• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    液氨和過氧化氫預(yù)處理對稻草酶解效果的影響機制

    2019-07-23 06:37:48趙相君彭何歡馬中青
    農(nóng)業(yè)工程學(xué)報 2019年10期
    關(guān)鍵詞:液氨單糖葡聚糖

    趙相君,李 琮,彭何歡,趙 超,馬中青

    液氨和過氧化氫預(yù)處理對稻草酶解效果的影響機制

    趙相君,李 琮,彭何歡,趙 超,馬中青※

    (浙江農(nóng)林大學(xué)工程學(xué)院,浙江省竹資源與高效利用協(xié)同創(chuàng)新中心,杭州 311300)

    稻草是一種重要的木質(zhì)纖維素資源,可以作為纖維素乙醇轉(zhuǎn)化的原料。該試驗通過高溫過氧化氫(高溫HP)、低溫過氧化氫(低溫HP)和液氨預(yù)處理(liquid ammonia treatment,LAT)3種預(yù)處理方式來克服生物質(zhì)原料的酶解頑抗性,促進稻草酶解轉(zhuǎn)化為可發(fā)酵單糖。對預(yù)處理后的稻草進行酶解試驗,利用高效液相色譜法(high performance liquid chromatography,HPLC)定量測定了酶解液中的單糖含量,通過酶解轉(zhuǎn)化率和單糖產(chǎn)量對預(yù)處理效果進行了分析比較。試驗結(jié)果表明高溫HP、低溫HP和LAT 3種預(yù)處理方式均有效提升酶解率,其中LAT預(yù)處理的酶解促進作用效果最佳,高溫HP預(yù)處理次之。稻草在120 ℃、預(yù)處理時間為60 min、30% H2O2水溶液與原料質(zhì)量比為0.75∶1的高溫HP預(yù)處理下,在纖維素酶添加量為15 U/g時葡聚糖和木聚糖的酶解率分別為61.55%和47.82%,每千克干基稻草原料經(jīng)144 h酶解可生產(chǎn)單糖334.5 g。稻草在90 ℃、含水率60%、駐留時間為5 min、液氨與原料比例為1∶1的LAT預(yù)處理下,在纖維素酶添加量為15 U/g時,葡聚糖和木聚糖的72 h酶解率分別為88.62%和79.29%,每千克干基稻草原料經(jīng)144 h酶解可生產(chǎn)單糖554.1 g,是未處理原料的2.9倍,總糖回收率達到90%。綜上所述,LAT預(yù)處理稻草的酶解率顯著高于其他單一預(yù)處理方法,該研究結(jié)果可為稻草制取燃料乙醇提供基礎(chǔ)數(shù)據(jù)。

    酶;乙醇;秸稈;液氨預(yù)處理;酶解;過氧化氫;纖維素乙醇

    0 引 言

    生物質(zhì)能源材料能夠促進國家能源安全,降低溫室效應(yīng),植物生物質(zhì)材料因為蘊含著大量的有機碳,因此成為生物質(zhì)能源的重要組成部分。纖維素乙醇是其代表性產(chǎn)品,它以木質(zhì)纖維素為原料,通過生物化學(xué)平臺進行轉(zhuǎn)化。雖然纖維素乙醇轉(zhuǎn)化技術(shù)的研究已超過30 a,但產(chǎn)業(yè)化仍存在著困難,主要原因是木質(zhì)纖維素原料存在很強的水解頑抗性(biomass recalcitrance)[1]。產(chǎn)生水解頑抗性的原因主要是纖維素被木質(zhì)素包裹[2]、纖維素存在大范圍的結(jié)晶區(qū)、半纖維素纏繞并覆蓋微纖表面、纖維素與木質(zhì)素間存在強結(jié)合鍵的LCCs(lignin- carbohydrate complexes)混合體等,使得水解酶無法有效地接觸到纖維素,導(dǎo)致水解效率低下。目前主要采用預(yù)處理的方式來克服水解頑抗性,預(yù)處理被學(xué)者稱為打開低成本纖維素乙醇的鑰匙[3-4]。理想的預(yù)處理方法應(yīng)該是盡可能地移除木質(zhì)素,并盡量少地改變聚糖和保持纖維素的微纖結(jié)構(gòu)[5]。中國秸稈資源豐富,年產(chǎn)秸稈資源總量為7.4億t,其中水稻秸稈占有比例最大,約占總量的30.5%[6],產(chǎn)量相當(dāng)可觀。

    稻草預(yù)處理的方法主要有稀酸法[7]、堿法(含氨水法)[8-10]、水熱法[11]、蒸汽爆破法[12]、微波法[13]、氨爆法(ammonia fiber expansion, AFEX)[14]、離子液體法[15]等,其中不少研究者采用組合使用預(yù)處理方法或采用二步法[8-9,12]。從前述文獻中的酶解效果來看,1)采用組合預(yù)處理或二步法的效果最佳,如采用氨水-稀硫酸兩步法預(yù)處理,葡聚糖在添加15 FPU/(g葡聚糖)纖維素酶后72 h酶解率為90.8%[9];2)添加堿性介質(zhì)的預(yù)處理效果較好,如AFEX預(yù)處理后葡聚糖和木聚糖的168 h酶解率分別為80.6%和89.6%[14],Na2CO3-Na2SO3預(yù)處理后總糖得率為74.5%[16],氨水浸泡法預(yù)處理的葡聚糖轉(zhuǎn)化率為71.1%[10];3)其他預(yù)處理方式也有明顯的效果,如水熱法在180 ℃下30 min預(yù)處理后葡聚糖轉(zhuǎn)化率不低于85%[11],離子液體法預(yù)處理后葡聚糖和木聚糖轉(zhuǎn)化率分別為80%和30%[15]。由于酶解率受酶解時間、酶制劑添加量、酶解底物濃度等因素影響,不同學(xué)者采用的標(biāo)準并不統(tǒng)一,所以難以進行準確的優(yōu)劣排序。同時,預(yù)處理過程原料可能存在較大的損失,如堿法、稀酸法、水熱法都可能導(dǎo)致15%至50%的固體損失,并造成木糖降解導(dǎo)致總糖損失,因此采用質(zhì)量平衡法進行評價更為合理[17]。

    氨是一種價格低廉的堿性原料,用于預(yù)處理主要有氨水法[18]、ARP法[19]和AFEX法[20]。AFEX用于草本植物具有顯著的酶解促進效果,除用于稻草外,還用于玉米葉[21]、高粱秸稈[22]、青貯玉米[23]、芒[24]、柳枝稷[25]等原料。液氨處理法(liquid ammonia treatment,LAT)借鑒了AFEX法,并作了改進,將氨的爆破式釋放改為緩慢釋放,降低了工藝控制難度與處理成本,并拓展了預(yù)處理溫度范圍。H2O2是一種廉價的強氧化劑,用作預(yù)處理時它通常與堿性試劑共同使用[26],有助于更好地移除木質(zhì)素,從而提升酶解效果。單純使用H2O2,也有不錯的效果,如預(yù)處理濕磨后的甘蔗渣,可使酶解率提升1.4倍[27]。

    本研究采用高溫HP、低溫HP和LAT 3種方法對稻草進行預(yù)處理,并通過酶解率、單糖得率和質(zhì)量平衡法進行預(yù)處理效果比較。試驗中采用的試劑成本低且環(huán)境友好,預(yù)處理設(shè)備要求不高,易于實現(xiàn)低成本的乙醇生產(chǎn)。

    1 材料與方法

    1.1 試驗材料

    水稻秸稈取自浙江省臨安市清涼峰鎮(zhèn)(30.15°N、118.97°E),采收期是9月份。試驗采用去除稻谷后地上部分的整株植物,將稻草切割成約1~2 cm長條狀,在不高于40 ℃溫度下,烘干至含水率低于15%,用微型植物粉碎機(FZ102,天津泰斯特)粉碎成50~100目的粉末。用水分分析儀(MA35,Sartorius)測量混合均勻后稻草粉末的含水率,再將試驗材料裝入塑料袋密封好,貯藏于-20 ℃冰箱里存放以備用。用于高效液相色譜(high performance liquid chromatography,HPLC)分析的葡萄糖、木糖等標(biāo)準對照品均采購自Sigma-Aldrich公司(上海),純度為99%以上。纖維素酶(NS50013)(含木聚糖酶活性)、-葡萄糖苷酶(NS50010)由諾維信公司(中國)提供,測得纖維素酶制劑的活性為76 U/mL,葡萄糖苷酶活性為252 U/mL。

    1.2 試驗方法

    試驗分析的方法參照美國的國家可再生能源實驗室(national renewable energy laboratory,NREL)制訂的試驗規(guī)程(laboratory analytical procedure,LAP),其中酶解反應(yīng)量由原10改為15 mL,酶添加量由原來60 FPU/g改為15 FPU/g,詳見文獻[1]。

    1.2.1 組分含量測定

    試驗原料中碳水化合物組分由LAP002方法測定,酸不溶性木質(zhì)素(Klason木質(zhì)素)由LAP003方法測定,詳見文獻[1]。LAP002和LAP003采用二步酸解法,在一次試驗中完成。酸水解的具體步驟是用分析天平(AL204,Mettler Toledo)先準確稱量已知含水率并去除抽提物的生物質(zhì)原料0.3 g(干基),加入質(zhì)量分數(shù)72%硫酸3 mL,在30 ℃水浴中保持2 h,加去離子水84 mL(稀釋至質(zhì)量分數(shù)4%硫酸),放入滅菌鍋中121 ℃保持1 h。經(jīng)真空過濾后將濾紙上的固形物烘干至恒定質(zhì)量。用HPLC法(色譜分析柱為美國Bio-Rad生產(chǎn)的AminexHPX-87H醇酸柱)測定各種單糖的濃度,并計算出葡聚糖(纖維素)、木聚糖、阿拉伯聚糖等含量,由濾紙上的固形物經(jīng)灰分分析后確定不溶性木質(zhì)素含量?;曳职凑辗椒↙AP005[1]測定,先測出試驗原料的含水率,稱1 g左右放入已測質(zhì)量的有蓋陶瓷坩鍋中,置入箱式電阻爐中程序緩慢升溫,約2 h升至(575±1)℃,保持此溫度4 h后,冷卻至105 ℃左右移入干燥器,待冷卻至室溫后稱取質(zhì)量,計算出灰分含量。

    1.2.2 HP預(yù)處理

    將已知水分的生物質(zhì)原料與30%的H2O2水溶液按不同質(zhì)量比例(0:1、0.5:1、0.75:1、1:1、1.5:1和2:1)混合,攪拌均勻,將混合材料裝入藍蓋玻璃瓶中(蓋緊瓶蓋),再將其分別加熱至60和120 ℃,各保溫60 min, 處理后的原料置于40 ℃的烘箱中干燥。60 ℃預(yù)處理采用水浴法加熱,120 ℃預(yù)處理采用滅菌鍋加熱。處理后的原料經(jīng)干燥后稱量其質(zhì)量并測定含水率,計算預(yù)處理后原料得率,再將處理后的原料放入-20 ℃的冰箱冷藏備用。部分樣品進行酸解試驗,分析聚糖損失和木質(zhì)素降解量。過氧化氫預(yù)處理優(yōu)化的工藝參數(shù)選擇有:預(yù)處理溫度、駐留時間、生物質(zhì)原料與H2O2質(zhì)量比例等。

    1.2.3 LAT預(yù)處理

    稱取已知含水率的生物質(zhì)原料,干燥至含水率為15%,攪拌均勻后放入改裝過的反應(yīng)釜(GCF- 1L20/350,大連自控設(shè)備廠)中,并將反應(yīng)釜抽真空;將液氨注入稱量小鋼瓶,稱量并確定本次試驗用量,加熱小鋼瓶至50 ℃左右(提升氨的壓力),然后將氨注入反應(yīng)釜中;加熱反應(yīng)釜至設(shè)定的溫度,保留一定時間,快速冷卻反應(yīng)釜并釋放氨氣。取出處理后的原料置于通風(fēng)柜中室溫干燥12 h。干燥后測量其質(zhì)量和含水率,計算預(yù)處理后原料得率,再將處理后的原料放入–20 ℃的冰箱冷藏備用,部分原料進行酸解試驗確定聚糖損失和木質(zhì)素移除率。LAT預(yù)處理優(yōu)化的工藝參數(shù)選擇有:預(yù)處理的溫度、駐留時間、含水率、以及生物質(zhì)與液氨的比例等[28]。

    1.2.4 酶水解

    酶水解試驗按照LAP009規(guī)程:用分析天平稱取0.15 g葡聚糖當(dāng)量(1%的葡聚糖底物濃度)的原料放入20 mL的酶解瓶(預(yù)處理后原料的葡聚糖含量參照未預(yù)處理原料),然后加入蒸餾水、檸檬酸鈉緩沖溶液(平衡后pH值為4.8)、抗生素(四環(huán)素和環(huán)己酰亞胺),預(yù)混合1 h左右再添加纖維素酶、-葡萄糖苷酶。纖維素酶的添加量為15 FPU/g、-葡萄糖苷酶64 pNPGU/g。酶解條件設(shè)定溫度為50 ℃,搖床轉(zhuǎn)速為150 r/min。酶解取樣的時間為24 、72和144 h。

    高效液相色譜(HPLC)分析樣品取樣:取1 mL酶解樣品,放入離心管,置于加熱器(設(shè)置溫度100℃)中加熱20 min,使酶蛋白變性完全失效,然后放入冰箱(-20 ℃)冷卻5 min,再放入離心機(5424,Eppendorf AG)在15 000 r/min轉(zhuǎn)速下離心5 min,用一次性針頭過濾器(0.22m)過濾(聚醚砜膜)后裝入HPLC分析瓶,放入5 ℃冷藏或-20 ℃冷凍備分析。

    1.2.5 糖的定量分析

    酶解液或酸解液中的單糖定量分析采用HPLC法,色譜儀為Agilent Technologies 1200 Series(安捷倫公司,帶自動進樣器G1329A),采用示差折光檢測器檢測。采用BioRad公司的HPX-87H色譜柱,流動相為0.005 mol/L稀硫酸,流速為0.60 mL/min,柱溫為50 ℃。

    1.2.6 酶解率及總糖回收量計算

    酶解率為實際獲得單糖含量與原料中聚糖理論上可轉(zhuǎn)換的同類單糖含量之比,如葡聚糖的酶解率可通過公式(1)計算得到。

    式(1)中的分子為酶解所獲得葡萄糖含量,為HPLC測得的酶解液中葡萄糖的質(zhì)量濃度,g/L;公式(1)中的分母為理論上原料中的葡聚糖轉(zhuǎn)化為葡萄糖的量,為加入原料的干基質(zhì)量,為原料成分分析(酸解法)葡聚糖含量百分數(shù),%。 總糖回收量為1 000 g干基原料經(jīng)酶解后產(chǎn)生的葡萄糖和木糖質(zhì)量和,g。

    2 結(jié)果與討論

    2.1 原料組分分析

    稻草原料與經(jīng)HP預(yù)處理和LAT預(yù)處理后的干基組分比較如表1所示。葡聚糖在LAT預(yù)處理過程中幾乎沒有損失,在低溫HP預(yù)處理中損失少于5%,而在高溫HP預(yù)處理中損失約18%。木聚糖在LAT預(yù)處理過程中也幾乎沒有損失,而在低溫HP預(yù)處理中損失約11%,在高溫HP預(yù)處理中損失約33%。不溶性木質(zhì)素的移除率以LAT預(yù)處理為最佳,預(yù)處理過程中減少不溶性木質(zhì)素約10%。

    表1 生物質(zhì)的組分分析(干基)

    2.2 高溫HP預(yù)處理對酶解效果的影響

    高溫HP預(yù)處理中H2O2添加量對酶解效果的影響如圖1所示,橫坐標(biāo)為30%的H2O2水溶液與原材料質(zhì)量之比(0:1表示未經(jīng)預(yù)處理),縱坐標(biāo)左側(cè)為葡聚糖/木聚糖經(jīng)酶解24、72 h轉(zhuǎn)化為葡萄糖/木糖的轉(zhuǎn)化率,右側(cè)為每千克干基原料經(jīng)144 h酶解可轉(zhuǎn)化為葡萄糖和木糖的總量,稱為總糖回收量(未計算阿拉伯糖等其他單糖)。H2O2添加量的變化范圍為質(zhì)量比0.5∶1~2∶1,其他預(yù)處理條件為駐留時間為60 min,預(yù)處理溫度為120 ℃。結(jié)果表明,采用0.75∶1時,葡聚糖和木聚糖的轉(zhuǎn)化率在24、72 h均有最大值,其72 h轉(zhuǎn)化率分別為61.55%、47.82%,較未作預(yù)處理時的40.24%、14.45%分別提高了0.53倍和2.3倍。經(jīng)此優(yōu)化條件下預(yù)處理,每千克干基稻草經(jīng)144 h酶解后可轉(zhuǎn)化單糖368.5 g,是未經(jīng)預(yù)處理原料的1.8倍。H2O2添加量對酶解效果的影響較為顯著,過高的添加量(超過1.0∶1)導(dǎo)致酶解率快速下降。從組分分析中可知,主要原因之一是預(yù)處理中大量的葡聚糖與木聚糖降解造成的,添加比例越高其降解量越大[29]。

    注:24、72、144 h分別為不同的酶解時間,下同。

    2.3 低溫HP預(yù)處理對酶解效果的影響

    低溫HP預(yù)處理中H2O2添加量對酶解效果的影響如圖2所示。H2O2添加量的變化范圍為質(zhì)量比0.5∶1~2∶1,其他預(yù)處理條件為駐留時間為60 min,預(yù)處理溫度為60 ℃。結(jié)果表明,采用0.5∶1或1.0∶1時,葡聚糖和木聚糖的轉(zhuǎn)化率較高(兩者接近)。在1.0∶1時,葡聚糖和木聚糖的72 h轉(zhuǎn)化率分別為52.87%、22.70%,較未作預(yù)處理時的40.24%、14.45%分別提高了0.25倍和0.57倍。經(jīng)此優(yōu)化條件下預(yù)處理,每千克干基稻草經(jīng)144 h酶解后可轉(zhuǎn)化單糖284.0 g,是未經(jīng)預(yù)處理原料的1.4倍。低溫HP預(yù)處理能有效提高酶解率,但H2O2添加量對酶解效果的影響不顯著。與高溫HP預(yù)處理相比,低溫預(yù)處理的酶解率偏低。

    圖2 H2O2添加量對低溫HP預(yù)處理稻草的酶解轉(zhuǎn)化率的影響

    2.4 LAT預(yù)處理對酶解效果的影響

    LAT預(yù)處理溫度對酶解率的影響如圖3所示,橫坐標(biāo)為預(yù)處理溫度,其他預(yù)處理條件為原料含水率60%、液氨與原料質(zhì)量比為1:1、預(yù)處理駐留時間為5 min。結(jié)果表明,在70~170 ℃范圍內(nèi),葡聚糖的酶解轉(zhuǎn)化率隨著預(yù)處理溫度升高而增加,至90 ℃時轉(zhuǎn)化率達到最大值,而后隨溫度升高轉(zhuǎn)化率略有下降,到170 ℃時又有所增加。90 ℃時24 h取樣的葡聚糖酶解率為80.45%,與未經(jīng)預(yù)處理的31.75%相比提高了1.53倍。木聚糖的酶解轉(zhuǎn)化率隨溫度變化趨勢與葡聚糖相似,也在溫度為90 ℃時達到最高值。未經(jīng)處理原料的木聚糖轉(zhuǎn)化率為11.84%,溫度為90 ℃時的木聚糖轉(zhuǎn)化為率73.83%,提高了5.24倍。酶解72 h時葡聚糖和木聚糖轉(zhuǎn)化率分別為88.62%和79.29%,未處理材料轉(zhuǎn)化率分別為37.48和14.81%,分別提高了1.36倍和4.35倍。經(jīng)此優(yōu)化條件下預(yù)處理,每千克干基稻草經(jīng)144 h酶解后可轉(zhuǎn)化單糖555.0 g(未考慮預(yù)處理中的固體損失),是未經(jīng)預(yù)處理原料產(chǎn)糖量190.6 g的2.9倍,是高溫HP預(yù)處理后產(chǎn)糖量的1.5倍。LAT預(yù)處理的酶解效果顯著高于HP預(yù)處理,而且在預(yù)處理過程中幾乎沒有聚糖損失,故其非常適用于稻草的預(yù)處理。Zhao等[30]通過對LAT預(yù)處理后的蘆竹的表觀形貌變化分析可知,LAT預(yù)處理后蘆竹纖維組織表面產(chǎn)生了大量的裂隙,減少了生物質(zhì)的水解頑抗性,纖維素酶的可及度大幅度提升,有利于酶解率的提升。

    圖3 不同預(yù)處理溫度對稻草中葡聚糖/木聚糖酶解轉(zhuǎn)化率的影響

    2.5 LAT預(yù)處理和高溫HP預(yù)處理效果比較

    HP高溫預(yù)處理與酶解的質(zhì)量轉(zhuǎn)化流程圖如圖4所示。采用的預(yù)處理條件為:預(yù)處理溫度120℃、預(yù)處理時間為60 min、H2O2與原料質(zhì)量比為0.75:1,纖維素酶添加量為15 FPU/g(以葡萄糖計),預(yù)處理的固體得率為86.55%。每千克預(yù)處理后稻草(干基)經(jīng)144 h酶解后可獲得單糖386.5 g(不包括阿拉伯糖、半乳糖等),考慮固體得率后其實際獲得單糖334.5 g。而未作預(yù)處理的單糖獲得量為204.5 g,預(yù)處理后單糖得率是未處理原料的1.6倍。預(yù)處理后酶解所得葡萄糖占總糖量的70.4%,而未作預(yù)處理原料酶解所得葡萄糖占82.5%,該預(yù)處理方式較大地促進了木聚糖的酶解。

    液氨預(yù)處理與酶解的質(zhì)量轉(zhuǎn)化流程圖如圖5所示。采用的預(yù)處理條件為:預(yù)處理溫度90 ℃、含水率60%、駐留時間為5 min、液氨與原料質(zhì)量比例為1∶1,預(yù)處理后固體得率為99.84%。酶解過程中纖維素酶添加量為15 FPU/g (以葡萄糖計),1 000 g干基稻草經(jīng)144 h酶解后可獲得單糖554.1 g,而未作預(yù)處理的單糖獲得量為190.6 g,預(yù)處理后單糖產(chǎn)量是未處理原料的2.9倍。預(yù)處理后酶解所得葡萄糖占總糖量的67.2%,與高溫HP預(yù)處理獲得的比例接近。該預(yù)處理條件下可獲得木糖占總糖量約三分之一,防止預(yù)處理過程中木糖降解和在后續(xù)發(fā)酵過程中使木糖充分轉(zhuǎn)化為乙醇,是纖維素乙醇研究與生產(chǎn)中的重要課題。

    圖4 稻草高溫HP預(yù)處理與酶解過程質(zhì)量轉(zhuǎn)化流程圖

    圖5 稻草LAT預(yù)處理與酶解過程質(zhì)量轉(zhuǎn)化流程圖

    在高溫HP、低溫HP和LAT預(yù)處理3種預(yù)處理方法中,三者對稻草的酶解促進作用效果明顯,而以LAT預(yù)處理為最佳。LAT預(yù)處理稻草后,經(jīng)酶解144 h后葡聚糖和木聚糖的轉(zhuǎn)化率分別為94.35%和84.24%,每千克稻草可獲得單糖總量544.1 g,總糖回收率達到90%。

    AFEX預(yù)處理后144 h酶解葡聚糖與木聚糖的轉(zhuǎn)化率分別為80.6%和89.6%(6%葡聚糖含量的底物濃度)[14],LAT對稻草預(yù)處理后葡聚糖轉(zhuǎn)化率與總糖回收率超過AFEX。LAT預(yù)處理后葡聚糖72 h酶解轉(zhuǎn)化率為88.62%,高于氨水浸泡的71.1%[9]、Na2CO3-Na2SO3法的82.7%[16]、熱水法的85%[10]、微波/堿法的60%[7]、離子液體法的80%[15],與稀酸-汽爆組合法73.5%~93.1%[11]、氨水-稀酸兩步法89.0%[8]接近。LAT預(yù)處理后木聚糖72 h酶解轉(zhuǎn)化率為79.29%,僅低于AFEX預(yù)處理[14]。由于預(yù)處理過程中原料會損失,很多研究者在酶解轉(zhuǎn)化率或單糖回收率中未考慮損失量,而LAT預(yù)處理的固體回收率接近100%,不會引起聚糖降解,既保證了單糖得率,又不會產(chǎn)生后續(xù)發(fā)酵過程中的抑制劑,是一個顯著的優(yōu)勢。

    3 結(jié) 論

    通過對稻草高溫HP、低溫HP、LAT預(yù)處理后的酶解效果開展比較研究,結(jié)論如下。這3種預(yù)處理方法均有顯著的酶解促進作用,其順序為:LAT預(yù)處理>高溫HP>低溫HP。稻草在120℃、預(yù)處理時間為60 min、H2O2與原料質(zhì)量比為0.75:1的高溫HP預(yù)處理下,在纖維素酶添加量為15 FPU/(g葡聚糖)條件的酶解率分別為61.55%、47.82%,每千克干基稻草原料經(jīng)144 h酶解可生產(chǎn)單糖334.5 g。稻草在90 ℃、含水率60%、駐留時間為5 min、液氨與原料比例為1:1的LAT預(yù)處理下,在纖維素酶添加量為15 FPU/(g葡聚糖)時,葡萄糖和木糖的72 h酶解轉(zhuǎn)化率分別為88.62%和79.29%,每千克干基稻草原料經(jīng)144 h酶解可生產(chǎn)單糖554.1 g,是未處理原料的2.9倍,總糖回收率達到90%。LAT預(yù)處理在用于稻草的預(yù)處理中,酶解率和單糖回收率高于其他單一預(yù)處理方法,本文研究結(jié)果可為稻草制取燃料乙醇提供基礎(chǔ)數(shù)據(jù)。

    [1] Zhao C, Shao Q J, Ma Z Q, et al. Physical and chemical characterizations of corn stalk resulting from hydrogen peroxide presoaking prior to ammonia fiber expansion pretreatment[J]. Industrial Crops and Products, 2016, 83: 86—93.

    [2] 吳丹焱, 辛善志,劉標(biāo),等. 基于木質(zhì)素部分脫除及其含量對生物質(zhì)熱解特性的影響[J]. 農(nóng)業(yè)工程學(xué)報, 2018, 34(1): 193—197. Wu Danyan, Xin Shanzhi, Liu Biao, et al. Influence of lignin content on pyrolysis characteristics ofbiomass based on part of lignin removal[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2018, 34(1): 193—197. (in Chinese with English abstract)

    [3] Blummel M, Teymouri F, Moore J, et al. Ammonia fiber expansion (AFEX) as spin off technology from 2nd generation biofuel for upgrading cereal straws and stovers for livestock feed[J]. Animal Feed Science and Technology, 2018, 236: 178—186.

    [4] Yu H, Guo J, Chen Y F, et al. Efficient utilization of hemicellulose and cellulose in alkali liquor-pretreated corncob for bioethanol production at high solid loading by Spathaspora passalidarum U1-58[J]. Bioresource Technology, 2017, 232: 168—175.

    [5] Amiri H, Karimi K, Zilouei H. Organosolv pretreatment of rice straw for efficient acetone, butanol, and ethanol production[J]. Bioresource Technology, 2014, 152: 450—456.

    [6] 劉曉永, 李書田. 中國秸稈養(yǎng)分資源及還田的時空分布特征[J]. 農(nóng)業(yè)工程學(xué)報, 2017, 33(21): 1—19. Liu Xiaoyong, Li Shutian. Temporal and spatial distribution characteristics of crop straw nutrient resources and returning to farmland in China[J]. Transactions of the Chinese Society for Agricultural Engineering (Transactions of the CSAE), 2017, 33(21): 1—19. (in Chinese with English abstract)

    [7] Zhu S D, Huang W J, Huang W X, et al. Pretreatment of rice straw for ethanol production by a two-step process using dilute sulfuric acid and sulfomethylation reagent[J]. Applied Energy, 2015,145: 190—196.

    [8] Kim I, Lee B, Song D S, et al. Effects of ammonium carbonate pretreatment on the enzymatic digestibility and structural features of rice straw[J]. Bioresource Technology, 2014, 166: 353—357.

    [9] Domanski J, Borowski S, Marchut-Mikolajczyk O, et al. Pretreatment of rye straw with aqueous ammonia for conversion to fermentable sugars as a potential substrates in biotechnological processes[J]. Biomass & Bioenergy, 2016, 91: 91—97.

    [10] Antonopoulou G, Jonuzaj S, Gavala H N, et al. The effect of aqueous ammonia soaking pretreatment on methane generation uing different lignocellulosic feedstocks[J]. Waste & Biomass Valorization, 2015, 6(3): 281—291.

    [11] Ngamprasertsith S, Sunphorka S, Kuchonthara P, et al. Pretreatment of rice straw by hot-compressed water for enzymatic saccharification[J]. Korean Journal of Chemical Engineering, 2015, 32(10): 2007—2013.

    [12] 劉翀, 張瑞婷, 劉本國, 等. 蒸汽爆破處理對麥麩的酚酸組成及其抗氧化活性的影響[J]. 農(nóng)業(yè)工程學(xué)報, 2016, 32(6): 308—314. Liu Chong, Zhang Ruiting, Liu Benguo, et al. Effect of steam explosion treatment on phenolic acid compositionof wheat bran and its antioxidant capacity[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(6): 308—314. (in Chinese with English abstract)

    [13] 馬歡, 劉偉偉, 劉萍, 等. 微波預(yù)處理對水稻秸稈糖化率與成分和結(jié)構(gòu)的影響[J]. 農(nóng)業(yè)機械學(xué)報, 2014, 45(10): 180—186. MaHuan, LiuWeiwei, Liu Ping, et al. Effects of microwave pretreatment on enzymatic saccharification and lignocellulosic structure of rice straw[J]. Transactions of the Chinese Society of Agricultural Machinery, 2014, 45(10): 180—186. (in Chinese with English abstract)

    [14] Zhong C, Lau M W, Balan V, et al. Optimization of enzymatic hydrolysis and ethanol fermentation from AFEX-treated rice straw[J]. Applied Microbiology and Biotechnology, 2009, 84(4): 667—676.

    [15] Hou X D, Smith T J, Li N, et al. Novel renewable ionic liquids as highly effective solvents for pretreatment of rice straw biomass by selective removal of lignin[J]. Biotechnology and Bioengineering, 2012, 109(10): 2484—2493.

    [16] Yang L F, Cao J, Mao J Y, et al. Sodium carbonate–sodium sulfite pretreatment for improving the enzymatic hydrolysis of rice straw[J]. Industrial Crops and Products, 2013, 43: 711—717.

    [17] Garlock R J, Balan V, Dale B E, et al. Comparative material balances around pretreatment technologies for the conversion of switchgrass to soluble sugars[J]. Bioresource Technology, 2011, 102(24): 11063—11071.

    [18] Nguyen T A, Kim K R, Han S J, et al. Pretreatment of rice straw with ammonia and ionic liquid for lignocellulose conversion to fermentable sugars[J]. Bioresource Technology, 2010, 101(19): 7432—7438.

    [19] Kumar R, Mago G, Balan V, et al. Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies[J]. Bioresource Technology, 2009, 100(17): 3948—3962.

    [20] Nissila M E, Lay C, Puhakka J A, et al. Dark fermentative hydrogen production from lignocellulosic hydrolyzates – A review[J]. Biomass & Bioenergy, 2014, 67: 145—159.

    [21] Zhao C, Ma Z Q, Shao Q J, et al. Enzymatic hydrolysis and physiochemical characterization of corn leaf after H-AFEX pretreatment[J]. Energy & Fuels, 2016, 30(2): 1154—1161.

    [22] Umagiliyage A L, Choudhary R, Liang Y, et al. Laboratory scale optimization of alkali pretreatment for improving enzymatic hydrolysis of sweet sorghum bagasse[J]. Industrial Crops and Products, 2015, 74: 977—986.

    [23] Shao Q, Chundawat S P, Krishnan C, et al. Enzymatic digestibility and ethanol fermentability of AFEX-treated starch-rich lignocellulosics such as corn silage and whole corn plant[J]. Biotechnology for Biofuels, 2010, 3(1): 12.

    [24] Li Q M, Li X J, Jiang Y L, et al. Analysis of degradation products and structural characterization of giant reed and Chinese silvergrass pretreated by 60Co-γ irradiation[J]. Industrial Crops and Products, 2016, 83: 307—315.

    [25] Garlock R J, Balan V, Dale B E. Optimization of AFEX? pretreatment conditions and enzyme mixtures to maximize

    sugar release from upland and lowland switchgrass[J]. Bioresource Technology, 2012, 104: 757—768.

    [26] Rabelo S C, Andrade R R, Maciel Filho R, et al. Alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis and fermentation of sugarcane bagasse to ethanol[J]. Fuel, 2014, 136: 349—357.

    [27] Gao M T, Yano S, Inoue H, et al. Combination of wet disk milling and hydrogen peroxide treatments for enhancing saccharification of sugarcane bagasse[J]. Biochemical Engineering Journal, 2012, 68: 152—158.

    [28] 趙相君. 農(nóng)作物秸稈液氨—過氧化氫預(yù)處理參數(shù)優(yōu)化及酶解效果研究[D]. 杭州:浙江農(nóng)林大學(xué), 2013.

    [29] Singh R, Tiwari S, Srivastava M, et al. Experimental study on the performance of microwave assisted Hydrogen peroxide (H2O2) pretreatment of rice straw[J]. Agricultural Engineering International: The CIGR Journal, 2014, 16(1): 173—181.

    [30] Zhao C, Cao Y, Ma Z Q, et al. Optimization of liquid ammonia pretreatment conditions for maximizing sugar release from giant reed (L.)[J]. Biomass & Bioenergy, 2017, 98(2): 61—69.

    Mechanism on effect of liquid ammonia and hydrogen peroxide pretreatment on rice straw enzymatic hydrolysis

    Zhao Xiangjun, Li Cong, Peng Hehuan, Zhao Chao, Ma Zhongqing※

    (311300,)

    Biomass is a promising, eco-friendly, and renewable source for generating energy, fuels, and bio-chemicals that could partially replace fossil fuels to reduce the pressure of environmental pollution problems. Rice straw is one of the most important lignocellulosic biomass in China, which is a potential feedstock to produce bio-ethanol by enzyme hydrolysis method. The production process of bio-ethanol is composed of three stages, namely pretreatment, enzymatic hydrolysis, and fermentation. The pretreatment process is important step to overcome biomass recalcitrance, and improve the performance of enzymatic hydrolysis. In this study, three types of pretreated method, namely high-temperature hydrogen peroxide pretreatment (HTHP), low-temperature hydrogen peroxide pretreatment (LTHP), and liquid ammonia pretreatment (LAT), were used to overcome biomass recalcitrance and improve the performance of enzymatic hydrolysis. Then, a caparison of the performance of enzymatic hydrolysis and the yield of monosaccharides were carried out by using three pretreatment methods. The contents of monosaccharide (glucose, xylose, and arabinose) of the enzymatic hydrolysate were quantitative determined by high performance liquid chromatography (HPLC). Results showed that three pretreatment methods were effective to enhance the performance of enzymatic hydrolysis, and ordered as LAT > HTHP > LTHP. Based on the chemical component analysis before and after pretreatment, the content of glucan decreased from 35.54% of control sample to 33.76% of HTHP pretreatment, 35.12% of LTHP pretreatment, and 35.86% of LAT pretreatment. The content of xylan decreased from 19.06% of control sample to 14.69% of HTHP pretreatment, 17.53% of LTHP pretreatment, while increase to 19.07% of LAT pretreatment. The optimal pretreatment conditions of HTHP were 120 ℃, mass ratio of 0.75:1 (w/w) between 30% H2O2solution and biomass ratio, and 60 minutes’ residence time. The conversion rates of glucan and xylan were 61.55% and 47.82%, respectively, after 72 hours enzymatic hydrolysis at 1% glucan loading using 15 FPU/(g of glucan) of cellulase. The sugar yield was 334.5 g per kg of rice straw (dry basis) after 144 hours enzymatic hydrolysis. The effect of H2O2addition on the enzymatic hydrolysis effect was significant, and the excessive addition amount (more than 1.0:1) led to a rapid decrease in the enzymatic hydrolysis rate. The optimal pretreatment conditions of LAT were 90 ℃, mass ratio of 1:1 (w/w) between liquid ammonia and biomass ratio, 60% moisture content (drybasis) and 5 minutes’ residence time. The conversion rates of glucan and xylan were 88.62% and 79.29%, respectively, after 72 hours enzymatic hydrolysis at 1% glucan loading using 15 FPU/(g of glucan) of cellulase. The sugar yield was 554.1 g per kg of dry rice straw after 144 hours enzymatic hydrolysis, which is 2.9-fold of producing from untreated straw. The total sugar recovery rate was almost 90%. In conclusion, the performance of LAT pretreatment was more effective than other two pretreatment methods (HTHP and LTHP). This study would be useful to supply scientific and basic data for industrial application of rice straw.

    enzyme; ethanol; straw; liquid ammonia pretreatment; enzymatic hydrolysis; peroxide hydrogen; cellulosic ethanol

    10.11975/j.issn.1002-6819.2019.10.028

    S216

    A

    1002-6819(2019)-10-0221-06

    2019-01-14

    2019-03-22

    國家自然科學(xué)基金(31500491);浙江省基礎(chǔ)公益研究計劃項目(LGN18B060001);浙江省竹資源與高效利用協(xié)同創(chuàng)新中心開放基金(2017ZZY2-02);中國科協(xié)“青年人才托舉工程”項目(2018QNRC001)

    趙相君,實驗師,主要從事農(nóng)林生物質(zhì)廢棄物資源化利用研究工作。Email:zhaoxiangjunzpp@126.com

    馬中青,副教授,主要從事生物質(zhì)資源化利用研究工作。Email:mazq@zafu.edu.cn

    趙相君,李 琮,彭何歡,趙 超,馬中青.液氨和過氧化氫預(yù)處理對稻草酶解效果的影響機制[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(10):221-226. doi:10.11975/j.issn.1002-6819.2019.10.028 http://www.tcsae.org

    Zhao Xiangjun, Li Cong, Peng Hehuan, Zhao Chao, Ma Zhongqing.Mechanism on effect of liquid ammonia and hydrogen peroxide pretreatment on rice straw enzymatic hydrolysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(10): 221-226. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.10.028 http://www.tcsae.org

    猜你喜歡
    液氨單糖葡聚糖
    近期尿素及液氨市場分析與展望
    利空增多 液氨后市承壓
    海藻多糖的單糖組成對體外抗氧化活性的影響
    蹄葉槖吾葉多糖提取工藝優(yōu)化及單糖組成研究
    葡聚糖類抗病誘導(dǎo)劑在水稻上的試驗初報
    HPLC-ELSD法測定煙草中單糖含量
    液氨罐區(qū)發(fā)生液氨泄漏事件原因分析
    機電信息(2015年9期)2015-02-27 15:55:59
    小麥麩皮中β-葡聚糖的分離純化及組成研究
    2014年9月17日液氨出廠參考價格
    (1,3)-β-D葡聚糖檢測對侵襲性真菌感染早期診斷的意義
    休宁县| 瑞丽市| 淅川县| 普陀区| 阳江市| 长乐市| 日喀则市| 蒙城县| 洛阳市| 东海县| 家居| 宁海县| 科技| 德州市| 彭州市| 天祝| 伊川县| 含山县| 新绛县| 慈利县| 论坛| 盐池县| 正蓝旗| 任丘市| 县级市| 交口县| 高阳县| 洪湖市| 山东省| 西丰县| 洪洞县| 泸州市| 湟源县| 湖口县| 嘉定区| 永善县| 南京市| 贡觉县| 南宁市| 竹北市| 五指山市|