• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Binaural Sound Source Localization Based on Convolutional Neural Network

    2019-08-13 05:54:34LinhouKangyuMaLijieWangYingChenandYibinTang
    Computers Materials&Continua 2019年8期

    Lin Ζhou,Kangyu MaLijie WangYing Chen and Yibin Tang

    Abstract: Binaural sound source localization (BSSL) in low signal-to-noise ratio (SNR)and high reverberation environment is still a challenging task.In this paper,a novel BSSL algorithm is proposed by introducing convolutional neural network (CNN).The proposed algorithm first extracts the spatial feature of each sub-band from binaural sound signal,and then combines the features of all sub-bands within one frame to assemble a two-dimensional feature matrix as a grey image.To fully exploit the advantage of the CNN in extracting high-level features from the grey image,the spatial feature matrix of each frame is used as input to train the CNN model.The CNN is then used to predict azimuth of sound source.The experiments show that the proposed algorithm significantly improves the localization performance of BSSL in various acoustic environments,especially to deal with low SNR and high reverberation conditions.

    Keywords: Binaural sound source localization,convolutional neural network,twodimensional spatial feature.

    1 Introduction

    Sound source localization (SSL) plays an important role in speech signal processing,and has a wide range of applications such as robot navigation,hearing aids,blind source separation and human-machine interface.Microphone-array based SSL methods need more microphones,which seriously increase computational complexity.However,“Cocktail Party Effect” indicates that human can track one sound from multiple sound sources in a noisy environment with limited ‘microphones’ that is two ears.Inspired by this phenomenon,researchers have proposed several methods to extract binaural spatial features from only two microphones for SSL.The BSSL methods do not require a microphone array with large size,which can greatly reduce the computational overhead.Binaural spatial feature is critical for BSSL.In the early days,Lord Rayleigh [Rayleigh(1907)] proposed the duplex theory based on the assumption of the spherical head.Duplex theory demonstrates that,to locate the source,the human auditory system mainly depends on inter-aural time difference (ITD) and inter-aural intensity difference (IID) of binaural signal.As a consequence,ITD and ILD have been viewed as a useful binaural feature and extended to more spatial features.Inter-aural envelope difference (IED)[Roman,Wang and Brown (2003)],as a version of spatial features,works well in high frequency.Inter-aural phase difference (IPD) [Nix and Hohmann (2006)] is more commonly used,though it may suffer from a phase ambiguity problem in some case.

    Nevertheless,in the real environment,BSSL should be effectively against the noise and reverberation.To deal with this issue,various robust BSSL methods have been presented.For example,Raspaud et al.[Raspaud,Viste and Evangelista (2010)] established a parametric model with ITD and ILD to estimate the sound source location.Pang et al.[Pang,Liu,Zhang et al.(2017)] presented a novel BSSL approach based on reverberation weighting and generalized parametric mapping.Machine learning is also encouraged in BSSL.Chen et al.[Chen and Ser (2009)] introduced a least squares support vector machines (LS-SVMs) approach to improve the localization accuracy.May Tobias et al.[May,Van de Par and Kohlrausch (2011)] divided the acoustic signal into multiple subbands and proposed the Gaussian mixed model (GMM) to model the binaural cues.Xiao et al.[Xiao,Zhao;Zhong et al.(2015)] extracted generalized cross correlation (GCC) as the input feature to train a multi-layer perceptron neural network.Roden et al.[Roden,Moritz,Gerlach et al.(2015)] combined ITD,ILD,amplitude and phase spectra to train a deep neural network (DNN) models.Yu et al.[Yu,Wang and Han (2016)] further applied DNN to stereo sound localization.Moreover,DNN can also efficiently map binaural features in each frequency band to the corresponding source azimuth [Ma,Brown and May (2015)].Later,Ma et al.[Ma,May and Brown (2017)] used DNN and head rotation to achieve multi-sound source localization under reverberation conditions.Ma et al.[Ma,Gonzalez,Brown et al.(2018)] also combined sound spectrum and DNN in the time-frequency (TF) unit to estimate the azimuth.Yiwere et al.[Yiwere and Rhee(2017)] used ILD and CCF as input features to train DNN models.

    Although the neural-network-based BSSL algorithms improve the localization accuracy,the performance under the low SNR and high reverberation is still a challenge problem.Previous research models ITD,IID and cross-correlation function (CCF) as onedimensional feature within one sub-band or one frame,which seldom consider the feature correlation of consecutive sub-bands.Therefore,we attempt to introduce CNN to the existing BSSL framework,where CNN [Cui,McIntosh and Sun (2018)] is well-known and successfully incorporated in image recognition and video analysis.In details,we utilize CNN as a classifier for the two-dimension spatial feature.First,our algorithm calculates the CCF of binaural sound signals in each sub-band.Then,CCF of all subbands within one frame is assembled into a two-dimensional feature matrix as a grey map.Sequentially,CNN is trained to establish the relationship between feature matrices and the azimuth of the sound source.The established CNN model is then used to predict the location of binaural testing signals.Experimental results show that the BSSL algorithm based on CNN classification significantly improves localization performance under low SNR and high reverberation environment.

    The remainder of the paper is organized as follows.Section 2 presents an overview of our CNN-based BSSL system.Section 3 describes the structure of our CNN network.The simulation results and analysis are provided in Section 4.The conclusion is drawn in Section 5.

    2 System overview

    The core idea of our algorithm is to exploit the correlation of features among consecutives sub-bands through CNN model.The flowchart of our BSSL system is given in Fig.1 Binaural signals,including training and testing ones,are used as the system input.Left- and right-ear signals are decomposed into TF units independently by 33-channel Gammatone filters.Then,CCF between left- and right-ear signals are extracted in each TF unit,and assembled to form a two-dimensional spatial feature matrix for each frame.Sequentially,these feature matrices are treated as CNN input.In the training phase,CNN is used to establish the relationship between the spatial feature matrix and the sound azimuth.Afterwards,the estimated azimuth is achieved through trained CNN model with the testing signals in the predict stage.

    Figure1:Flowchart of the proposed BSSL system

    Here,the clean source iss(t),the left- and right-ear signals,xL(t) andxR(t),are defined as binaural signals,with:

    wherehLandhRrepresent the binaural room impulse response (BRIR) for left and right ears,‘*’ denotes linear convolution,nL(t) andnR(t) are additive noise for each ear.

    We first decompose both left- and right-ear signals into cochleagrams.In detail,the central frequencies of Gammatone filters ranges from 50 Hz to 8000 Hz on the equivalent rectangular bandwidth (ERB):The output of each channel is divided into 20-ms frame length with 10-ms frame shift.Thus,the binaural signals are converted into TF units.In each unit,we extract normalized CCF between the left-ear and right-ear signals.The CCF of a TF unit pair is defined as

    wherexL(i,τ,d) andxR(i,τ,d) represent the binaural signals of TF unit at channeliand frameτ,mis the sample number in a TF unit,Nis the frame length,dis the delay between binaural signals.For the 16 kHz sampling rate,we set the valueLas 16,which means that the dimension of CCF is 33.As we know,CCF in each TF unit is usually treated as the main spatial feature for BSSL.More location information can be provided from the corresponding CCFs of more channels within one frame.An example is given for the CCFs from different channels in Fig.2,where the sound source is located at -10° azimuth with BRIR and TIMIT data.The upper sub-figure of Fig.2 describes various CCF curves in each channel,while the bottom one is provides a CCF curve of all channels in one frame.Here,we note that the CCF has a similar peak in low frequency channel,which reflects the source azimuth.However,with the frequency increasing,CCF suffers from the peak fluctuation due to the phase wrapping.The CCFs of each channel can be regarded as the features map,which may provide a robust localization.

    Figure2:CCF of each channel within a frame

    CCF by Eq.(2) is the spatial feature vector of one channel,and then CCF of each channel within a frame are combined into a matrix,which is defined as follows:

    whereR(τ) is the feature matrix of frameτwith the channel numberK=33.

    SinceR(τ) is a matrix of 33×33,it can be regarded as a grey map.Thus we visualize the CCF grey image of Fig.2 in Fig.3.The source corresponding toR(τ) is located at -90°azimuth,where the dark grid represents the corresponding elementR(τ) with large value.The structure of grey image is efficiently related to the source azimuth.

    Figure3:Grey map of R(τ)

    3 The Architecture of CNN

    We use CNN to train a set of feature matricesR(τ)s in frame level with given azimuths.The azimuth ranges from -90° to 90° with a step of 5°,corresponding to 37 positions.

    Since CNN is a multi-layer perceptron neural network seriously depending on parameter setting,more details of our CNN are given follows:one input layer,4 convolutionalpooling layers and a fully connected layer.For input layer,the input is the 33×33 feature matrixR(τ),described in Section 2.All convolutional layers use a 2×2 convolution kernel with a step of 1.The output of the previous layer is zero-filled to ensure that the feature size does not shrink.The number of convolution kernels from layer 1 to layer 4 is 18,36,72,and 144,respectively.The pooling layer adopts the maximum pooling of 2×2,with the step size of 2.The rectified linear unit (ReLU) activation function is used for the hidden layers.

    After four-layer convolution and pooling,the 33×33R(τ) becomes a 3×3×144 3-dimensional (3D) feature.The 3D feature is then expanded into 1296×1 one-dimensional and the dropout method is introduced to avoid overfitting.The dropout parameter is 0.5,that is,half of the 1296×1 feature is randomly discarded.After dropout,the fully connected layer converts the feature to probability by softmax function for final estimation of source azimuth.The CNN structure of the proposed algorithm is depicted in Fig.4.

    Figure4:The structure of CNN

    4 Simulation and result analysis

    4.1 Simulation setting

    For both training and testing,the mono source signals taken from the CHAINS Speech Corpus [Cummins,Grimaldi,Leonard et al.(2006)] are convoluted with the BRIR to generate binaural reverberation signals.The CHAINS speech corpus contains 33 sentences spoken by 36 speakers.9 sentences are selected from the CSLU Speak Identification corpus and 24 sentences are from the TIMIT corpus.In particularly,20 sentences by 15 speakers are randomly selected and concatenated as training data,and the other sentences from the remaining speakers are regarded as testing data.The sound source is placed with azimuth between -90° and 90° with a step of 5°.

    We use two sets of BRIR database to generate the reverberation environment.The first one is obtained by ROOMSIM software [Campbell,Palomaki and Brown (2005)],which uses measured head related impulse responses (HRIR) from the MIT HRIR database in combination with the image method for simulating room acoustics.In the absence of reverberation,the BRIR is degenerated to the HRIR.The reverberation time (RT60) of BRIR is set to 0 s,0.2 s and 0.6 s.RT60=0 s means the anechoic condition.

    The second BRIR dataset [Hummersone (2011)] is recorded using a dummy head and torso in different types of room,named as X,A,B,C,and D at the University of Surrey.Since room X is similar to anechoic environment,only BRIRs recorded in rooms A,B,C,and D is used.The RT60 and the direct-to-reverberant ratio (DRR) of each room are listed in Tab.1.

    Table1:Room acoustical properties of the Surrey BRIR

    Those two BRIR databases are utilized in different stage.During the CNN training process,only the first BRIR database is used.In testing,both BRIRs are used to generate the reverberation.The acoustic environment generated by the first BRIR is called simulation environment.The environment generated by the second one is called real environment.

    Besides the reverberation,the Gaussian white noise is also added to the binaural signal as the background noise.The noise is uncorrelated with the binaural signals.In addition,binaural noise is uncorrelated with each other.The SNR for training and testing is set to 0,5 dB,10 dB,15 dB and 20 dB.

    We measure the reliability of the algorithm by localization accuracy and root-meansquare error (RMSE) of correct localization.The localization accuracy is calculated as:

    wherencrepresents the number of correct localization frames;Nallis the total number of frames.

    Here,the correct localization is defined that the estimation azimuthθ?jlies within the ±5°of the true azimuthθ.

    RMSE only considers the localization error of correct localization frames,which is defined as follows:

    whereθ?jis the estimation azimuth ofjth correct localization frame,andθis the true azimuth.

    We compare the performance of the proposed algorithm with several related methods for BSSL.BSSL based on zeros-crossing time difference (ZCTD) [Kim and Kil (2007)]and sub-band SNR estimation (SNRE) [Zhou,Zhao,Cheng et al.(2015)] are selected as the comparison.

    4.2 Evaluation in simulated environment

    Figs.5,6,7 depict the performance comparison for ZCTD,SNRE and the proposed algorithm.Fig.5a,Fig.6(a) and Fig.7(a) give the localization accuracy as a function of SNR,while Fig.5(b),Fig.6(b) and Fig.7(b) show the RMSE for the different algorithm.The abscissa represents the SNR,and the ordinate is the performance measurement.

    For the localization accuracy,as expected,each of the methods performs well at high SNR.However,the performance of ZCTD and SNRE algorithms become bad as reverberation time increases and SNR declines.The proposed algorithm still performs well even with low SNR and high reverberation.The reason is that CNN regards the spatial feature matrixR(τ) as a whole grey image,and extracts the efficient spatial features fromR(τ) in diverse environment.

    As for the RMSE,the proposed algorithm outperforms ZCTD and SNRE algorithm for each SNR and reverberation condition.RMSE of ZCTD and SNRE is close to 4,which means azimuth estimated by those algorithms is mostly located at the ±5° to the true azimuth.For the proposed algorithm,the value of RMSE is about 2,which indicates the proposed algorithm estimates the azimuth mostly the same as the true azimuth.

    In addition,as shown in Figs.5,Fig.6 and Fig.7,the performance of the proposed algorithm changes slowly,reflecting the robustness of the algorithm to the environment.

    Figure5:Performance Comparison for ZCTD,SNRE and proposed algorithms with RT60=0 s and variable SNR

    Figure6:Performance comparison for ZCTD,SNRE and proposed algorithms with RT60=0.2 s and variable SNR

    Figure7:Performance comparison for ZCTD,SNRE and proposed algorithms with RT60=0.6 s and variable SNR

    4.3 Evaluation in real environment

    Beside the result in the simulated environment,we also evaluate the performance in real environment.The localization accuracy and RMSE of different algorithm in room A,B,C,and D are depicted from Fig.8 to Fig.11.

    Figure8:Performance comparison of different algorithm for Room A

    Figure9:Performance comparison of different algorithm for Room B

    Figure10:Performance Comparison of different algorithm for Room C

    Figure11:Performance Comparison of different algorithm for Room D

    For BRIR database from University of Surrey,the localization performance of the proposed algorithm is significantly better than other algorithms,even for room D with RT60=0.89 s and room C with DRR=8.82 dB.

    Since the dispatch of BRIR data in training and testing,the localization results of the proposed algorithm in real environment are not as good as those in simulated environment.But compared with other algorithms,the proposed algorithm still have the better localization performance,which indicates that CNN based algorithm is generalization to untrained conditions.

    5 Conclusion

    In this work,we have presented a CNN-based binaural sound source localization algorithm.Differing from the previous algorithms,the proposed algorithm extracts the CCF of each Gammatone filter and combines the CCFs of all channels to assemble a twodimensional feature matrix within one frame.Due to the advantage of CNN on tackling grey image,we treat the two-dimensional feature matrix as a gray image and utilize CNN to establish the relationship between feature matrix and sound azimuth.Experiments show that the CNN-based BSSL algorithm proposed in this paper significantly improves localization performance especially in low SNR and high reverberation conditions.

    Acknowledgement:This work is supported by the National Nature Science Foundation of China (NSFC) under Grant No.61571106,the Fundamental Research Funds for the Central Universities under Grant No.2242013K30010 and Jiangsu Province key development program under Grant No.BE2017071 and No.BE2017647.

    av福利片在线观看| 丝袜美腿诱惑在线| 午夜精品在线福利| 久久午夜综合久久蜜桃| 久久香蕉精品热| 婷婷六月久久综合丁香| 人成视频在线观看免费观看| 蜜桃久久精品国产亚洲av| 搡老熟女国产l中国老女人| 亚洲一区二区三区色噜噜| 男女做爰动态图高潮gif福利片| 我要搜黄色片| 又爽又黄无遮挡网站| 亚洲中文日韩欧美视频| 免费看a级黄色片| 欧美一区二区国产精品久久精品 | 久久精品综合一区二区三区| 久久性视频一级片| 级片在线观看| 国产精品久久久久久久电影 | ponron亚洲| 亚洲,欧美精品.| 色精品久久人妻99蜜桃| 制服人妻中文乱码| 国产一区二区三区视频了| 国产免费av片在线观看野外av| 狠狠狠狠99中文字幕| 夜夜夜夜夜久久久久| 中文字幕高清在线视频| 此物有八面人人有两片| 九九热线精品视视频播放| 欧美日韩一级在线毛片| 一区二区三区国产精品乱码| 动漫黄色视频在线观看| 久久久国产欧美日韩av| 精华霜和精华液先用哪个| 亚洲av美国av| 午夜亚洲福利在线播放| 青草久久国产| 国产视频内射| 特级一级黄色大片| 国产三级在线视频| 亚洲欧美一区二区三区黑人| 真人一进一出gif抽搐免费| 中出人妻视频一区二区| 九色国产91popny在线| 老司机深夜福利视频在线观看| 亚洲美女黄片视频| 69av精品久久久久久| 久久精品国产99精品国产亚洲性色| 国产亚洲精品av在线| www.自偷自拍.com| 欧美日韩中文字幕国产精品一区二区三区| 可以在线观看的亚洲视频| 99精品在免费线老司机午夜| 我的老师免费观看完整版| 中文字幕人妻丝袜一区二区| 两性夫妻黄色片| 亚洲av成人精品一区久久| 久热爱精品视频在线9| 国产精品av视频在线免费观看| 欧美黑人巨大hd| 别揉我奶头~嗯~啊~动态视频| 婷婷丁香在线五月| 国产一区在线观看成人免费| 一个人观看的视频www高清免费观看 | 久久香蕉国产精品| e午夜精品久久久久久久| 可以在线观看毛片的网站| 色哟哟哟哟哟哟| 99精品欧美一区二区三区四区| 成年人黄色毛片网站| 国产在线精品亚洲第一网站| 男人舔奶头视频| 午夜福利免费观看在线| 欧美黄色淫秽网站| 又黄又爽又免费观看的视频| 免费在线观看完整版高清| 国产av又大| 精品国内亚洲2022精品成人| 99国产极品粉嫩在线观看| 天天添夜夜摸| 日本三级黄在线观看| 在线观看免费视频日本深夜| 亚洲精品美女久久久久99蜜臀| 国产欧美日韩一区二区精品| 久久精品国产综合久久久| 女人高潮潮喷娇喘18禁视频| 欧美在线一区亚洲| 日本一本二区三区精品| 国产精品久久久久久亚洲av鲁大| 亚洲精品中文字幕一二三四区| 99久久综合精品五月天人人| 全区人妻精品视频| 日韩三级视频一区二区三区| 亚洲人与动物交配视频| 成人永久免费在线观看视频| 久久婷婷人人爽人人干人人爱| 午夜福利在线观看吧| 女人被狂操c到高潮| 黄色a级毛片大全视频| 国产视频一区二区在线看| 天天躁狠狠躁夜夜躁狠狠躁| 黄色视频,在线免费观看| 国产成人aa在线观看| 亚洲av成人精品一区久久| 亚洲专区国产一区二区| 黄色 视频免费看| 色在线成人网| 长腿黑丝高跟| 国产成人精品无人区| 狂野欧美白嫩少妇大欣赏| 国产人伦9x9x在线观看| 国产免费男女视频| 草草在线视频免费看| 桃红色精品国产亚洲av| 一级毛片高清免费大全| 国产一区在线观看成人免费| 日本一二三区视频观看| 亚洲成av人片在线播放无| 色在线成人网| 国产成人精品久久二区二区91| 久久精品国产99精品国产亚洲性色| 亚洲成av人片在线播放无| 99久久99久久久精品蜜桃| 日日爽夜夜爽网站| 国产精品亚洲美女久久久| 精品一区二区三区视频在线观看免费| 国产男靠女视频免费网站| 男女做爰动态图高潮gif福利片| 嫩草影院精品99| 制服诱惑二区| 国产精品永久免费网站| 老司机深夜福利视频在线观看| 嫩草影视91久久| 视频区欧美日本亚洲| 成年免费大片在线观看| 国产精品亚洲一级av第二区| 成在线人永久免费视频| 一本精品99久久精品77| 国产三级中文精品| 久久天躁狠狠躁夜夜2o2o| 精品国产乱子伦一区二区三区| 欧美一区二区精品小视频在线| av在线天堂中文字幕| 国产精品久久电影中文字幕| 国产高清视频在线播放一区| 91av网站免费观看| 精品久久久久久久久久久久久| 韩国av一区二区三区四区| 国产亚洲精品久久久久久毛片| 老汉色av国产亚洲站长工具| 亚洲av电影不卡..在线观看| 久久久久久九九精品二区国产 | 欧洲精品卡2卡3卡4卡5卡区| 国产精品久久久久久亚洲av鲁大| 丝袜人妻中文字幕| 女人爽到高潮嗷嗷叫在线视频| 国产精品香港三级国产av潘金莲| 男人的好看免费观看在线视频 | 亚洲七黄色美女视频| 91大片在线观看| 伊人久久大香线蕉亚洲五| 岛国在线免费视频观看| 日日摸夜夜添夜夜添小说| 亚洲美女黄片视频| 最近在线观看免费完整版| 国产伦在线观看视频一区| 国产在线观看jvid| 黄片小视频在线播放| 国产高清有码在线观看视频 | 在线国产一区二区在线| 国产精品影院久久| 极品教师在线免费播放| 夜夜夜夜夜久久久久| 久久久久免费精品人妻一区二区| 欧美日韩黄片免| 男女下面进入的视频免费午夜| 欧美日韩亚洲综合一区二区三区_| 热99re8久久精品国产| 高潮久久久久久久久久久不卡| 熟女电影av网| 国产精品av视频在线免费观看| 99在线视频只有这里精品首页| 无限看片的www在线观看| 香蕉av资源在线| 国产成人av教育| 国产精品一区二区三区四区免费观看 | 亚洲真实伦在线观看| 免费看美女性在线毛片视频| 国产在线精品亚洲第一网站| 人人妻人人澡欧美一区二区| 麻豆成人午夜福利视频| 国产精品98久久久久久宅男小说| 麻豆国产97在线/欧美 | 丁香欧美五月| 国产麻豆成人av免费视频| 国产亚洲精品av在线| 少妇被粗大的猛进出69影院| 黄色片一级片一级黄色片| 国产乱人伦免费视频| 久久久水蜜桃国产精品网| 特大巨黑吊av在线直播| 亚洲精品在线观看二区| 国模一区二区三区四区视频 | 又粗又爽又猛毛片免费看| 日韩av在线大香蕉| 国产熟女xx| 他把我摸到了高潮在线观看| 91麻豆av在线| 国产三级中文精品| 1024手机看黄色片| 亚洲午夜精品一区,二区,三区| 亚洲精品美女久久久久99蜜臀| www国产在线视频色| 在线观看www视频免费| 精品国产乱码久久久久久男人| 中文在线观看免费www的网站 | 午夜福利在线观看吧| 精品久久久久久久久久久久久| 精品国产亚洲在线| 亚洲精品久久成人aⅴ小说| 免费观看人在逋| 国产成人av教育| 久久久久久久久中文| 欧美日本亚洲视频在线播放| 天天添夜夜摸| 成年免费大片在线观看| 国产成+人综合+亚洲专区| 天天躁狠狠躁夜夜躁狠狠躁| 国产亚洲精品久久久久5区| 国产亚洲欧美98| 免费在线观看视频国产中文字幕亚洲| 一级a爱片免费观看的视频| 亚洲aⅴ乱码一区二区在线播放 | 国产精品,欧美在线| xxxwww97欧美| 麻豆成人av在线观看| 国产亚洲精品第一综合不卡| 99国产综合亚洲精品| 狂野欧美激情性xxxx| 久久久久国产精品人妻aⅴ院| 亚洲国产看品久久| 18禁美女被吸乳视频| 成年女人毛片免费观看观看9| 亚洲自偷自拍图片 自拍| 色噜噜av男人的天堂激情| 欧美在线一区亚洲| 国产人伦9x9x在线观看| 夜夜看夜夜爽夜夜摸| 久久人妻福利社区极品人妻图片| 久久 成人 亚洲| 久久精品国产亚洲av香蕉五月| 久久久久性生活片| 久久精品人妻少妇| 日韩高清综合在线| 老司机在亚洲福利影院| 最近最新中文字幕大全免费视频| 日日夜夜操网爽| 黄色女人牲交| 美女扒开内裤让男人捅视频| 少妇人妻一区二区三区视频| 两人在一起打扑克的视频| 妹子高潮喷水视频| 嫁个100分男人电影在线观看| 在线十欧美十亚洲十日本专区| 久久久久久久午夜电影| 天堂影院成人在线观看| 国产精品av视频在线免费观看| 最新在线观看一区二区三区| 久久久久亚洲av毛片大全| 午夜免费激情av| 岛国在线观看网站| 一个人免费在线观看电影 | 全区人妻精品视频| 亚洲黑人精品在线| 欧美日韩瑟瑟在线播放| 日韩欧美免费精品| 国产亚洲精品一区二区www| 老汉色av国产亚洲站长工具| 亚洲人成网站高清观看| 日韩欧美三级三区| 国产又黄又爽又无遮挡在线| 国产精品久久久人人做人人爽| 日本撒尿小便嘘嘘汇集6| 国产精品一区二区精品视频观看| 黄片小视频在线播放| 18禁黄网站禁片午夜丰满| 波多野结衣巨乳人妻| 久久人人精品亚洲av| 夜夜爽天天搞| 男女那种视频在线观看| 亚洲专区中文字幕在线| 黄频高清免费视频| 观看免费一级毛片| 好男人电影高清在线观看| 国产成人精品久久二区二区91| 看黄色毛片网站| 亚洲精品美女久久久久99蜜臀| 伦理电影免费视频| 一进一出好大好爽视频| 精品久久久久久久久久久久久| 国产一区在线观看成人免费| 亚洲人成电影免费在线| 老熟妇乱子伦视频在线观看| 欧美成人性av电影在线观看| 天天一区二区日本电影三级| 男女之事视频高清在线观看| 亚洲一区二区三区不卡视频| 国内毛片毛片毛片毛片毛片| 韩国av一区二区三区四区| 色播亚洲综合网| 香蕉久久夜色| 天天添夜夜摸| 中文资源天堂在线| 天天添夜夜摸| 女人爽到高潮嗷嗷叫在线视频| 久久精品综合一区二区三区| 看片在线看免费视频| 国产成年人精品一区二区| 正在播放国产对白刺激| 国产精品一及| 男女那种视频在线观看| 欧美黑人欧美精品刺激| 精品久久久久久久久久免费视频| 男女床上黄色一级片免费看| 人妻丰满熟妇av一区二区三区| 国产精品免费一区二区三区在线| 桃色一区二区三区在线观看| 在线观看www视频免费| 搡老妇女老女人老熟妇| 久久久久久久久免费视频了| 人人妻人人澡欧美一区二区| 免费观看人在逋| 可以在线观看的亚洲视频| 波多野结衣高清无吗| 国产精品自产拍在线观看55亚洲| 亚洲欧美日韩高清专用| 国产成人精品久久二区二区免费| 午夜福利18| 18美女黄网站色大片免费观看| 亚洲va日本ⅴa欧美va伊人久久| 叶爱在线成人免费视频播放| 欧美乱色亚洲激情| 国产高清有码在线观看视频 | 香蕉av资源在线| 亚洲国产精品久久男人天堂| 久久这里只有精品中国| 国产精品 欧美亚洲| 国产一区在线观看成人免费| 美女扒开内裤让男人捅视频| 婷婷六月久久综合丁香| 日韩欧美国产在线观看| 黄片小视频在线播放| 中文在线观看免费www的网站 | 免费一级毛片在线播放高清视频| 亚洲无线在线观看| 亚洲av片天天在线观看| 99国产综合亚洲精品| 亚洲av成人一区二区三| 久久精品国产清高在天天线| 正在播放国产对白刺激| 悠悠久久av| 久久精品国产亚洲av高清一级| 99热这里只有是精品50| 男人舔奶头视频| 色精品久久人妻99蜜桃| 男男h啪啪无遮挡| 男女做爰动态图高潮gif福利片| 一进一出抽搐动态| 亚洲专区国产一区二区| 亚洲av电影在线进入| 色尼玛亚洲综合影院| 亚洲 国产 在线| 久久天躁狠狠躁夜夜2o2o| 99久久99久久久精品蜜桃| 91麻豆精品激情在线观看国产| 成年免费大片在线观看| 亚洲国产高清在线一区二区三| 日韩欧美免费精品| 日本一本二区三区精品| 男女午夜视频在线观看| 给我免费播放毛片高清在线观看| 99国产精品一区二区三区| 亚洲精品色激情综合| 亚洲成a人片在线一区二区| 国产一区二区三区视频了| 日韩av在线大香蕉| 脱女人内裤的视频| 亚洲美女视频黄频| 午夜激情福利司机影院| 伊人久久大香线蕉亚洲五| 国产成人一区二区三区免费视频网站| 亚洲专区中文字幕在线| 久久久久久亚洲精品国产蜜桃av| 99re在线观看精品视频| √禁漫天堂资源中文www| av国产免费在线观看| 99精品久久久久人妻精品| 日韩中文字幕欧美一区二区| 岛国在线免费视频观看| 黑人操中国人逼视频| 国产精品久久久人人做人人爽| 99热6这里只有精品| 亚洲一码二码三码区别大吗| 欧美日韩亚洲国产一区二区在线观看| 老熟妇仑乱视频hdxx| 中文字幕熟女人妻在线| 欧美中文综合在线视频| 人人妻,人人澡人人爽秒播| 成人午夜高清在线视频| 国产精品野战在线观看| 18禁国产床啪视频网站| 欧美日韩亚洲国产一区二区在线观看| 日韩精品青青久久久久久| 亚洲五月天丁香| 91九色精品人成在线观看| 丰满人妻一区二区三区视频av | 久久精品亚洲精品国产色婷小说| 国内毛片毛片毛片毛片毛片| 激情在线观看视频在线高清| 国产成人影院久久av| 日本黄色视频三级网站网址| 久久精品国产综合久久久| 91成年电影在线观看| 国产午夜精品论理片| 亚洲欧美一区二区三区黑人| 在线a可以看的网站| 两性夫妻黄色片| 久久国产精品影院| 麻豆成人午夜福利视频| 免费看a级黄色片| 99久久综合精品五月天人人| 亚洲激情在线av| 淫妇啪啪啪对白视频| 亚洲中文av在线| 搡老熟女国产l中国老女人| а√天堂www在线а√下载| 欧美精品亚洲一区二区| 香蕉国产在线看| 亚洲 国产 在线| 国产69精品久久久久777片 | 国产又色又爽无遮挡免费看| 美女 人体艺术 gogo| 成人av一区二区三区在线看| 1024视频免费在线观看| 老司机在亚洲福利影院| 黄色视频,在线免费观看| 日韩大尺度精品在线看网址| 99国产极品粉嫩在线观看| 麻豆成人av在线观看| 午夜亚洲福利在线播放| 天堂av国产一区二区熟女人妻 | 日韩大码丰满熟妇| 18禁观看日本| 免费看日本二区| 美女午夜性视频免费| 国内久久婷婷六月综合欲色啪| 国产精品免费一区二区三区在线| 精品久久久久久久人妻蜜臀av| 黄色视频,在线免费观看| 色老头精品视频在线观看| a在线观看视频网站| 国产高清视频在线播放一区| www国产在线视频色| 丰满的人妻完整版| 窝窝影院91人妻| 亚洲九九香蕉| 国产精品免费视频内射| av福利片在线| 精品久久久久久,| 成人18禁在线播放| 天堂√8在线中文| 女人爽到高潮嗷嗷叫在线视频| 国产精品久久久久久人妻精品电影| 黑人巨大精品欧美一区二区mp4| tocl精华| 国产野战对白在线观看| 日韩欧美在线二视频| 深夜精品福利| 欧美日韩国产亚洲二区| 国产高清激情床上av| 91老司机精品| 丝袜美腿诱惑在线| 小说图片视频综合网站| 国产成人av教育| 午夜福利欧美成人| 99热这里只有是精品50| 国内毛片毛片毛片毛片毛片| 国产精品亚洲一级av第二区| 久久这里只有精品19| 国产精品香港三级国产av潘金莲| 50天的宝宝边吃奶边哭怎么回事| 国内毛片毛片毛片毛片毛片| 天天躁狠狠躁夜夜躁狠狠躁| 一本精品99久久精品77| 露出奶头的视频| 亚洲色图av天堂| 久久午夜亚洲精品久久| 男女午夜视频在线观看| 久久午夜综合久久蜜桃| 亚洲性夜色夜夜综合| 国语自产精品视频在线第100页| 久久久国产成人免费| 无遮挡黄片免费观看| 欧美国产日韩亚洲一区| videosex国产| 国产精品98久久久久久宅男小说| 可以在线观看的亚洲视频| 国产一区在线观看成人免费| 人妻丰满熟妇av一区二区三区| 精品国产乱码久久久久久男人| 麻豆成人av在线观看| 美女 人体艺术 gogo| 欧美黑人精品巨大| 成人一区二区视频在线观看| 国产高清有码在线观看视频 | 99国产精品一区二区蜜桃av| 黄色 视频免费看| 少妇的丰满在线观看| 欧美黄色片欧美黄色片| 久久精品亚洲精品国产色婷小说| 在线观看免费日韩欧美大片| 村上凉子中文字幕在线| 国产又黄又爽又无遮挡在线| 久久中文字幕一级| 久久精品91蜜桃| 最新在线观看一区二区三区| 在线免费观看的www视频| 亚洲av成人一区二区三| 这个男人来自地球电影免费观看| 婷婷精品国产亚洲av在线| 在线播放国产精品三级| 天天添夜夜摸| 亚洲中文字幕日韩| 国产精品亚洲av一区麻豆| 欧美午夜高清在线| 欧美日本视频| 久久性视频一级片| 国产精品久久久av美女十八| 日韩大尺度精品在线看网址| 国产成人精品无人区| 老熟妇仑乱视频hdxx| 一卡2卡三卡四卡精品乱码亚洲| 变态另类丝袜制服| 亚洲午夜精品一区,二区,三区| 99精品久久久久人妻精品| 一a级毛片在线观看| 中文字幕久久专区| 日韩av在线大香蕉| 欧美+亚洲+日韩+国产| 国产精品永久免费网站| 最近视频中文字幕2019在线8| 欧美成人午夜精品| 亚洲免费av在线视频| 国产精品,欧美在线| 无限看片的www在线观看| 成年人黄色毛片网站| 18禁黄网站禁片免费观看直播| 精品国内亚洲2022精品成人| 亚洲国产精品成人综合色| 好男人电影高清在线观看| 亚洲第一电影网av| 丝袜美腿诱惑在线| 久久婷婷成人综合色麻豆| 免费看日本二区| 亚洲熟妇熟女久久| 亚洲色图av天堂| 国内精品久久久久久久电影| 丰满人妻一区二区三区视频av | 久久这里只有精品19| 久久精品国产清高在天天线| 国产伦一二天堂av在线观看| 真人一进一出gif抽搐免费| 一a级毛片在线观看| 一区二区三区国产精品乱码| 丝袜人妻中文字幕| 亚洲国产精品999在线| 亚洲欧洲精品一区二区精品久久久| 久久亚洲精品不卡| 日韩欧美在线二视频| 黄片小视频在线播放| 国产激情偷乱视频一区二区| or卡值多少钱| 成人高潮视频无遮挡免费网站| 啪啪无遮挡十八禁网站| 亚洲中文字幕日韩| 亚洲成人久久爱视频| 一区福利在线观看| 日韩欧美在线乱码| 两性夫妻黄色片| 色噜噜av男人的天堂激情| 亚洲国产欧美网| 欧美乱妇无乱码| 99re在线观看精品视频| 国产成人精品久久二区二区免费| 男插女下体视频免费在线播放| 啦啦啦免费观看视频1| 一区二区三区国产精品乱码| 男人的好看免费观看在线视频 | 亚洲av电影不卡..在线观看| 亚洲无线在线观看| 精品国产超薄肉色丝袜足j| 亚洲精品国产一区二区精华液| 久久久精品欧美日韩精品| 色哟哟哟哟哟哟| 日本在线视频免费播放| 在线观看美女被高潮喷水网站 | 黄频高清免费视频| 999久久久国产精品视频| 制服人妻中文乱码| 国产成人精品久久二区二区91| 欧美又色又爽又黄视频| 国产在线精品亚洲第一网站| 99久久无色码亚洲精品果冻|