to generate integral points on the curved triangle,but for type B [Kim,Seo and Youn (2010)],a mapping from a rectangle to the curved quadrilateral element is used which avoids the triangular decomposition of the curved quadrilateral element.For type A,decomposition is adopted but it is different from the method in Kim et al.[Kim,Seo and Youn (2010)].The curved pentagon is segmented to two quadrilaterals,one with a curved edge and the other is rectangular.

    Fig.5 shows the decomposition of type A in our method.The segmentation of trimmed elements of type A can be chosen on the basis of the intersection points.SupposePaandPbare two intersection points,wherePbis closer to the corner point which is trimmed out,then the trimmed element is segmented at pointPa.

    Figure5:The trimmed element of type A is decomposed to two quadrilaterals

    Figure6:Trimmed element of type B.There are four cases for the curved quadrilaterals according to which two consecutive corners are trimmed out

    Except trimmed elements of type C,all trimmed elements are represented as quadrilaterals.For the curved quadrilateral which contains one curved edge as part of trimming curves,the mapping from unit rectangle is constructed as follows:according to the location of the curved edge,there are four types of curved quadrilaterals as shown in Fig.6.Supposeare parameters of the trimming curve at the intersections.For each case,the mappingQbetween the curved quadrilateral and rectangle can be described as follows.

    (a):Ifu1is the parameter of the left intersection point,the mappingQis constructed as

    otherwise,

    (b):Ifu1is the parameter of the right intersection point,the mappingQis constructed as

    otherwise,

    (c):Ifu1is the parameter of the bottom intersection point,the mappingQis constructed as

    otherwise,

    (d):Ifu1is the parameter of the top intersection point,the mappingQis constructed as

    otherwise,Gauss quadrature is commonly used in isogeometric FE approaches.Compared to the method proposed by Kim et al.[Kim,Seo and Youn (2010)],the proposed method leads to less integration points.Fig.7 shows the distribution of Gauss points in our approach compared to the approach in Kim et al.[Kim,Seo and Youn (2010)] for one trimmed element.In Fig.7,it can be seen that Trimmed element of type A is decomposed into three triangles in Kim et al.[Kim,Seo and Youn (2010)],where one of triangle with a curved edge.Gauss points are selected for each triangle.But in our method,element of type A is decomposed into two quadrilaterals,and the number of Gauss points for each quadrilateral is the same with curved triangle.For element of type B,no decomposition is carried out in our method,since then the number of Gauss points is less than the method in Kim et al.[Kim,Seo and Youn (2010)].In fact,the reduction of integral points can be estimated.SupposenGauss points are chosen for the normal triangle,andmGauss points are chosen for the curved triangle.As the number of integral points for quadrilateral element is the same with curved triangle,we can give the number of integral points for each type of trimmed element,see Tab.1.

    Figure7:Integration points and segmentation of trimmed elements.(a)(c) type A and type B elements in Kim et al.[Kim,Seo and Youn (2010)],(b)(d) type A and type B elements in our method

    Table1:Comparison of the number of integral points

    4 Numerical examples

    In this section,we solve the Poisson equation on several trimmed geometries to show the effectiveness of our method,and compare our results with results obtained by the method in Kim et al.[Kim,Seo and Youn (2010)].

    For the method in Kim et al.[Kim,Seo and Youn (2010)],basis functions are NURBS basis functions.Three Gaussian points are used in each direction for quadrilateral element,and seven Gaussian points are used for the regular triangle.

    Figure8:Integration points and segmentation of trimmed elements with3× 3elements:(a) computational domain of EX1;(b) integration points in Kim et al.[Kim,Seo and Youn (2010)];(c) integration points in the proposed method

    In the first example,the exact solution isx2+y2-1.We choose a very simple geometry,the computational domain is fan-shaped.It is constructed by trimming a corner of a rectangle using an arc represented by a NURBS curve with degree two.In this example,we compare the correspondingL2error of numerical solution,and the condition number of stiffness matrix with the method in Kim et al.[Kim,Seo and Youn (2010)] as shown in Tab.2.We also compare the computational cost of Ex1 as presented in Tab.3,whereTerepresents the trimmed element andrepresents the integration element after the decomposition ofTe.

    Table2:Comparison of our method with the proposed method in Kim et al.[Kim,Seo and Youn (2010)] for Ex1

    Table3:Comparison of computational cost with the Method in Kim et al.[Kim,Seo and Youn (2010)]

    Figure9:Comparison of numerical solution with 20 × 20grid.(a) the method in Kim et al.[Kim,Seo and Youn (2010)];(b) our method;(c) exact solution;(d)L2error of method in Kim et al.[Kim,Seo and Youn (2010)];(e)L2error of our proposed method

    We use the method presented in Kim et al.[Kim,Seo and Youn (2009)] to find all the active elements,and construct the mapping from the unit square [0,1]×[0,1]to each trimmed element as described in Section 3.When the spline surface consists of 3× 3elements,with our method,the distribution of the integration points on the computational domain is more regular than the method in Kim et al.[Kim,Seo and Youn(2010)] as illustrated in Fig.8.The corresponding numerical solution andL2error are shown in Fig.9.From Tab.2,we can see that the condition number of the stiffness matrix and theL2error of the numerical solution is reduced almost by one half compared to the method in Kim et al.[Kim,Seo and Youn (2010)] on the refined grid.

    In the second example,exact solution isx(1 -x)y(1 -y).We construct a computational domain with a little more complex geometry,where the rectangle is trimmed by a closed spline curve.There are two protrusions in the interior of the final trimmed geometry.In this example,the surface contains6 × 6elements first.However,there are other kind of trimmed elements except of three types we processed in this coarse mesh,so local refinement is performed on the surface as described in Kim et al.[Kim,Seo and Youn(2009)] until there are only three types of trimmed elements.In this example,there are many trimmed elements of type B,as shown in Fig.12.The element of type B is decomposed into two triangles with the method in Kim et al.[Kim,Seo and Youn(2010)],integration on this element then becomes integration on these two triangles.In the proposed method,we construct a mapping from type B element to rectangle directly while keeping the number of integral elements.Our method can reduce a half integral points and integral elements for this type of trimmed element.For type A,one third of integral points and integral elements can be reduced by our method.

    In the third example,we also choose the exact solutionx(1 -x)y(1 -y).A round hole is trimmed out from a rectangle as computational domain.The number of trimmed elements of type A and type C are more than type B,in this case the reduction of integral points and integral elements is not as significant as the first example.It can be clearly observed from Tab.2.And in this example,the number of trimmed elements of type A becomes more and more during mesh refinement process,and the reduction of integral elements is clearly demonstrated.

    Figure10:The computational domain of EX2.(a) elements and integral points of the method in Kim et al.[Kim,Seo and Youn(2010)];(b) enlarge the area of yellow rectangle in (a);(c) elements and integral points of our method;(d) enlarge the area of yellow rectangle in (c)

    Figure11:The computational domain of EX3:(a) elements and integral points of the method in Kim et al.[Kim,Seo and Youn (2010)];(b) enlarge the area of yellow rectangle in (a);(c) elements and integral points of our method;(d) enlarge the area of yellow rectangle in (c);(e) numerical solution;(f)L2error is 4.43065× 10-4

    Figure12:The computational domain of EX3.(a) elements and integral points of the method in Kim et al.[Kim,Seo and Youn (2010)];(b) elements and integral points of our method;(c) numerical solution of 10× 10grid;(d)L2error is 3.26665× 10-4

    5 Conclusion

    In this paper,we propose an improved integration of isogeometric analysis over trimmed geometries on two-dimensional planar computational domain.By the proposed method,the integral elements and integral points in analysis process can be reduced significantly,which improves the efficiency of analysis.Moreover,compared with the previous method,the distribution of integral points is more regular,and the accuracy of numerical solution is also improved.Several numerical examples are given to show the effectiveness of the proposed approach.

    In the future,we will consider more efficient integration method,and the improvement of integration on curved triangular element.Extension to three-dimensional isogeometric analysis is also a part of our future work.

    Acknowledgement:This research was supported by the National Nature Science Foundation of China under Grant Nos.61602138,61772163,61761136010,61472111,Zhejiang Provincial Natural Science Foundation of China under Grant Nos.LQ16F020005,LR16F020003,and Zhejiang Provincial Science and Technology Program in China (2018C01030).

    日本五十路高清| 亚洲经典国产精华液单| 看非洲黑人一级黄片| 亚洲av免费在线观看| 欧美zozozo另类| 免费观看的影片在线观看| 中文字幕免费在线视频6| 亚洲丝袜综合中文字幕| 日本成人三级电影网站| 男女下面进入的视频免费午夜| 99九九线精品视频在线观看视频| 乱系列少妇在线播放| 国产大屁股一区二区在线视频| 欧美激情久久久久久爽电影| 中文欧美无线码| 亚洲无线在线观看| 狠狠狠狠99中文字幕| 麻豆精品久久久久久蜜桃| 观看免费一级毛片| 日本黄色视频三级网站网址| 99热只有精品国产| 午夜精品在线福利| 啦啦啦观看免费观看视频高清| 九草在线视频观看| 成人国产麻豆网| 免费观看人在逋| 在线免费观看不下载黄p国产| 日韩欧美精品v在线| 亚洲国产欧美人成| 欧美成人a在线观看| 极品教师在线视频| 久久久久久久久久成人| 91av网一区二区| 听说在线观看完整版免费高清| 国模一区二区三区四区视频| 蜜桃久久精品国产亚洲av| 国产伦一二天堂av在线观看| 亚洲精品日韩av片在线观看| av在线播放精品| 国产69精品久久久久777片| 成人午夜精彩视频在线观看| 欧美一区二区精品小视频在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲综合色惰| 99riav亚洲国产免费| 干丝袜人妻中文字幕| 国产激情偷乱视频一区二区| 男女啪啪激烈高潮av片| 亚洲精品粉嫩美女一区| 国产人妻一区二区三区在| 久久久久久久亚洲中文字幕| 成人毛片60女人毛片免费| 97超视频在线观看视频| 日韩欧美精品免费久久| 十八禁国产超污无遮挡网站| 国产精品99久久久久久久久| 国产熟女欧美一区二区| 亚洲人成网站在线播放欧美日韩| av黄色大香蕉| 偷拍熟女少妇极品色| 午夜亚洲福利在线播放| 国产精品一区www在线观看| 亚洲欧美精品综合久久99| 99久久精品一区二区三区| 国产午夜精品论理片| 国产黄片美女视频| 国产熟女欧美一区二区| 久久久久久九九精品二区国产| 久久精品国产亚洲av香蕉五月| 深夜精品福利| 欧美激情在线99| 国产老妇伦熟女老妇高清| 精品久久久久久成人av| 大又大粗又爽又黄少妇毛片口| 日韩,欧美,国产一区二区三区 | 久久鲁丝午夜福利片| 亚洲欧美日韩东京热| 成年女人看的毛片在线观看| 国内少妇人妻偷人精品xxx网站| 国产精品综合久久久久久久免费| 日韩欧美精品v在线| 波多野结衣高清作品| 国产一区二区在线av高清观看| 欧美日韩精品成人综合77777| 热99在线观看视频| 免费不卡的大黄色大毛片视频在线观看 | 日日撸夜夜添| 成年女人永久免费观看视频| 观看美女的网站| 精品久久久久久久末码| 麻豆成人午夜福利视频| 日本黄色片子视频| 乱码一卡2卡4卡精品| 久久久久久久久中文| 婷婷精品国产亚洲av| 亚洲成人久久性| 国产午夜精品久久久久久一区二区三区| 久久久久久伊人网av| 狂野欧美激情性xxxx在线观看| 亚洲高清免费不卡视频| 亚洲在线自拍视频| 99国产极品粉嫩在线观看| 舔av片在线| 久久99热6这里只有精品| 色5月婷婷丁香| av免费观看日本| 两个人视频免费观看高清| 亚洲久久久久久中文字幕| 三级经典国产精品| 欧美精品国产亚洲| 久久精品久久久久久久性| 成人永久免费在线观看视频| 国产精品av视频在线免费观看| 国模一区二区三区四区视频| a级一级毛片免费在线观看| 亚洲精品日韩在线中文字幕 | 国产精品一区二区三区四区免费观看| 色吧在线观看| 久久精品夜色国产| 久久久久国产网址| 亚洲精品色激情综合| 国产精品久久久久久精品电影小说 | 人人妻人人看人人澡| 国产三级在线视频| 插阴视频在线观看视频| kizo精华| 黄片wwwwww| 午夜福利在线观看吧| 天堂网av新在线| 日韩一本色道免费dvd| 美女xxoo啪啪120秒动态图| 国产精品伦人一区二区| 亚洲电影在线观看av| 国产精品免费一区二区三区在线| 久久久久久国产a免费观看| 国产精品久久视频播放| 精品99又大又爽又粗少妇毛片| 国产精品乱码一区二三区的特点| 在线免费观看的www视频| 99在线视频只有这里精品首页| 男人和女人高潮做爰伦理| 日韩亚洲欧美综合| 久久精品国产亚洲av涩爱 | 日韩视频在线欧美| 深夜a级毛片| 免费大片18禁| 熟女人妻精品中文字幕| 国产 一区 欧美 日韩| 女同久久另类99精品国产91| 日本色播在线视频| 欧美性猛交黑人性爽| 1024手机看黄色片| 国产探花极品一区二区| 波多野结衣高清作品| 久久精品国产亚洲网站| 久久久久久久久久成人| 91麻豆精品激情在线观看国产| 久久久久网色| 亚洲国产精品合色在线| 免费不卡的大黄色大毛片视频在线观看 | 黑人高潮一二区| 欧美xxxx性猛交bbbb| 国产伦理片在线播放av一区 | 国产高清视频在线观看网站| 国产精品嫩草影院av在线观看| 午夜免费男女啪啪视频观看| 国产精品无大码| 国产成人a∨麻豆精品| 国产在线精品亚洲第一网站| 亚洲精品成人久久久久久| 在线观看午夜福利视频| a级一级毛片免费在线观看| av国产免费在线观看| 成人无遮挡网站| 亚洲丝袜综合中文字幕| 黄片wwwwww| 午夜精品在线福利| 国产精品99久久久久久久久| av国产免费在线观看| 男人的好看免费观看在线视频| 国产av麻豆久久久久久久| 欧美日韩在线观看h| 一区二区三区免费毛片| 中文资源天堂在线| 国产一区亚洲一区在线观看| 中出人妻视频一区二区| 日本黄大片高清| 偷拍熟女少妇极品色| 日本撒尿小便嘘嘘汇集6| 国产精品不卡视频一区二区| 国产精品,欧美在线| 最近2019中文字幕mv第一页| 一级黄色大片毛片| 免费观看人在逋| 最近最新中文字幕大全电影3| 午夜福利在线在线| 国产亚洲av嫩草精品影院| 亚洲欧美成人精品一区二区| 亚洲精品色激情综合| 美女高潮的动态| 亚洲中文字幕日韩| 亚洲av熟女| 午夜精品一区二区三区免费看| 大型黄色视频在线免费观看| 性色avwww在线观看| 久久久欧美国产精品| 欧美bdsm另类| 秋霞在线观看毛片| av天堂中文字幕网| 久久久精品94久久精品| 亚洲av电影不卡..在线观看| 欧美激情久久久久久爽电影| 自拍偷自拍亚洲精品老妇| 亚洲欧美日韩卡通动漫| 日韩大尺度精品在线看网址| 日本色播在线视频| 国产中年淑女户外野战色| 欧美激情久久久久久爽电影| 青春草亚洲视频在线观看| 在线播放国产精品三级| 亚洲成人精品中文字幕电影| 欧美色视频一区免费| 岛国毛片在线播放| 免费看美女性在线毛片视频| 亚洲丝袜综合中文字幕| 国产精品,欧美在线| 免费看av在线观看网站| 亚洲一区二区三区色噜噜| 日日干狠狠操夜夜爽| 中文字幕久久专区| 国产精品久久久久久精品电影| 麻豆精品久久久久久蜜桃| 你懂的网址亚洲精品在线观看 | 又爽又黄无遮挡网站| 夜夜看夜夜爽夜夜摸| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 免费av观看视频| 日韩欧美一区二区三区在线观看| 国产精品久久久久久久久免| 国内精品美女久久久久久| av视频在线观看入口| 免费观看精品视频网站| 免费电影在线观看免费观看| 亚洲av电影不卡..在线观看| 国产精品无大码| 久久久国产成人免费| 国产白丝娇喘喷水9色精品| 国产精品爽爽va在线观看网站| 又爽又黄a免费视频| 久久99精品国语久久久| 国产老妇伦熟女老妇高清| 白带黄色成豆腐渣| 我要搜黄色片| 亚洲丝袜综合中文字幕| av又黄又爽大尺度在线免费看 | av在线亚洲专区| 国产亚洲5aaaaa淫片| 毛片女人毛片| 白带黄色成豆腐渣| 嫩草影院新地址| 青春草视频在线免费观看| 一区福利在线观看| 亚洲欧美精品综合久久99| 男女啪啪激烈高潮av片| 高清毛片免费观看视频网站| 亚洲经典国产精华液单| 岛国在线免费视频观看| 欧美+日韩+精品| 丰满人妻一区二区三区视频av| 成人二区视频| 人人妻人人澡欧美一区二区| 可以在线观看的亚洲视频| 在线观看免费视频日本深夜| 欧美激情在线99| 欧美高清成人免费视频www| 亚州av有码| 校园春色视频在线观看| 久久国产乱子免费精品| 色播亚洲综合网| 国产精品人妻久久久久久| 美女黄网站色视频| 人妻久久中文字幕网| 欧美+亚洲+日韩+国产| 久久国内精品自在自线图片| 日本成人三级电影网站| 亚洲婷婷狠狠爱综合网| av在线亚洲专区| 国产av不卡久久| 在线播放国产精品三级| 久久这里只有精品中国| 午夜福利成人在线免费观看| 日韩欧美精品v在线| 麻豆成人午夜福利视频| 人妻夜夜爽99麻豆av| 国模一区二区三区四区视频| .国产精品久久| 精品免费久久久久久久清纯| 国产精品人妻久久久久久| 美女国产视频在线观看| 久久精品国产亚洲av天美| 久久99蜜桃精品久久| 国产片特级美女逼逼视频| av福利片在线观看| 好男人视频免费观看在线| 久久久久久久久久成人| 亚洲av一区综合| 国产午夜精品一二区理论片| 97在线视频观看| 又黄又爽又刺激的免费视频.| 热99在线观看视频| 亚洲国产精品久久男人天堂| 男人舔女人下体高潮全视频| 欧美极品一区二区三区四区| 色噜噜av男人的天堂激情| 麻豆av噜噜一区二区三区| 国产精品综合久久久久久久免费| 国产人妻一区二区三区在| 成年女人看的毛片在线观看| 毛片女人毛片| 亚洲中文字幕一区二区三区有码在线看| 天天躁日日操中文字幕| 看免费成人av毛片| 狠狠狠狠99中文字幕| 中国美白少妇内射xxxbb| 麻豆国产97在线/欧美| 久久久精品大字幕| 国产精品一及| 精品人妻一区二区三区麻豆| 高清日韩中文字幕在线| 亚洲国产精品久久男人天堂| 99久久精品热视频| 99久久成人亚洲精品观看| 在线观看一区二区三区| 成年av动漫网址| 哪个播放器可以免费观看大片| 欧美色欧美亚洲另类二区| 中文字幕av成人在线电影| 1024手机看黄色片| 久久久久久九九精品二区国产| 久久午夜亚洲精品久久| 夜夜看夜夜爽夜夜摸| 日韩欧美精品免费久久| 国产精品久久久久久久电影| 午夜福利视频1000在线观看| 寂寞人妻少妇视频99o| 最后的刺客免费高清国语| 黄色配什么色好看| 天堂√8在线中文| 亚洲不卡免费看| 日本色播在线视频| 成人亚洲精品av一区二区| 亚洲精品日韩av片在线观看| 午夜福利成人在线免费观看| 婷婷六月久久综合丁香| 高清在线视频一区二区三区 | 亚洲国产欧美在线一区| 精品久久久久久久久久免费视频| 国产成人精品婷婷| 成人欧美大片| 欧美一区二区国产精品久久精品| 日韩在线高清观看一区二区三区| av在线天堂中文字幕| 少妇的逼水好多| 久久久久久国产a免费观看| av专区在线播放| 亚洲av成人av| 日韩一区二区视频免费看| 亚洲国产欧美在线一区| 美女被艹到高潮喷水动态| 亚洲内射少妇av| 成人欧美大片| 中文字幕熟女人妻在线| 久久久久久久久久成人| 又粗又硬又长又爽又黄的视频 | 在线观看免费视频日本深夜| 中文字幕熟女人妻在线| 国产色婷婷99| 国产不卡一卡二| 91精品国产九色| 精品人妻视频免费看| 亚洲av免费高清在线观看| 免费一级毛片在线播放高清视频| 国产成人福利小说| 免费av观看视频| 最近视频中文字幕2019在线8| 亚洲国产日韩欧美精品在线观看| 国产精品,欧美在线| 国产高清三级在线| АⅤ资源中文在线天堂| 人人妻人人看人人澡| 噜噜噜噜噜久久久久久91| 日韩成人伦理影院| 国产高清有码在线观看视频| 亚洲av二区三区四区| 亚洲高清免费不卡视频| 成年女人看的毛片在线观看| 能在线免费观看的黄片| 人人妻人人澡欧美一区二区| 人妻久久中文字幕网| 日韩精品有码人妻一区| 国产v大片淫在线免费观看| 成人毛片a级毛片在线播放| 欧美在线一区亚洲| 中文字幕久久专区| 国产蜜桃级精品一区二区三区| 日本三级黄在线观看| 99久久精品热视频| 天堂网av新在线| 精品久久国产蜜桃| 日韩在线高清观看一区二区三区| 亚洲av第一区精品v没综合| 大香蕉久久网| 卡戴珊不雅视频在线播放| 免费av不卡在线播放| 午夜老司机福利剧场| 中文亚洲av片在线观看爽| 亚洲四区av| 我的老师免费观看完整版| 亚洲欧美中文字幕日韩二区| 波多野结衣高清无吗| 欧美3d第一页| 男女下面进入的视频免费午夜| 亚洲图色成人| 亚洲av免费在线观看| 99热精品在线国产| 九色成人免费人妻av| 可以在线观看毛片的网站| 色综合站精品国产| 成人永久免费在线观看视频| av卡一久久| 国产精品.久久久| 中文字幕熟女人妻在线| 国产欧美日韩精品一区二区| 国产黄a三级三级三级人| 国产在线男女| 青青草视频在线视频观看| 岛国毛片在线播放| 午夜福利视频1000在线观看| 亚洲精品乱码久久久久久按摩| 久久精品久久久久久久性| 日韩中字成人| 国产高清三级在线| 亚洲精品国产成人久久av| 欧美激情国产日韩精品一区| 久久韩国三级中文字幕| 日本黄色视频三级网站网址| 久久精品夜色国产| 3wmmmm亚洲av在线观看| 别揉我奶头 嗯啊视频| 久久午夜福利片| 成人高潮视频无遮挡免费网站| 亚洲高清免费不卡视频| 两个人的视频大全免费| 美女高潮的动态| avwww免费| 日本在线视频免费播放| 国产精品一区二区三区四区久久| 中文字幕av在线有码专区| 亚洲av一区综合| 婷婷精品国产亚洲av| 久久午夜亚洲精品久久| 久久99精品国语久久久| 中文字幕久久专区| 国国产精品蜜臀av免费| 熟妇人妻久久中文字幕3abv| 国产精品久久视频播放| 欧美一区二区精品小视频在线| 夜夜夜夜夜久久久久| 一区福利在线观看| 啦啦啦观看免费观看视频高清| 中文字幕熟女人妻在线| 一个人看的www免费观看视频| 给我免费播放毛片高清在线观看| 日产精品乱码卡一卡2卡三| 麻豆av噜噜一区二区三区| 久久亚洲精品不卡| 啦啦啦韩国在线观看视频| 噜噜噜噜噜久久久久久91| 国产精品国产高清国产av| 免费观看的影片在线观看| 亚洲av中文av极速乱| 亚洲av不卡在线观看| 亚洲一级一片aⅴ在线观看| 精品久久久久久久人妻蜜臀av| 亚洲最大成人av| 99久久九九国产精品国产免费| 国产亚洲av嫩草精品影院| 国产精品久久久久久亚洲av鲁大| 蜜桃亚洲精品一区二区三区| 亚州av有码| 欧美变态另类bdsm刘玥| av在线播放精品| 美女脱内裤让男人舔精品视频 | 少妇高潮的动态图| 高清毛片免费观看视频网站| 国产极品天堂在线| 精品久久久久久成人av| 床上黄色一级片| 91狼人影院| 好男人视频免费观看在线| 三级国产精品欧美在线观看| 国产69精品久久久久777片| 99热6这里只有精品| 2022亚洲国产成人精品| 亚洲av不卡在线观看| 亚洲自偷自拍三级| 久久久久久久久久成人| 男插女下体视频免费在线播放| 天天躁夜夜躁狠狠久久av| 99久国产av精品| www.色视频.com| 免费一级毛片在线播放高清视频| 69av精品久久久久久| 天堂中文最新版在线下载 | 国产老妇女一区| 国产精品一区www在线观看| 欧美日韩精品成人综合77777| 99热这里只有是精品50| 日韩强制内射视频| h日本视频在线播放| 人妻少妇偷人精品九色| www日本黄色视频网| 午夜精品一区二区三区免费看| 综合色丁香网| 欧美最新免费一区二区三区| 美女 人体艺术 gogo| 男女下面进入的视频免费午夜| 国产精品久久电影中文字幕| 国产精品久久久久久精品电影| 联通29元200g的流量卡| 精品免费久久久久久久清纯| h日本视频在线播放| 午夜老司机福利剧场| 精品熟女少妇av免费看| 国产精品一二三区在线看| 99久久精品热视频| 亚洲精华国产精华液的使用体验 | 日韩一本色道免费dvd| 内地一区二区视频在线| 精品久久国产蜜桃| 网址你懂的国产日韩在线| 美女cb高潮喷水在线观看| 日本五十路高清| 亚洲天堂国产精品一区在线| 深爱激情五月婷婷| av.在线天堂| 婷婷色av中文字幕| 国产私拍福利视频在线观看| 国产在线男女| 中国美女看黄片| 亚洲精品自拍成人| 直男gayav资源| 嫩草影院精品99| 在线天堂最新版资源| 亚洲一区高清亚洲精品| 国产男人的电影天堂91| 日韩,欧美,国产一区二区三区 | 老女人水多毛片| 国产精品女同一区二区软件| 欧美三级亚洲精品| 婷婷色av中文字幕| АⅤ资源中文在线天堂| 成年版毛片免费区| 国产麻豆成人av免费视频| 热99在线观看视频| 亚洲欧美成人精品一区二区| 能在线免费看毛片的网站| 日本与韩国留学比较| 观看免费一级毛片| 精品免费久久久久久久清纯| 成人毛片a级毛片在线播放| 欧美高清性xxxxhd video| 97在线视频观看| 在线a可以看的网站| 日本黄色片子视频| 国产男人的电影天堂91| 国产精品.久久久| 美女 人体艺术 gogo| 免费电影在线观看免费观看| 伊人久久精品亚洲午夜| 久久久国产成人免费| 热99在线观看视频| 日日摸夜夜添夜夜添av毛片| 午夜精品在线福利| avwww免费| 亚洲精华国产精华液的使用体验 | av天堂在线播放| 国产精品麻豆人妻色哟哟久久 | 噜噜噜噜噜久久久久久91| 全区人妻精品视频| 如何舔出高潮| 亚洲无线在线观看| av.在线天堂| 一卡2卡三卡四卡精品乱码亚洲| 久久久精品94久久精品| 在线天堂最新版资源| 国产精品蜜桃在线观看 | av在线老鸭窝| 嫩草影院新地址| 久久精品人妻少妇| 又黄又爽又刺激的免费视频.| 女人十人毛片免费观看3o分钟| 亚洲av中文av极速乱| 国产在线精品亚洲第一网站| 欧美在线一区亚洲| av在线观看视频网站免费| 黄色欧美视频在线观看| 美女内射精品一级片tv| 最好的美女福利视频网| 国产探花在线观看一区二区| 中国美女看黄片| 亚洲成人中文字幕在线播放| 天堂av国产一区二区熟女人妻| 日韩高清综合在线| 亚洲精品日韩av片在线观看|