• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    車輛主動(dòng)懸架免模型輸出反饋控制器設(shè)計(jì)與實(shí)驗(yàn)

    2019-08-13 01:42:46周知進(jìn)陳海虹
    關(guān)鍵詞:觀測(cè)器懸架滑模

    王 剛 周知進(jìn) 陳海虹

    (貴州理工學(xué)院機(jī)械工程學(xué)院, 貴陽(yáng) 550003)

    0 引言

    隨著人們對(duì)駕駛舒適性及穩(wěn)定性的要求越來(lái)越高,懸架系統(tǒng)作為駕駛舒適性和穩(wěn)定性的關(guān)鍵部件,已經(jīng)成為研究熱點(diǎn)[1]。汽車主動(dòng)懸架是懸架系統(tǒng)的一個(gè)分支,近年來(lái)引起大量學(xué)者的關(guān)注[2-5]。

    主動(dòng)懸架性能不僅依賴執(zhí)行器的類型,也與控制算法密切相關(guān)。目前,針對(duì)主動(dòng)懸架控制,學(xué)者們提出了很多控制方法[6-12]?;?刂剖悄艿窒饨缭肼暩蓴_和參數(shù)攝動(dòng)的強(qiáng)魯棒控制方法,將其應(yīng)用于主動(dòng)懸架系統(tǒng)具有一定的先進(jìn)性。文獻(xiàn)[11-13]考慮系統(tǒng)的不確定性,研究了主動(dòng)懸架的滑??刂品椒āA硗?,為了減小控制成本及測(cè)量誤差,相對(duì)于狀態(tài)反饋方法,基于輸出反饋的控制更具實(shí)用性。LI等[14]提出了基于線性主動(dòng)懸架的考慮執(zhí)行器時(shí)延的輸出反饋控制方法。相對(duì)于傳統(tǒng)的一階滑模,超螺旋算法能夠保證二階滑模的有限時(shí)間穩(wěn)定性,故具有更高的收斂精度和魯棒性,且具有較小的抖振。

    在車輛主動(dòng)懸架系統(tǒng)中,模型的不確定性通常存在。雖然可以應(yīng)用先進(jìn)模型識(shí)別技術(shù)獲得懸架的參數(shù)及模型信息,但誤差時(shí)常存在,且考慮到路面的復(fù)雜性及車輛部件的疲勞和磨損等因素,基于模型的控制可能會(huì)產(chǎn)生控制偏差[15-18]?;诖?,免模型的車輛懸架控制具有一定的實(shí)用性,從理論及實(shí)驗(yàn)的角度研究免模型主動(dòng)懸架控制的可行性具有實(shí)際意義。

    本文針對(duì)車輛主動(dòng)懸架的免模型輸出反饋控制問(wèn)題,結(jié)合高階滑模觀測(cè)器和飽和超螺旋算法控制主動(dòng)懸架系統(tǒng),考慮實(shí)際測(cè)量噪聲,分析系統(tǒng)的穩(wěn)定性和有界性,最后通過(guò)C語(yǔ)言編譯控制程序,并通過(guò)數(shù)值仿真和硬件實(shí)物實(shí)驗(yàn)闡釋控制策略的有效性。

    1 兩自由度車輛主動(dòng)懸架模型

    圖1 兩自由度車輛主動(dòng)懸架模型Fig.1 Two-DOF vehicle active suspension model

    兩自由度車輛主動(dòng)懸架模型如圖1所示。圖中,主動(dòng)懸架部分包含彈簧和阻尼器,以及一個(gè)伺服電機(jī)執(zhí)行器。將輪胎部分簡(jiǎn)化為一個(gè)彈性元件和阻尼元件。

    在實(shí)際的輸出反饋控制中,懸架動(dòng)態(tài)及輪胎動(dòng)態(tài)難以精確測(cè)量,故無(wú)法實(shí)現(xiàn)精確的反饋補(bǔ)償,需應(yīng)用狀態(tài)觀測(cè)器對(duì)部分狀態(tài)及動(dòng)態(tài)進(jìn)行估計(jì)。

    根據(jù)牛頓第二定律可得系統(tǒng)的振動(dòng)方程為

    (1)

    其中

    ms=ms0+Δms0

    式中ms——簧載質(zhì)量

    ms0——名義質(zhì)量

    Δms0——攝動(dòng)質(zhì)量

    mu——非簧載質(zhì)量

    FΔ——電機(jī)執(zhí)行器產(chǎn)生的控制誤差

    Fs——懸架彈簧力

    Fd——懸架阻尼力

    Ft——輪胎彈簧力

    Fb——輪胎阻尼力

    u——電機(jī)主動(dòng)控制力

    系統(tǒng)振動(dòng)方程可進(jìn)一步表示為

    (2)

    定義變量

    (3)

    其中

    則簧載質(zhì)量動(dòng)態(tài)為

    選擇系統(tǒng)狀態(tài)變量為

    (4)

    則懸架簧載質(zhì)量系統(tǒng)狀態(tài)空間方程為

    (5)

    設(shè)計(jì)控制器為

    u=un/b

    (6)

    將式(6)代入簧載質(zhì)量系統(tǒng)(5)可得

    (7)

    其中y是唯一可測(cè)的輸出。

    在控制目標(biāo)中,選擇y為被控量,除了需要減小簧載質(zhì)量的垂直振動(dòng)位移和加速度外,還需要保證懸架動(dòng)行程zs-zu處于安全的范圍,即|zs-zu|≤zmax,其中zmax表示最大的極限值。考慮到輪胎的接地性能與輪胎動(dòng)行程呈正比,故盡量減小輪胎動(dòng)行程|zu-zr|,其中zr表示路面垂直位移。考慮控制飽和,電機(jī)主動(dòng)控制力須小于規(guī)定的極限值,設(shè)umax為最大的輸出力,則|u|≤umax。

    因此,控制目標(biāo)為:①在僅測(cè)量y且無(wú)測(cè)量噪聲情況下,保證系統(tǒng)的狀態(tài)x1和x2漸近收斂到零,并且二階滑??蛇_(dá)。②在僅測(cè)量y但存在測(cè)量噪聲情況下,保證系統(tǒng)的狀態(tài)x1漸近收斂到任意小的鄰域,并且二階滑模可達(dá)。③保證懸架動(dòng)行程和控制力在規(guī)定的范圍內(nèi),同時(shí)盡可能減小輪胎動(dòng)行程。

    為了便于證明,引入下列定理:

    定理1[19-22]:對(duì)于n階積分鏈,有

    (8)

    其中|ω|≤L。則高階滑模微分計(jì)為

    (9)

    若觀測(cè)器增益ki根據(jù)其遞歸的形式選擇,無(wú)測(cè)量噪聲時(shí),上述微分計(jì)式(9)有限時(shí)間精確。存在測(cè)量噪聲時(shí),觀測(cè)誤差在有限時(shí)間內(nèi)收斂到集合

    (10)

    式中δ——噪聲量級(jí)O——比例系數(shù)

    L——不確定量ρ的上界

    2 高階滑模觀測(cè)器設(shè)計(jì)

    設(shè)計(jì)一個(gè)高階滑模觀測(cè)器估計(jì)系統(tǒng)的狀態(tài)x2以及總的不確定量ρ??紤]系統(tǒng)(7),引入觀測(cè)器

    (11)

    其中

    e1=1-x1

    定義ei=i-xi,可得觀測(cè)誤差動(dòng)態(tài)為

    (12)

    根據(jù)文獻(xiàn)[22]的遞歸形式選擇觀測(cè)增益為

    則ei(i=1,2,3)將在有限時(shí)間T1內(nèi)收斂到零。

    在實(shí)際的硬件實(shí)驗(yàn)中存在傳感器噪聲,因此根據(jù)定理1,ei僅會(huì)在有限時(shí)間內(nèi)收斂到集合

    3 基于觀測(cè)器的飽和超螺旋算法設(shè)計(jì)

    在控制算法設(shè)計(jì)中,不依賴集中不確定量ρ的觀測(cè)誤差,僅需要狀態(tài)量x1。即存在噪聲時(shí),系統(tǒng)狀態(tài)也二階滑模可達(dá)。

    首先考慮滑模變量

    =c1x1+2(c1>0)

    (13)

    對(duì)其求導(dǎo)可得

    (14)

    同時(shí)利用式(13)、(11)可得

    設(shè)計(jì)控制律

    un=uc+us

    (15)

    其中

    (16)

    式中us——待設(shè)計(jì)的飽和超螺旋控制律

    uc——補(bǔ)償?shù)姆答伩刂坡?/p>

    將式(16)代入式(14)中可得

    (17)

    注意到設(shè)計(jì)的控制律uc和us都不需總的不確定量ρ的精確補(bǔ)償,因此,具有很好的實(shí)用性和魯棒性。

    定義a(t)=-c1e2,針對(duì)a(t)分兩種情況進(jìn)行討論。

    (1)當(dāng)無(wú)測(cè)量噪聲時(shí),根據(jù)定理1,e2將在有限時(shí)間T1內(nèi)收斂到零,故a(t)=0, ?t>T1。

    設(shè)計(jì)飽和超螺旋控制律

    (18)

    式中κi——控制增益,i=1,2,3

    式中 sat?——飽和函數(shù)

    χ——自變量

    ?——飽和值

    故有sat?(||1/2)∈[0,?], ?。

    若控制增益滿足

    (19)

    式中φ——us的上界

    則|us|≤φ。從式(19)可看出,只要控制增益滿足式(19),則控制律us小于φ。故可以通過(guò)調(diào)節(jié)φ來(lái)約束總的控制力u,避免出現(xiàn)控制飽和現(xiàn)象。

    將飽和超螺旋控制律(18)代入式(17),可得

    (20)

    當(dāng)t>T1,e2=0,故式(20)變化為

    (21)

    (22)

    根據(jù)Lyapunov穩(wěn)定性理論可知,當(dāng)c1>0時(shí),x1和x2是漸近穩(wěn)定的。

    在無(wú)測(cè)量噪聲情況下,無(wú)需整定控制律(18)的控制增益,僅需滿足式(19)約束控制輸出即可,提供了較大的便利。

    考慮飽和超螺旋控制律

    (23)

    將其代入式(17),可得

    (24)

    其中

    ν=υ+a(t)

    顯然,存在|φ(t)|≤φM=κ3aM+La,?t>T1。

    由于式(24)在有限時(shí)間內(nèi)不會(huì)趨于無(wú)窮,根據(jù)文獻(xiàn)[20]可知,若控制增益滿足

    (25)

    (26)

    (27)

    因此,被控狀態(tài)x1將漸近收斂到鄰域|x1|≤Ω。Ω的大小依賴于噪聲級(jí)別以及系統(tǒng)的控制參數(shù),通過(guò)增大滑模增益c1可以任意地減小Ω,故x1將收斂到任意小的范圍。

    閉環(huán)系統(tǒng)的控制框圖見(jiàn)圖2,從圖2可看出,控制方法是簡(jiǎn)易且容易實(shí)施的,該控制方案僅需要測(cè)量一個(gè)狀態(tài)量,減少了實(shí)施成本,且不需模型的精確參數(shù),具有很強(qiáng)的魯棒性和較高的收斂精度。

    定理2:考慮系統(tǒng)(7),設(shè)計(jì)高階滑模觀測(cè)器(11)以及飽和超螺旋控制律(23),若選擇合適觀測(cè)器增益ki和控制器增益κi以及c1、?,則系統(tǒng)在滑模面上二階滑??蛇_(dá),且有測(cè)量噪聲時(shí),狀態(tài)x1能收斂到任意小的界Ω。

    圖2 免模型輸出反饋控制框架Fig.2 Block diagram of model-free output-feedback control

    為了顯示控制方法的有效性,在仿真及實(shí)驗(yàn)中,分別對(duì)比PD控制和LQR控制兩種控制方法。

    PD控制

    uPD=-KPx1-KDx2

    (28)

    LQR控制

    (29)

    其中

    ulqr=-Kx

    式中KP——PD控制比例增益

    KD——PD控制微分增益

    J——LQR成本函數(shù)

    Q——LQR加權(quán)矩陣

    R——LQR加權(quán)系數(shù)

    K——LQR控制增益矩陣

    x——LQR狀態(tài)矢量

    ulqr——LQR控制力

    4 數(shù)值仿真

    在Matlab/Simulink模塊搭建閉環(huán)系統(tǒng)的仿真模型。為了便于頻域分析,假設(shè)懸架系統(tǒng)線性動(dòng)態(tài)為[6-8]

    (30)

    式中ks——懸架剛度ku——輪胎剛度

    cs——懸架阻尼系數(shù)

    cu——輪胎阻尼系數(shù)

    仿真參數(shù)與實(shí)驗(yàn)設(shè)備的名義參數(shù)保持一致,其值見(jiàn)表1。

    選擇參數(shù)L=30、b=1/2.45,其余參數(shù)可根據(jù)第2節(jié)及第3節(jié)的規(guī)則進(jìn)行選取。選擇整定后的PD控制增益為KP=5,KD=6。LQR控制器增益為

    Q=diag(450,30,5,0.01)

    zr=0.002sin(6πt)m

    (31)

    為了保證懸架系統(tǒng)的安全,根據(jù)系統(tǒng)的配置及尺寸,最大懸架動(dòng)行程取2 cm,最大輪胎動(dòng)行程為2 cm,最大控制力為10 N。正弦激勵(lì)下位移和加速度仿真結(jié)果如圖3、4所示。在共振頻率激勵(lì)下,被動(dòng)懸架的車身加速度峰值為2.78 m/s2,LQR控制下的車身加速度峰值為0.69 m/s2,HOSMO-SSTA的車身加速度峰值為0.20 m/s2,舒適性得到改善。

    圖3 正弦激勵(lì)下簧載質(zhì)量塊垂直位移Fig.3 Vertical displacement of sprung mass on sine excitation

    圖4 正弦激勵(lì)下簧載質(zhì)量塊垂直加速度Fig.4 Vertical acceleration of sprung mass on sine excitation

    通過(guò)濾波成形法[10]生成幅值為2 mm的不規(guī)則干擾對(duì)控制系統(tǒng)進(jìn)行隨機(jī)道路測(cè)試。圖5、6分別為隨機(jī)激勵(lì)下的位移和加速度響應(yīng)曲線,從圖中可看出,文中所提出的免模型控制方法具有最小的響應(yīng)幅值。PD控制、LQR控制和HOSMO-SSTA控制的加速度峰值分別為0.28、0.13、0.05 m/s2。不同路面激勵(lì)下的懸架動(dòng)行程和輪胎動(dòng)行程峰值如表2、3所示,所提出的控制方法具有較小的輪胎動(dòng)行程,且懸架動(dòng)行程小于最大極限值2 cm。

    圖5 隨機(jī)路面激勵(lì)下簧載質(zhì)量塊垂直位移Fig.5 Vertical displacement of sprung mass on random road excitation

    圖6 隨機(jī)路面激勵(lì)下簧載質(zhì)量塊垂直加速度Fig.6 Vertical acceleration of sprung mass on random road excitation

    干擾激勵(lì)被動(dòng)控制PD控制LQR控制HOSMOSSTA正弦信號(hào)7.606.302.802.90隨機(jī)信號(hào)0.800.760.512.70

    表3 輪胎動(dòng)行程峰值Tab.3 Peak values of tire deflection mm

    圖7 懸架加速度和輪胎動(dòng)行程幅頻響應(yīng)結(jié)果Fig.7 Amplitude-frequency responses of suspension acceleration and tire deflection

    5 實(shí)驗(yàn)

    為了進(jìn)一步驗(yàn)證所提控制器的性能,搭建主動(dòng)懸架系統(tǒng)實(shí)驗(yàn)臺(tái)如圖8所示。實(shí)驗(yàn)中,采用C語(yǔ)言進(jìn)行編譯控制器程序,內(nèi)嵌一個(gè)TLC程序進(jìn)行硬件加速,最大采樣頻率設(shè)為1 000 Hz,噪聲級(jí)別δ為5×10-6。實(shí)驗(yàn)中,通過(guò)一個(gè)10 bit的編碼器測(cè)量各部分位移,加速度計(jì)安裝在簧載質(zhì)量塊上,用于測(cè)量垂直加速度。路面激勵(lì)由底部的伺服電機(jī)產(chǎn)生。

    圖8 主動(dòng)懸架系統(tǒng)實(shí)驗(yàn)臺(tái)Fig.8 Active suspension system workstation1.QUARC實(shí)時(shí)快速成型軟件 2.急停開(kāi)關(guān) 3.數(shù)據(jù)采集卡 4.兩自由度主動(dòng)懸架系統(tǒng) 5.功率放大器

    圖9 正弦路面激勵(lì)下的簧載質(zhì)量塊垂直位移Fig.9 Vertical displacement of sprung mass on sine excitation

    圖10 正弦路面激勵(lì)下的簧載質(zhì)量塊垂直加速度Fig.10 Vertical acceleration of sprung mass on sine excitation

    圖11 正弦路面激勵(lì)下的懸架動(dòng)行程Fig.11 Suspension deflection on sine excitation

    圖12 正弦路面激勵(lì)下的輪胎動(dòng)行程Fig.12 Tire deflection on sine excitation

    圖13 正弦路面激勵(lì)下的電機(jī)控制力Fig.13 Motor control force on sine excitation

    首先采用式(31)所示的正弦路面激勵(lì)進(jìn)行測(cè)試,測(cè)試結(jié)果見(jiàn)圖9~13。在主動(dòng)懸架的性能評(píng)估中,車身加速度的均方根與舒適性密切相關(guān),從圖9、10可看出,HOSMO-SSTA方法明顯優(yōu)于傳統(tǒng)的PD控制及LQR控制。本文方法也優(yōu)于基于線性拓張觀測(cè)器的反演控制[9]。在設(shè)計(jì)中,不需要精確的反饋線性化,考慮實(shí)際的測(cè)量噪聲,僅通過(guò)整定控制增益c1即可調(diào)節(jié)x1的振動(dòng)幅值。系統(tǒng)的均方根計(jì)算式為

    (32)

    式中ξ(t)——測(cè)試信號(hào)

    T——測(cè)試時(shí)間,為15 s

    性能改進(jìn)指標(biāo)定義為

    (33)

    Pobj——性能的改進(jìn)程度

    表 4 給出了正弦激勵(lì)下加速度均方根對(duì)比,從表4可看出,HOSMO-SSTA控制下的加速度均方根比其他方法低一個(gè)數(shù)量級(jí),且相應(yīng)的Pobj為95%,從而驗(yàn)證了該方法具有更好的主動(dòng)減振性能。

    表4 加速度均方根Tab.4 Root-mean-square values of acceleration m/s2

    控制過(guò)程中,為了減小控制幅值,取φ=3 N。另一方面,為了減小控制抖振并保證收斂精度,不需要用飽和函數(shù)替代符號(hào)函數(shù),僅需保證控制器的增益不宜過(guò)大即可。當(dāng)抖振頻率大于電機(jī)的執(zhí)行速率時(shí),容易造成過(guò)大的控制誤差。由圖11、12可知,閉環(huán)系統(tǒng)的懸架動(dòng)行程也小于被動(dòng)控制及PD控制,雖然略大于LQR控制的情況,但總體滿足設(shè)計(jì)要求。同時(shí),輪胎動(dòng)行程達(dá)到最小,故HOSMO-SSTA控制下的主動(dòng)懸架具有更好的接地性能。從圖13可看出,相對(duì)于傳統(tǒng)的一階滑??刂?,本文所提的方法本身具有較小的抖振,符合二階滑模算法的屬性。在傳統(tǒng)的一階滑??刂浦?,為了減小抖振,通常用飽和函數(shù)替代符號(hào)函數(shù),降低了系統(tǒng)的收斂精度。

    圖14、15為隨機(jī)路面激勵(lì)下的簧載質(zhì)量塊的振動(dòng)波形圖,從圖可知,在不規(guī)則干擾下,文中所提方法具有很好的減振效果,明顯優(yōu)于傳統(tǒng)的被動(dòng)控制、PD控制及LQR控制。結(jié)合表4和式(33),可計(jì)算出相對(duì)于其他3種方法,HOSMO-SSTA控制下的加速度均方根下降了70%以上,而PD控制及LQR控制對(duì)不規(guī)則干擾的抑制能力較弱。圖16、17為懸架動(dòng)行程及輪胎動(dòng)行程響應(yīng)波形,所有方法均在安全的行程范圍內(nèi)。圖18給出了電機(jī)控制力的波形圖,雖然具有一定的抖振,但在采樣控制下,仍然小于一階滑模的情況。

    圖14 隨機(jī)路面激勵(lì)下的簧載質(zhì)量塊垂直位移Fig.14 Vertical displacement of sprung mass on random road excitation

    圖15 隨機(jī)路面激勵(lì)下的簧載質(zhì)量塊垂直加速度Fig.15 Vertical acceleration of sprung mass on random road excitation

    圖16 隨機(jī)路面激勵(lì)下的懸架動(dòng)行程Fig.16 Suspension deflection on random road excitation

    圖17 隨機(jī)路面激勵(lì)下的輪胎動(dòng)行程Fig.17 Tire deflection on random road excitation

    圖18 隨機(jī)路面激勵(lì)下的電機(jī)控制力Fig.18 Motor control force on random road excitation

    在無(wú)模型精確參數(shù)和動(dòng)態(tài)的情況下,HOSMO-SSTA控制的主動(dòng)懸架系統(tǒng)具有良好的主動(dòng)減振性能。在簧載質(zhì)量塊的一階共振頻率附近,具有較好的抗干擾和懸架綜合性能。同時(shí),接地性能也得到改善。由于實(shí)際的系統(tǒng)存在一定的未建模非線性動(dòng)態(tài)、參數(shù)攝動(dòng)以及電機(jī)作動(dòng)器的執(zhí)行誤差,導(dǎo)致實(shí)驗(yàn)和仿真結(jié)果略有差別,但減振效果能夠較好地吻合及匹配。由于所提方法不依賴模型的參數(shù)及形式,可以應(yīng)用于其他類型的主動(dòng)懸架系統(tǒng),具有較強(qiáng)的實(shí)用性。

    6 結(jié)束語(yǔ)

    針對(duì)電機(jī)驅(qū)動(dòng)的兩自由度車輛主動(dòng)懸架系統(tǒng)的免模型實(shí)際輸出反饋控制問(wèn)題,提出了基于高階滑模觀測(cè)器的飽和超螺旋控制策略??刂品椒ê?jiǎn)易有效,僅需測(cè)量一個(gè)狀態(tài)量,且不需要精確的模型參數(shù),具有較好的實(shí)用性和魯棒性。通過(guò)調(diào)整控制參數(shù),能夠約束控制律的輸出幅值。仿真與實(shí)驗(yàn)結(jié)果表明了控制策略的有效性,在兩種典型的路面干擾工況下,提出的HOSMO-SSTA方法具有更好的懸架綜合性能,舒適性及接地性能優(yōu)于傳統(tǒng)的被動(dòng)控制、PD控制及LQR控制方法。頻域結(jié)果顯示,被動(dòng)控制的加速度增益峰值為44.7 dB,LQR控制的加速度增益峰值為29.4 dB,而所提控制方法的加速度增益峰值僅為13.5 dB,舒適性得到較大改善。

    猜你喜歡
    觀測(cè)器懸架滑模
    基于組合滑??刂频慕^對(duì)重力儀兩級(jí)主動(dòng)減振設(shè)計(jì)
    測(cè)控技術(shù)(2018年4期)2018-11-25 09:47:26
    并網(wǎng)逆變器逆系統(tǒng)自學(xué)習(xí)滑模抗擾控制
    前后懸架抗制動(dòng)點(diǎn)頭率和抗加速仰頭率計(jì)算
    北京汽車(2016年6期)2016-10-13 17:07:50
    基于觀測(cè)器的列車網(wǎng)絡(luò)控制
    基于MATLAB/Simulink的主動(dòng)懸架仿真研究
    基于非線性未知輸入觀測(cè)器的航天器故障診斷
    基于干擾觀測(cè)器的PI控制單相逆變器
    采用干擾觀測(cè)器PI控制的單相SPWM逆變電源
    2011款路虎攬勝車空氣懸架不工作
    司法| 高安市| 疏勒县| 合作市| 朝阳区| 渝中区| 凭祥市| 许昌县| 武宣县| 克山县| 莆田市| 株洲县| 郧西县| 丹凤县| 将乐县| 滦平县| 亳州市| 耒阳市| 东辽县| 老河口市| 翁源县| 威海市| 吉林省| 威远县| 宽甸| 宜兰市| 衡水市| 望都县| 邯郸市| 清苑县| 任丘市| 湾仔区| 大荔县| 宣汉县| 新龙县| 福安市| 鹤岗市| 岱山县| 乌拉特前旗| 项城市| 深水埗区|