吳亞鵬 賀 利 王洋洋 劉北城 王永華 郭天財(cái) 馮 偉
?
冬小麥生物量及氮積累量的植被指數(shù)動態(tài)模型研究
吳亞鵬 賀 利 王洋洋 劉北城 王永華 郭天財(cái) 馮 偉*
河南農(nóng)業(yè)大學(xué)農(nóng)學(xué)院 / 國家小麥工程技術(shù)研究中心, 河南鄭州 450046
利用遙感技術(shù)實(shí)時監(jiān)測小麥生長狀況, 依據(jù)監(jiān)測結(jié)果適時促控, 可提高產(chǎn)量。本研究以高產(chǎn)小麥品種周麥27為試驗(yàn)材料, 在不同試驗(yàn)地點(diǎn)設(shè)置了水氮耦合的大田試驗(yàn), 篩選出了適宜監(jiān)測冬小麥地上部氮積累量和生物量的植被指數(shù), 并構(gòu)建了不同產(chǎn)量水平下優(yōu)選植被指數(shù)的動態(tài)模型。結(jié)果表明, (1)不同的水氮耦合模式顯著影響小麥冠層光譜變化, 在350~700 nm和750~900 nm表現(xiàn)相反的反應(yīng)特征; (2)對2個農(nóng)學(xué)生長指標(biāo)反應(yīng)敏感且兼容性好的植被指數(shù)主要有修正型紅邊比率(mRER)、土壤調(diào)整植被指數(shù)[SAVI (825, 735)]、紅邊葉綠素指數(shù)(CIred-edge)和歸一化差異光譜指數(shù)(NDSI), 其與產(chǎn)量間相關(guān)性較好的時期為拔節(jié)至灌漿中期; (3)雙Logistic模型可以很好地?cái)M合植被指數(shù)的動態(tài)變化, 高產(chǎn)和超高產(chǎn)水平下擬合精度較高(2> 0.82), 而低產(chǎn)水平下相對較低(2= 0.608~0.736)。比較而言, CIred-edge和SAVI (825, 735)用于評價(jià)小麥長勢較為適宜。研究結(jié)果對作物因地定產(chǎn)、以苗管理、分類促控具有重要意義。
冬小麥; 高光譜遙感; 植被指數(shù); 產(chǎn)量; 動態(tài)模型
在農(nóng)業(yè)生態(tài)系統(tǒng)中, 氮素是作物生長發(fā)育所必須的關(guān)鍵元素, 而氮有效性往往需要精細(xì)的作物管理[1]。氮素的缺失會顯著降低作物產(chǎn)量和品質(zhì), 生產(chǎn)中為了追求作物高產(chǎn), 氮肥施用過量, 不但污染環(huán)境, 還會降低收益[2-3]。地上部氮素積累量是衡量作物氮素狀況的主要指標(biāo), 可用于氮肥的優(yōu)化管理[4]。地上部生物量是反映作物長勢的重要群體指標(biāo), 是產(chǎn)量的物質(zhì)基礎(chǔ)[5-6]。因此, 實(shí)時掌握作物生長狀況對于作物生產(chǎn)的精確管理意義重大。
遙感技術(shù)以其快速、無損和大面積的巨大優(yōu)勢, 成為監(jiān)測作物生長狀況和空間變異性的重要手段[7]。有研究表明, SPAD值可以表征植株氮素營養(yǎng)狀況, 通過比較實(shí)際值與參考閾值來推薦施肥量, 可以顯著提高氮肥利用率, 但閾值需要通過試驗(yàn)來確定, 這在一定程度上限制了其在實(shí)際生產(chǎn)中的應(yīng)用[8]。氮營養(yǎng)指數(shù)(NNI)也可表征作物實(shí)時的氮素狀況, 并已成功應(yīng)用于小麥、玉米等多種作物的氮肥調(diào)控, 但該方法仍需植株破壞性測定[9-11]。基于冠層光譜反射率的植被指數(shù), 在反映作物氮素狀況和長勢方面顯示出巨大優(yōu)勢。前人相繼發(fā)展了雙峰冠層氮指數(shù)(DCNI)、歸一化差異光譜指數(shù)(NDSI)、優(yōu)化三角植被指數(shù)(OTVI)和修正型紅邊比率(mRER)用于監(jiān)測作物氮素狀況[12-14], 同時也發(fā)現(xiàn)紅邊位置的對數(shù)方程、比值植被指數(shù) (RVI)、修正土壤調(diào)節(jié)植被指數(shù)(MSAVI)、紅邊三角植被指數(shù) (RTVI) 和修正三角植被指數(shù)(MTVI2)能較好地估算作物生物量狀況[15-16]。盡管農(nóng)學(xué)參數(shù)間存在很好的相關(guān)性, 但對不同生理生化參數(shù)反應(yīng)敏感的植被指數(shù)間仍存在一定差異, 能夠綜合指示作物生長及氮素狀況的植被指數(shù)在生產(chǎn)實(shí)踐中將具有更大的指導(dǎo)價(jià)值。有關(guān)這方面的研究, 前人也開展了一些研究工作[17-18], 但因試驗(yàn)條件的不同, 這些研究結(jié)果的適用性及可靠性還需要不同生態(tài)區(qū)域的檢驗(yàn)評價(jià)。
作物生長模擬模型描述作物生長、發(fā)育和產(chǎn)量形成過程及其對環(huán)境的反應(yīng)[19]。目前應(yīng)用較多的作物模型如CERES和APSIM等可有助于更好地理解、預(yù)測和調(diào)控作物生長和產(chǎn)量[20-21]。王康等[22]建立了冬小麥根系吸氮耦合模擬模型, 較好反映冬小麥吸氮過程。曹靜等[23]建立了水稻和小麥適宜氮素營養(yǎng)指標(biāo)動態(tài)的相對變化曲線, 為不同環(huán)境、品種和生產(chǎn)條件下的稻麥管理調(diào)控提供指導(dǎo)。莊東英等[24]將遙感信息與生物量模型(WBM)結(jié)合, 較好地預(yù)測了冬小麥生物量。帥細(xì)強(qiáng)等[25]建立了氣象產(chǎn)量統(tǒng)計(jì)模型, 實(shí)現(xiàn)了雙季稻產(chǎn)量動態(tài)預(yù)測。這些生長模型往往需要輸入較多參數(shù), 而輸入?yún)?shù)的準(zhǔn)確性在一定程度上影響模型決策的效果[26], 而利用遙感觀測的植被指數(shù)將更有利于對作物進(jìn)行實(shí)時動態(tài)監(jiān)測與評價(jià)。研究表明, 構(gòu)建植被指數(shù)的時序模型在植被分類、作物制圖、產(chǎn)量估算及物候?qū)W監(jiān)測等方面發(fā)揮重要作用[27-28]。Fischer[29]采用雙Logistic函數(shù)描述NOAA/AVHRR數(shù)據(jù)的NDVI變化, 證明了在區(qū)域尺度上植被指數(shù)的時序模型可以較好評價(jià)作物生長特征。Zheng等[27]使用作物L(fēng)andsat-NDVI時間序列信息較好地區(qū)分灌溉作物類型。Skakun等[30]將MODIS-NDVI時序信息與高斯模型結(jié)合對冬季作物進(jìn)行制圖。Franch等[31]研究表明, 利用MODIS- NDVI的時序模型能夠在小麥?zhǔn)斋@前2個月進(jìn)行可靠的產(chǎn)量預(yù)測。Zhang等[32]和Zheng等[33]利用多個Logistic函數(shù)擬合的植被指數(shù)年際動態(tài)很好地估計(jì)了植被物候期。因此, 在作物全生育期內(nèi)利用適宜的植被指數(shù)來監(jiān)測作物長勢, 并構(gòu)建植被指數(shù)隨生育進(jìn)程的動態(tài)模型, 對實(shí)時掌握作物生長狀況, 進(jìn)行精確管理調(diào)控具有重要的理論意義和生產(chǎn)指導(dǎo)價(jià)值。
小麥?zhǔn)俏覈蠹Z食作物之一, 而河南省是我國小麥主產(chǎn)及優(yōu)勢產(chǎn)區(qū), 為國家糧食安全做出了巨大貢獻(xiàn)。因此, 本研究在河南2個不同生態(tài)區(qū)域以冬小麥為研究對象, 比較分析了多種植被指數(shù)估算地上部氮積累量和生物量的效果, 構(gòu)建不同產(chǎn)量水平下優(yōu)選植被指數(shù)的適宜動態(tài)模型, 以期為小麥生產(chǎn)因地定產(chǎn)、以苗管理、分類促控提供技術(shù)支撐。
針對六倍體冬小麥(L.)在中國河南省的2個地點(diǎn)進(jìn)行了4個試驗(yàn), 涉及到不同年份、不同地點(diǎn)、不同施氮量、灌水頻率的處理, 具體情況如下:
試驗(yàn)1: 于2015—2016年在河南省新鄉(xiāng)市原陽縣河南農(nóng)業(yè)大學(xué)科教園區(qū)(35°6'N, 113°56'E)進(jìn)行。供試品種為周麥27, 前茬作物為玉米, 收獲后秸稈粉碎還田。試驗(yàn)地土壤為潮土, 播種前0~20 cm土層pH為8.4, 含有機(jī)質(zhì)16.7 g kg–1、全氮0.82 g kg–1、速效磷12.0 mg kg–1和速效鉀128.9 mg kg–1。試驗(yàn)為隨機(jī)區(qū)組裂區(qū)設(shè)計(jì), 主區(qū)為3個灌水頻次, 分別為W0 (不澆水)、W1 (拔節(jié)期澆一次)、W2 (拔節(jié)期和開花期各澆一次), 副區(qū)為5個氮肥梯度, 分別為0 (N0)、90 (N6)、180 (N12)、270 (N18)和360 (N24) kg hm–2純氮, 其中50%為播種前基肥, 50%為拔節(jié)期追肥。各處理分別施用120 kg hm–2的P2O5和90 kg hm–2的K2O, 磷鉀肥全部一次性基施。試驗(yàn)小區(qū)面積為39 m2, 行間距為 20 cm, 基本苗為3.5×106株hm–2, 重復(fù)3次。其余栽培管理措施同一般小麥高產(chǎn)田。在小麥越冬期至灌漿后期共9個生育時期進(jìn)行光譜測定和采樣, 成熟期測產(chǎn)。
試驗(yàn)2: 于2016—2017年在河南省新鄉(xiāng)市原陽縣河南農(nóng)業(yè)大學(xué)科教園區(qū)(35°6'N, 113°56'E)進(jìn)行。供試品種為周麥27, 前茬作物為玉米, 收獲后秸稈粉碎還田。試驗(yàn)地土壤為潮土, 播種前0~20 cm土層pH 為8.0, 含有機(jī)質(zhì)13.2 g kg–1、全氮0.81 g kg–1、速效磷13.6 mg kg–1和速效鉀156.2 mg kg–1?;久鐬?.6×106株hm–2。其他試驗(yàn)設(shè)計(jì)、栽培管理措施和取樣時期與試驗(yàn)1一致。
試驗(yàn)4: 于2017—2018 年在河南省周口市商水縣國營農(nóng)場(33°33'N, 114°37'E)進(jìn)行。供試品種為周麥27, 前茬作物為玉米, 收獲后秸稈粉碎還田。試驗(yàn)地土壤為砂姜黑土, 播種前0~20 cm土層pH 為7.3, 含有機(jī)質(zhì)25.0 g kg–1、全氮1.69 g kg–1、速效磷22.6 mg kg–1和速效鉀139.6 mg kg–1?;久鐬?.9×106株hm–2。其他試驗(yàn)設(shè)計(jì)、栽培管理措施和取樣時期與試驗(yàn)3一致。
小麥冠層光譜反射率于10: 00–14: 00 (北京時間)選擇晴朗、無風(fēng)或風(fēng)速很小的天氣, 采用ASD FieldSpec手持光譜儀(Analytical Spectral Devices Inc., USA), 從小麥冠層上方約1米的高度垂直測量。光譜儀傳感器視場角為25°, 分辨率為3.5 nm, 采樣間隔為1.6 nm。該光譜儀的工作范圍為325~ 1075 nm。為了獲得更有代表性的冠層反射率, 在每個小區(qū)的3個樣點(diǎn)垂直向下對準(zhǔn)兩行麥壟中間測量光譜, 每個地點(diǎn)采集5條光譜, 并將這15條光譜平均作為整個小區(qū)的光譜樣本。此外, 測量過程中用BaSO4制成的40 cm × 40 cm標(biāo)準(zhǔn)白板及時對每組目標(biāo)的觀測前后進(jìn)行校正。
1.3.1 植株生物量的測定 為與所測光譜匹配, 從每個試驗(yàn)小區(qū)的光譜采樣處采集3個面積為0.2 m2(長0.5 m, 雙行, 行距20 cm)的小麥植株(共0.6 m2), 合并作為該小區(qū)的樣本。將小麥樣本按器官分離, 在105℃下殺青30 min并在80℃下烘干至恒重后稱重, 進(jìn)而折算為單位土地面積的干物重(t hm–2), 地上部生物量(AGDW)為各器官生物量之和, 粉碎后用自封袋密閉低溫保存, 供生物化學(xué)組分測定。
1.3.2 植株氮積累量的測定 采用K1100全自動凱氏定氮儀按照凱氏定氮法測定植株不同組織器官全氮含量, 各器官生物量(t hm–2)與其氮含量(N%)的乘積即為各器官的氮積累量(g m–2), 各器官氮積累量之和即為地上部氮積累量(AGNU)。
累積生長度日(accumulated growing degree days, AGDD)是描述植被指數(shù)動態(tài)變化的時間變量, 是從播種日期到各取樣日期生長度日的累加[31,34]。原陽和商水兩年的逐日氣象資料由河南省氣象局提供, 包括日最高氣溫(℃)、日最低氣溫(℃)。
式中,max和min分別是當(dāng)日最高溫度和最低溫度,base是小麥開始生物學(xué)活動的基點(diǎn)溫度, 這里取0℃[35]。
本研究中, 采用雙Logistic模型擬合植被指數(shù)時間序列的動態(tài)變化, 在MATLAB 9.0平臺支持下編程實(shí)現(xiàn), 模型參數(shù)由擬合方程輸出, 參照Fischer[29]模型公式。
對本地傳統(tǒng)產(chǎn)業(yè),不要只看到市場價(jià)格低賺不到錢沒有過開發(fā)價(jià)值的一面,更要看到當(dāng)前的生產(chǎn)方式落后、工效低、消耗大、技術(shù)水平低、具有巨大的提升空間,通過分工合作、采用先進(jìn)生產(chǎn)技術(shù)和設(shè)備贏利潛力很大,且創(chuàng)業(yè)和就業(yè)前景很好的一面.其實(shí),只要傳統(tǒng)產(chǎn)業(yè)內(nèi)部各環(huán)節(jié)建立起分工合作的生產(chǎn)方式,并在此基礎(chǔ)上應(yīng)用先進(jìn)的生產(chǎn)技術(shù)和設(shè)備,農(nóng)業(yè)的產(chǎn)業(yè)化改造就有了起步,產(chǎn)品在市場上就有了競爭力,外出務(wù)工人員回鄉(xiāng)創(chuàng)業(yè)、就業(yè)的機(jī)會就會不斷增加.從上面的分析中我們可以發(fā)現(xiàn),華堂村各項(xiàng)傳統(tǒng)產(chǎn)業(yè)的許多環(huán)節(jié)都可實(shí)行分工合作的生產(chǎn)方式來提高工效,降低消耗,提升技術(shù)水平,如:
式中,0是播種日期當(dāng)天裸露土壤的植被指數(shù)的值, 在這里作為作物生長的初始背景值。第一個Logistic函數(shù)代表生長過程, 第二個Logistic函數(shù)代表衰老過程。0+1是時間序列內(nèi)植被指數(shù)的最大值,2是0+1與成熟期植被指數(shù)的差值; 1/1和1/2分別是作物生長過程和衰老過程中2個Logistic模型拐點(diǎn)處的斜率, 也是最大速度, 與這2個拐點(diǎn)對應(yīng)的時間數(shù)據(jù)分別是1和2。
1.5.1 植被指數(shù) 為了增強(qiáng)對植被理化參數(shù)等生態(tài)功能參量反應(yīng)的敏感程度, 已有報(bào)道構(gòu)建了許多光譜指數(shù), 并成功應(yīng)用于氮素、葉綠素和葉面積指數(shù)[13-14,36-39]等。本研究歸納了已見報(bào)道的多個光譜指數(shù)(表1)。
1.5.2 數(shù)據(jù)處理分析 通過軟件ViewSpecPro將田間采取的光譜數(shù)據(jù)輸出為光譜反射率, 再采用Savitzky-Golay濾波平滑法通過OriginPro 8.0將原始光譜反射率進(jìn)行降噪處理。利用MATLAB 9.0 (MathWorks, Inc., USA)分析植被指數(shù)與生理指標(biāo)的相關(guān)性。通過比較決定系數(shù)(2)和均方根誤差(RMSE)的差異, 評價(jià)植被指數(shù)的總體性能。較高的2值和較低的RMSE表明指數(shù)在估計(jì)生理指標(biāo)時具有較好的精度。
式中,P和O分別是預(yù)測值和觀測值,是樣本數(shù)。
以試驗(yàn)1開花期冠層光譜反射率為例, 不同的水氮處理顯著影響冠層光譜的反射特征, 且在不同的波段區(qū)域表現(xiàn)出不同的光譜響應(yīng)(圖1)。在350~ 700 nm波段區(qū)域內(nèi), 冠層光譜反射率隨著施氮水平增加而降低, 但在高氮肥水平下趨于飽和; 相反, 在750~900 nm波段區(qū)域內(nèi), 隨著施氮水平增加而升高, 處理間差異較顯著, 表明該區(qū)域?qū)Σ煌厮较滦←滈L勢反應(yīng)比較敏感。水分條件的改善顯著促進(jìn)氮肥的效應(yīng)發(fā)揮, 提高植株生長速率。隨著灌水增加, 冠層反射率在350~700 nm范圍降低, 而在750~900 nm內(nèi)增加。
表1 優(yōu)選植被指數(shù)的計(jì)算方法和參考文獻(xiàn)
R810、R680和R660是波長810、680和660 nm處的光譜反射率。NDVI: 歸一化差異植被指數(shù); NDRE: 歸一化差異紅邊指數(shù); RVI: 比值植被指數(shù); SR705: 紅邊簡單比率; CIred-rdge: 紅邊葉綠素指數(shù); CIgreen: 綠光葉綠素指數(shù); MTCI: MERIS陸地葉綠素指數(shù); OTVI: 優(yōu)化三角植被指數(shù); SAVI: 土壤調(diào)整植被指數(shù); NDSI: 歸一化差異光譜指數(shù); VOG3: Vogelmann指數(shù)3; mRER: 修正型紅邊比率; REP: 紅邊位置; EVI2: 2波段增強(qiáng)型植被指數(shù)。
R810, R680, and R660are the spectral reflectance at 810, 680, and 660 nm. NDVI: normalized difference vegetation index; NDRE: normalized difference red edge; RVI: ratio vegetation index; SR705: red-edge simple ratio; CIred-rdge: red edge chlorophyll index; CIgreen: green chlorophyll index; MTCI: MERIS terrestrial chlorophyll index; OTVI: optimized triangle vegetation index; SAVI: soil-adjusted vegetation index; NDSI: normalized difference spectral index; VOG3: Vogelmann index 3; mRER: modified red-edge ratio; REP: red edge position; EVI2: 2-band enhanced vegetation index.
圖1 不同水氮處理下的冠層光譜變化
W0: 不灌溉; W1: 拔節(jié)期灌溉一次; W2: 拔節(jié)期和開花期各灌溉一次。
W0: no irrigation; W1: irrigation once at jointing; W2: irrigation twice at jointing and anthesis. N0: 0; N6, 90 kg N hm–2; N12: 180 kg N hm–2; N18: 270 kg N hm–2; N24: 360 kg N hm–2.
由于灌漿中后期植株加速衰老, 此時植被指數(shù)與地上部氮積累量和生物量間相關(guān)性較差, 將4個試驗(yàn)從越冬至灌漿中期的測定數(shù)據(jù)進(jìn)行總體相關(guān)分析。依據(jù)回歸分析的決定系數(shù)和均方根差, 從已有植被指數(shù)中篩選出與地上部氮積累量和生物量密切相關(guān)的15個植被指數(shù)(圖2)。對于地上部氮積累量(AGNU)而言, 15個植被指數(shù)中有7個植被指數(shù)均給出了較高的2(>0.75), 其中, mRER和紅邊葉綠素指數(shù)(CIred-edge)有最高的預(yù)測精度(2= 0.798, 0.794)和最低的均方根差(RMSE = 3.639, 3.676)。而對于地上部生物量(AGDW)來說, 15個植被指數(shù)中有5個植被指數(shù)的2高于0.65, 以NDSI表現(xiàn)最優(yōu),2和RMSE分別為0.711和2.375, 其次為土壤調(diào)整植被指數(shù)SAVI (825, 735),2和RMSE 分別為0.674和2.540。比較而言, 植株氮積累量與植被指數(shù)的關(guān)系明顯優(yōu)于生物量。綜合來看, 無論是對AGNU還是AGDW, mRER、SAVI (825, 735)、CIred-edge和NDSI均具有較好的指示表現(xiàn)。圖3展示了4個優(yōu)選植被指數(shù)與小麥氮積累量和生物量之間的定量關(guān)系, 表明利用以上優(yōu)選的植被指數(shù)可以很好地表征小麥植株生長狀況。
以試驗(yàn)2為例, 選用對植株氮積累量和生物量指示性較好的mRER、SAVI (825, 735)、CIred-edge和NDSI, 分析不同水氮處理的影響。由圖4可知, 隨著AGDD增加, 4個植被指數(shù)總體呈現(xiàn)先增后減的趨勢; 在冬小麥生長前期, 不同施氮處理對植被指數(shù)的影響較小, 而AGDD約大于700后, 植被指數(shù)隨著施氮量的增加而升高, 處理間差異較顯著。此外, 隨著灌水增加, 植被指數(shù)亦呈現(xiàn)增加的趨勢, 尤其灌水與不灌水間差異較顯著。在冬小麥生長后期, 不同水氮處理間mRER趨于飽和, 而CIred-edge、NDSI和SAVI (825, 735)則差異較顯著。
圖2 與小麥氮積累量和生物量關(guān)系較好的植被指數(shù)間比較(n = 400)
AGNU: 地上部氮積累量; AGDW: 地上部生物量; 其他縮寫同表1。
AGNU: above ground N uptake; AGDW: above ground dry weight; other abbreviations are the same as those given in Table 1.
圖3 小麥氮積累量和生物量與植被指數(shù)之間的定量關(guān)系(n = 400)
縮寫同表1。Abbreviations are the same as those given in Table 1.
圖4 不同水氮處理下植被指數(shù)的動態(tài)變化
AGDD: 累積生長度日; 其他縮寫同表1和圖1。
AGDD: accumulated growing degree days; other abbreviations are the same as those given in Table 1 and Fig. 1.
選用對植株氮積累量和生物量指示性較好的mRER、SAVI (825, 735)、CIred-edge和NDSI, 分析其與小麥成熟期籽粒產(chǎn)量間關(guān)系。由表2可知, 植被指數(shù)與小麥產(chǎn)量之間的2隨著生育時期的推進(jìn)總體呈現(xiàn)先增后降的趨勢, 越冬期最差, 而在拔節(jié)期至灌漿中期一直保持較高水平(2> 0.66), 其中, 孕穗至開花期的2均在0.80以上, 抽穗期達(dá)到最大值(2> 0.84)。灌漿后期, 植被指數(shù)對植株生長的指示性變差, 導(dǎo)致植被指數(shù)與產(chǎn)量間相關(guān)性明顯降低(2= 0.341~0.592), 但相關(guān)性依然達(dá)到極顯著水平。光譜參數(shù)間比較, 從返青至灌漿中期, 以SAVI (825,735)表現(xiàn)最好, CIred-edge次之, mRER在返青至孕穗期相關(guān)性相對較好, 而在開花至灌漿中期相關(guān)性相對較差??梢? 在小麥旺盛生長期, 利用植被指數(shù)可以較好評價(jià)小麥生長及產(chǎn)量狀況, 尤其抽穗期最為適宜。
由以上分析可知, 4個優(yōu)選的植被指數(shù)與產(chǎn)量間相關(guān)性在大多數(shù)生育時期都保持較高的水平, 因而將植被指數(shù)按照不同的產(chǎn)量水平分成低產(chǎn)(<6000 kg hm–2)、中產(chǎn)(6000~7500 kg hm–2)、高產(chǎn)(7500~9000 kg hm–2)和超高產(chǎn)(> 9000 kg hm–2)。結(jié)合作物生長發(fā)育規(guī)律, 使用雙Logistic模型擬合作物生育進(jìn)程中植被指數(shù)的動態(tài)變化, 圖5表明, 隨著AGDD的增加, 不同產(chǎn)量水平下4個植被指數(shù)均呈現(xiàn)先增后減的動態(tài)變化規(guī)律。表3表明, 小麥生長過程中最大速度1/b1和衰老過程中最大速度1/b2均因植被指數(shù)而異, NDSI和SAVI (825,735)的最大速度均以超高產(chǎn)水平最高, 而mRER和CIred-edge則以中產(chǎn)水平最高, 4個植被指數(shù)則均在低產(chǎn)水平下最小。4個植被指數(shù)生長拐點(diǎn)和衰老拐點(diǎn)均在低產(chǎn)水平下最早出現(xiàn), 表明較短的生育進(jìn)程是小麥低產(chǎn)的一個原因。衰老拐點(diǎn)出現(xiàn)的時間依次為中產(chǎn)、超高產(chǎn)和高產(chǎn)。生長拐點(diǎn)出現(xiàn)的時間不僅受植被指數(shù)類型的影響, 同時也因產(chǎn)量水平而異。對于NDSI和SAVI (825, 735)來說, 生長拐點(diǎn)的出現(xiàn)時間依次為中產(chǎn)、超高產(chǎn)和高產(chǎn), 而mRER和CIred-edge則隨著產(chǎn)量水平提高而滯后。從擬合精度看, 產(chǎn)量水平越高, 模型精度越高, 低產(chǎn)水平的2相對較差(0.608~0.736), 而超高產(chǎn)水平的2較高(0.882~0.957); 植被指數(shù)間比較, 整體而言, CIred-edge和SAVI (825, 735)擬合精度相對較高, 其次為mRER, 而NDSI最差。
表2 不同時期植被指數(shù)與小麥產(chǎn)量間線性決定系數(shù)(n = 50)
***表示< 0.001顯著水平??s寫同表1。***: significant at< 0.001. Abbreviations are the same as those given in Table 1.
圖5 不同產(chǎn)量水平下植被指數(shù)的動態(tài)模型
縮寫同表1和圖4。Abbreviations are the same as those given in Table 1 and Fig. 4.
表3 不同產(chǎn)量水平下植被指數(shù)的雙Logistic模型參數(shù)
縮寫同表1。Abbreviations are the same as those given in Table 1.
及時掌握作物長勢及氮素營養(yǎng)狀況, 適時促控, 是精確作物管理的必然要求。地上部氮積累量和植株生物量可以有效反映作物長勢, 指示作物的氮素營養(yǎng)狀況, 遙感監(jiān)測作物長勢顯得尤為重要。由于紅邊區(qū)域從最低吸收到最高反射的劇烈變化[46], 對葉面積、葉綠素和植被長勢等均表現(xiàn)敏感[47-49]。植被指數(shù)中增加藍(lán)光波段(低飽和吸收)可以降低大氣效應(yīng), 從而提高生理生化參數(shù)的估算能力[50-51]。Li等[52]研究表明, 紅邊指數(shù)冠層葉綠素含量指數(shù)(CCCI)、Meris陸地葉綠素指數(shù)(MTCI)、歸一化差異紅邊指數(shù)(NDRE)和CIred-edge均能很好地估測夏玉米植株氮積累量。本實(shí)驗(yàn)室前期構(gòu)建的mRER含有紅邊和藍(lán)光波段, 是估測小麥地上部氮積累量的最佳植被指數(shù)[14]。Cho等[53]報(bào)道, 以紅邊位置(REP)監(jiān)測牧草生物量優(yōu)于歸一化差異植被指數(shù)(NDVI)。宋開山等[54]研究表明, 紅邊區(qū)680~760 nm的導(dǎo)數(shù)光譜與大豆地上鮮生物量相關(guān)性顯著。王秀珍等[55]指出, 以藍(lán)邊內(nèi)一階微分總和(490~530 nm)與紅邊內(nèi)一階微分總和(680~780 nm)構(gòu)成的RVI是估算水稻地上鮮生物量的最佳參數(shù)。這些研究均表明紅邊和藍(lán)光波段對評價(jià)植被長勢和氮素狀況均十分有用。本研究發(fā)現(xiàn), mRER、CIred-edge、NDSI和SAVI (825, 735)等既能較好地估測冬小麥地上部氮積累量, 又能很好地反映地上部生物量, 對植株生長指標(biāo)的兼容性顯著提高, 這十分有利于綜合評價(jià)小麥生長狀況。
在收獲作物之前大范圍預(yù)測作物產(chǎn)量, 對糧食供需平衡、貿(mào)易、農(nóng)業(yè)政策的制定具有重要的意義。預(yù)測作物產(chǎn)量的方法有很多, 如氣象模型、農(nóng)學(xué)模型和遙感模型, 但由于產(chǎn)量影響因素的復(fù)雜性常導(dǎo)致氣象模型和農(nóng)學(xué)模型對大范圍作物產(chǎn)量預(yù)測的不可靠性, 從而使得遙感模型成為主要的估算方法[56]。自以遙感預(yù)測作物產(chǎn)量以來, 前人已做了很多研究。王延頤[57]研究表明, 垂直植被指數(shù)(PVI)與水稻產(chǎn)量三要素(單位面積穗數(shù)、穗粒數(shù)、千粒重)之間具有較好的相關(guān)性。Dempewolf等[58]研究表明, 與NDVI和增強(qiáng)型植被指數(shù)(EVI)相比, 寬動態(tài)范圍植被指數(shù)(WDRVI)能夠提供更加準(zhǔn)確的產(chǎn)量預(yù)測。Mkhabela等[59]報(bào)道, MODIS-NDVI數(shù)據(jù)可以有效地用于預(yù)測加拿大作物產(chǎn)量。本研究比較了植被指數(shù)與小麥產(chǎn)量之間的相關(guān)性在不同生育時期間差異, 在拔節(jié)期至灌漿中期一直表現(xiàn)較為敏感(2> 0.66), 其中, 孕穗至開花期的2均在0.80以上, 尤其抽穗期最為敏感(2> 0.84)。以上有關(guān)敏感時期的結(jié)果與前人較為一致, Ren等[60]采用MODIS-NDVI數(shù)據(jù)對冬小麥產(chǎn)量預(yù)測的敏感時期也為孕穗至抽穗期; 黃楠等[61]指出, 玉米抽穗期NDVI與產(chǎn)量之間相關(guān)性最好。這些研究結(jié)果均表明了作物旺盛生長期的植被指數(shù)能夠很好地反映作物產(chǎn)量狀況, 這為根據(jù)植被指數(shù)的變化進(jìn)行作物管理促控、提高產(chǎn)量提供了理論依據(jù)和技術(shù)支持。
在農(nóng)業(yè)生產(chǎn)中, 遙感多時相數(shù)據(jù)多用于作物制圖、產(chǎn)量估算及物候?qū)W監(jiān)測等方面。作物生長具有時序動態(tài)性, 不同時期表現(xiàn)出不同特征, 充分利用時期間差異及多時期信息可提高對作物制圖、產(chǎn)量、物候等評價(jià)精度。Wardlow和Egbert以MODIS- NDVI時間序列數(shù)據(jù)為輸入?yún)?shù), 美國中部大平原玉米和大豆的制圖精度達(dá)80%以上[62]。Chu等[63]基于MODIS-NDVI時間序列數(shù)據(jù)對冬小麥的分類準(zhǔn)確率達(dá)到87.07%, 種植面積的準(zhǔn)確率為90.09%?;谛←満退咀魑锷L前期、中期及后期分別與穗數(shù)、穗粒數(shù)和千粒重密切相關(guān), 研究者相繼建立了不同生育時期遙感估產(chǎn)模型, 但是多時期復(fù)合估產(chǎn)模型更全面反映產(chǎn)量形成過程, 其估算精度好于單一時期估算模型[64-65]。Johnson[66]基于時間系列遙感數(shù)據(jù)產(chǎn)品對玉米和大豆的產(chǎn)量預(yù)測2達(dá)到0.7以上。Zhang等[32]表明通過尋找植被指數(shù)平滑時間剖面的局部最小或最大變化率, 能夠準(zhǔn)確確立物候轉(zhuǎn)換日期。Zheng等[33]利用地面植被指數(shù)時序模型提取的水稻生育期信息, 對灌溉及施肥管理具有重要指導(dǎo)價(jià)值。Magney等[67]發(fā)現(xiàn), 將NDVI時間序列數(shù)據(jù)與關(guān)鍵物候指標(biāo)結(jié)合, 大大提高了產(chǎn)量和生物量的早期預(yù)測能力。植被指數(shù)時序數(shù)據(jù)被同化到作物生長模型中, 能夠提高作物估產(chǎn)的精度[68-69]。
作物長勢及株型顯著影響植被指數(shù), 進(jìn)而影響時序模型的參數(shù)。目前生產(chǎn)上大面積推廣的多為緊湊型、半緊湊型高產(chǎn)品種, 植被指數(shù)的時序動態(tài)主要由長勢及產(chǎn)量水平?jīng)Q定。本研究依據(jù)生產(chǎn)實(shí)踐將植被指數(shù)按照不同的產(chǎn)量水平分為低產(chǎn)(< 6000 kg hm–2)、中產(chǎn)(6000~7500 kg hm–2)、高產(chǎn)(7500~9000 kg hm–2)和超高產(chǎn)(> 9000 kg hm–2), 分別代表了小麥當(dāng)前生產(chǎn)中不同的產(chǎn)量水平[70-71]。本研究采用雙Logistic模型擬合算法, 較好地?cái)M合了小麥冠層植被指數(shù)動態(tài)軌跡, 但擬合效果因產(chǎn)量水平而異。在低產(chǎn)水平下, 時序模型的準(zhǔn)確性相對較差, 而高產(chǎn)以上水平下擬合精度較高, 這可能與產(chǎn)量水平越低, 影響產(chǎn)量的不確定性障礙因子越多有關(guān)。已有的作物適宜植被指數(shù)動態(tài)模型多采用生育天數(shù)作為時間軸[29,32,72], 本研究采用AGDD作為時間軸建立動態(tài)模型, 可以較好地消除不同年份和生態(tài)點(diǎn)對小麥植被指數(shù)時序模型的影響, 且模型參數(shù)少, 生物學(xué)意義明確。生長和衰老的最大速度均以低產(chǎn)水平最小, 生長拐點(diǎn)出現(xiàn)的時間依次為低產(chǎn)、中產(chǎn)和高產(chǎn)(超高產(chǎn)), 而衰老拐點(diǎn)出現(xiàn)的時間依次為低產(chǎn)、中產(chǎn)、超高產(chǎn)和高產(chǎn), 這表明較長的生育進(jìn)程及較高的生長速度是小麥高產(chǎn)的一個原因。在小麥生產(chǎn)中, 通過植被指數(shù)時序模型的本地化構(gòu)建, 比較作物生長關(guān)鍵生育時期的植被指數(shù)差異, 生產(chǎn)者可以依據(jù)目標(biāo)產(chǎn)量及實(shí)時長勢, 適時管理調(diào)控, 為作物因地定產(chǎn)、以苗管理、分類促控提供理論依據(jù)和技術(shù)支持。
針對冬小麥地上部氮積累量和植株生物量篩選出兼容性較強(qiáng)的植被指數(shù)——mRER、SAVI (825, 735)、CIred-edge和NDSI, 并確立了相應(yīng)的監(jiān)測模型。優(yōu)選的植被指數(shù)在小麥生長旺盛期能夠較好地反映產(chǎn)量狀況, 以抽穗期最為敏感。采用雙Logistic模型算法確立了4個植被指數(shù)在不同產(chǎn)量水平下適宜動態(tài)模型, 綜合考慮植被指數(shù)的監(jiān)測精度、與產(chǎn)量間關(guān)系以及動態(tài)模型擬合精度, CIred-edge和SAVI (825, 735)可較好地用于評價(jià)冬小麥的生長狀況。研究結(jié)果為田間實(shí)踐操作中利用遙感技術(shù)實(shí)時精確獲取作物生長狀況, 為作物因地定產(chǎn)、以苗管理、分類促控提供了技術(shù)參考。但是, 小麥產(chǎn)量受土壤、地域、氣候及生產(chǎn)水平影響較大, 本研究所確立的不同產(chǎn)量水平下植被指數(shù)的適宜動態(tài)模型還需在不同生態(tài)區(qū)域檢驗(yàn)其適用性和可靠性。
[1] Ladha J K, Pathak H P, Krupnik T J, Six J, Kessel C V. Efficiency of fertilizer nitrogen in cereal production: retrospect and prospect., 2005, 87: 85–156.
[2] Hatfield J L, Gitelson A A, Schepers J S, Walthall C L. Application of spectral remote sensing for agronomic decisions., 2008, 100: 117–131.
[3] Lemaire G, Jeuffroy M H, Gastal F. Diagnosis tool for plant and crop N status in vegetative stage., 2008, 28: 614–624.
[4] Mistele B, Schmidhalter U. Estimating the nitrogen nutrition index using spectral canopy reflectance measurements., 2008, 29: 184–190.
[5] Plénet D, Lemaire G. Relationships between dynamics of nitrogen uptake and dry matter accumulation in maize crops. Determination of critical N concentration., 2000, 216: 65–82.
[6] 李衛(wèi)國, 趙春江, 王紀(jì)華, 劉良云. 遙感和生長模型相結(jié)合的小麥長勢監(jiān)測研究現(xiàn)狀與展望. 國土資源遙感, 2007, (2): 6–9. Li W G, Zhao C J, Wang J H, Liu L Y. Research situation and prospects of wheat condition monitoring based on growth model and remote sensing., 2007, (2): 6–9 (in Chinese with English abstract).
[7] Hansen P M, Schjoerring J K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression., 2003, 86: 542–553.
[8] Huang J L, He F, Cui K H, Buresh R J, Xu B, Gong W H, Peng S B. Determination of optimal nitrogen rate for rice varieties using a chlorophyll meter., 2008, 105: 70–80.
[9] Justes E, Mary B, Jean-Marc M, Machet J M, Huché-Thélier L. Determination of a critical nitrogen dilution curve for winter wheat crops.(London), 1994, 74: 397–407.
[10] Zhao B, Ata-Ul-Karim S T, Liu Z D, Ning D F, Xiao J F, Liu Z G, Qin A Z, Nan J Q, Duan A W. Development of a critical nitrogen dilution curve based on leaf dry matter for summer maize., 2017, 208: 60–68.
[11] He Z Y, Qiu X L, Ata-Ul-Karim S T, Li Y D, Liu X J, Cao Q, Zhu Y, Cao W X, Tang L. Development of a critical nitrogen dilution curve of double cropping rice in south China., 2017, 8: 1–14.
[12] Chen P F, Haboudane D, Tremblay N, Wang J H, Vigneault P, Li B G. New spectral indicator assessing the efficiency of crop nitrogen treatment in corn and wheat., 2010, 114: 1987–1997.
[13] Li F, Mistele B, Hu Y C, Chen X P, Schmidhalter U. Comparing hyperspectral index optimization algorithms to estimate aerial N uptake using multi-temporal winter wheat datasets from contrasting climatic and geographic zones in China and Germany., 2013, 180: 44–57.
[14] Feng W, Guo B B, Zhang H Y, He L, Zhang Y S, Wang Y H, Zhu Y J, Guo T C. Remote estimation of above ground nitrogen uptake during vegetative growth in winter wheat using hyperspectral red-edge ratio data., 2015, 180: 197–206.
[15] Gitelson A A, Kaufman Y J, Stark R, Rundquist D. Novel algorithms for remote estimation of vegetation fraction., 2002, 80: 76–87.
[16] 賀佳, 劉冰峰, 郭燕, 王來剛, 鄭國清, 李軍. 冬小麥生物量高光譜遙感監(jiān)測模型研究. 植物營養(yǎng)與肥料學(xué)報(bào), 2017, 23: 313–323. He J, Liu B F, Guo Y, Wang L G, Zheng G Q, Li J. Biomass estimation model of winter wheat (L.) using hyperspectral reflectances., 2017, 23: 313–323 (in Chinese with English abstract).
[17] Mistele B, Schmidhalter U. Tractor-based quadrilateral spectral reflectance measurements to detect biomass and total aerial nitrogen in winter wheat., 2010, 102: 499–506.
[18] Li F, Mistele B, Hu Y C, Chen X P, Schmidhalter U. Optimising three-band spectral indices to assess aerial N concentration, N uptake and aboveground biomass of winter wheat remotely in China and Germany., 2014, 92: 112–123.
[19] 馬波, 田軍倉. 作物生長模擬模型研究綜述. 節(jié)水灌溉, 2010, (2): 1–5. Ma B, Tian J C. A review on crop growth simulation model research., 2010, (2): 1–5 (in Chinese with English abstract).
[20] Jones J W, Hoogenboom G, Porter C H, Boote K J, Batchelor W D, Hunt L A, Wilkens P W, Singh U, Gijsman A J, Ritchie J T. The DSSAT cropping system model., 2003, 18: 235–265.
[21] Mccown R L, Hammer G L, Hargreaves J N G, Holzworth D P, Freebairn D M. APSIM: a novel software system for model development, model testing and simulation in agricultural systems research., 1996, 50: 255–271.
[22] 王康, 沈榮開, 王富慶. 冬小麥生長及根系吸氮的動態(tài)模擬研究. 灌溉排水學(xué)報(bào), 2002, 21(1): 6–10. Wang K, Shen R K, Wang F Q. Dynamic simulation research of winter wheat growth and root nitrogen uptake., 2002, 21(1): 6–10 (in Chinese with English abstract).
[23] 曹靜, 劉小軍, 湯亮, 曹衛(wèi)星, 朱艷. 稻麥適宜氮素營養(yǎng)指標(biāo)動態(tài)的模型設(shè)計(jì). 應(yīng)用生態(tài)學(xué)報(bào), 2010, 21: 359–364. Cao J, Liu X J, Tang L, Cao W X, Zhu Y. Model designing for suitable nitrogen index dynamics of rice and wheat., 2010, 21: 359–364 (in Chinese with English abstract).
[24] 莊東英, 李衛(wèi)國, 武立權(quán). 冬小麥生物量衛(wèi)星遙感估測研究. 干旱區(qū)資源與環(huán)境, 2013, 27(10): 158–162. Zhuang D Y, Li W G, Wu L Q. Estimating winter wheat biomass based on satellite remote sensing., 2013, 27(10): 158–162 (in Chinese with English abstract).
[25] 帥細(xì)強(qiáng), 王石立, 馬玉平, 李迎春. 基于水稻生長模型的氣象影響評價(jià)和產(chǎn)量動態(tài)預(yù)測. 應(yīng)用氣象學(xué)報(bào), 2008, 19: 71–81. Shuai X Q, Wang S L, Ma Y P, Li Y C. Assessment of meteorologic condition effects and dynamic yield forecasting based on rice growth model., 2008, 19: 71–81 (in Chinese with English abstract).
[26] Dorigo W A, Zurita-Milla R, de Wit A J W, Brazile J, Singh R, Schaepman M E. A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling., 2007, 9: 165–193.
[27] Zheng B J, Myint S W, Thenkabail P S, Aggarwal R M. A support vector machine to identify irrigated crop types using time-series Landsat NDVI data., 2015, 34: 103–112.
[28] Shao Y, Ren J, Campbell J B. 9.04-Multitemporal remote sensing data analysis for agricultural application., 2018, 9: 29–38.
[29] Fischer A. A model for the seasonal variations of vegetation indices in coarse resolution data and its inversion to extract crop parameters., 1994, 48: 220–230.
[30] Skakun S, Franch B, Vermote E, Roger J C, Beckerreshef I, Justice C, Kussul N. Early season large-area winter crop mapping using MODIS NDVI data, growing degree days information and a Gaussian mixture model., 2017, 195: 244–258.
[31] Franch B, Vermote E F, Becker-Reshef I, Claverie M, Huang J, Zhang J, Justice C, Sobrino J A. Improving the timeliness of winter wheat production forecast in the United States of America, Ukraine and China using MODIS data and NCAR Growing Degree Day information., 2015, 161: 131–148.
[32] Zhang X Y, Friedl M A, Schaaf C B, Strahler A H, Hodges J C F, Gao F, Reed B C, Huete A. Monitoring vegetation phenology using MODIS., 2003, 84: 471–475.
[33] Zheng H B, Cheng T, Yao X, Deng X Q, Tian Y C, Cao W X, Zhu Y. Detection of rice phenology through time series analysis of ground-based spectral index data., 2016, 198: 131–139.
[34] Russelle M P, Wilhelm W W, Olson R A, Power J F. Growth analysis based on degree days., 1984, 24: 28–32.
[35] McMaster G S, Smika D E. Estimation and evaluation of winter wheat phenology in the central Great Plains., 1988, 43: 1–18.
[36] Gitelson A A, Vi?a A, Ciganda A, Rundquist D C, Arkebauer T J. Remote estimation of canopy chlorophyll content in crops., 2005, 32: 1–4.
[37] Dash J, Curran P J. The MERIS terrestrial chlorophyll index., 2004, 25: 5403–5413.
[38] Huete A R. A soil-adjusted vegetation index (SAVI)., 1988, 25: 295–309.
[39] Zarco-Tejada P J, Miller J R, Noland T L, Mohammed G H. Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data., 2001, 39: 1491–1507.
[40] Rouse J W, Haas R H, Schell J A, Deering D W. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. In: NASA/GSFC, Type III Final Report, Greenbelt, MD, USA, 1974. pp 371–373.
[41] Fitzgerald G J, Rodriguez D, Christensen L K, Belford R, Sadras V O, Clarke T R. Spectral and thermal sensing for nitrogen and water status in rainfed and irrigated wheat environments., 2006, 7: 233–248.
[42] Pearson R L, Miller D L. Remote mapping of standing crop biomass for estimation of the productivity of the short-grass prairie. In: Proceedings of the Eighth International Symposium on Remote Sensing of Environment, Vol. 2, 1972. pp 1357–1381.
[43] Gitelson A, Merzlyak M N. Spectral reflectance changes associated with autumn senescence ofL. andL. leaves. Spectral features and relation to chlorophyll estimation., 1994, 143: 286–292.
[44] Guyot G, Baret F. Utilisation de la haute resolution spectrale pour suivre L’etat des couverts vegetaux., 1988, 287: 279.
[45] Jiang Z, Huete A R, Didan K, Miura T. Development of a two-band enhanced vegetation index without a blue band., 2008, 112: 3833–3845.
[46] Horler D N H, Dockray M, Barber J. The red edge of plant leaf reflectance., 1983, 4: 273–288.
[47] Herrmann I, Pimstein A, Karnieli A, Cohen Y, Alchanatis V, Bonfil D J. LAI assessment of wheat and potato crops by VENμS and Sentinel-2 bands., 2011, 115: 2141–2151.
[48] Hunt Jr E R, Doraiswamy P C, McMurtrey J E, Daughtry C S, Perry E M, Akhmedov B. A visible band index for remote sensing leaf chlorophyll content at the canopy scale., 2013, 21: 103–112.
[49] 唐延林, 王人潮, 黃敬峰, 孔維姝, 程乾. 不同供氮水平下水稻高光譜及其紅邊特征研究. 遙感學(xué)報(bào), 2004, 8: 185–192. Tang Y L, Wang R C, Huang J F, Kong W S, Cheng Q. Hyperspectral data and their relationships correlative to the pigment contents for rice under different nitrogen support level., 2004, 8: 185–192 (in Chinese with English abstract).
[50] Tian Y C, Yao X, Yang J, Cao W X, Hannaway D B, Zhu Y. Assessing newly developed and published vegetation indices for estimating rice leaf nitrogen concentration with ground- and space-based hyperspectral reflectance., 2011, 120: 299–310.
[51] Huete A, Didan K, Miura T, Rodriguez E P, Gao X, Ferreira L G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices., 2002, 83: 195–213.
[52] Li F, Miao Y X, Feng G H, Yuan F, Yue S C, Gao X W, Liu Y Q, Liu B, Ustin S L, Chen X P. Improving estimation of summer maize nitrogen status with red edge-based spectral vegetation indices., 2014, 157: 111–123.
[53] Cho M A, Skidmore A, Corsi F, Wieren S E V, Sobhan I. Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression., 2007, 9: 414–424.
[54] 宋開山, 張柏, 李方, 段洪濤, 王宗明. 高光譜反射率與大豆葉面積及地上鮮生物量的相關(guān)分析. 農(nóng)業(yè)工程學(xué)報(bào), 2005, 21(1): 38–42. Song K S, Zhang B, Li F, Duan H T, Wang Z M. Correlative analyses of hyperspectral reflectance, soybean LAI and aboveground biomass., 2005, 21(1): 38–42 (in Chinese with English abstract).
[55] 王秀珍, 黃敬峰, 李云梅, 王人潮. 水稻地上鮮生物量的高光譜遙感估算模型研究. 作物學(xué)報(bào), 2003, 29: 16–22. Wang X Z, Huang J F, Li Y M, Wang R C. Study on hyperspectral remote sensing estimation models for the ground fresh biomass of rice., 2003, 29: 16–22 (in Chinese with English abstract).
[56] 焦險(xiǎn)峰, 楊邦杰, 裴志遠(yuǎn), 王飛. 基于植被指數(shù)的作物產(chǎn)量監(jiān)測方法研究. 農(nóng)業(yè)工程學(xué)報(bào), 2005, 21(4): 104–108. Jiao X F, Yang B J, Pei Z Y, Wang F. Monitoring crop yield using NOAA/AVHRR-based vegetation indices., 2005, 21(4): 104–108 (in Chinese with English abstract).
[57] 王延頤. 植被指數(shù)與水稻長勢及產(chǎn)量結(jié)構(gòu)要素關(guān)系的研究. 國土資源遙感, 1996, (1): 56–59. Wang Y Y. The relationship between vegetation index and rice growth and rice yield components., 1996, (1): 56–59 (in Chinese with English abstract).
[58] Dempewolf J, Adusei B, Becker-Reshef I, Hansen M, Potapov P, Khan A, Barker B. Wheat yield forecasting for Punjab Province from vegetation index time series and historic crop statistics., 2014, 6: 9653–9675.
[59] Mkhabela M S, Bullock P, Raj S, Wang S, Yang Y. Crop yield forecasting on the Canadian Prairies using MODIS NDVI data., 2011, 151: 385–393.
[60] Ren J Q, Chen Z X, Zhou Q B, Tang H J. Regional yield estimation for winter wheat with MODIS-NDVI data in Shandong, China., 2008, 10: 403–413.
[61] 黃楠, 王強(qiáng), 王鵬, 張國慶, 劉凌菲. 應(yīng)用歸一化植被指數(shù)的玉米產(chǎn)量預(yù)測研究. 黑龍江農(nóng)業(yè)科學(xué), 2014, (2): 130–132. Huang N, Wang Q, Wang P, Zhang G Q, Liu L F. Maize yield prediction research based on the NDVI., 2014, (2): 130–132 (in Chinese with English abstract).
[62] Wardlow B D, Egbert S L. Large-area crop mapping using time-series MODIS 250 m NDVI data: an assessment for the U.S. Central Great Plains., 2008, 112: 1096–1116.
[63] Chu L, Liu Q S, Huang C, Liu G H. Monitoring of winter wheat distribution and phenological phases based on MODIS time- series: a case study in the Yellow River Delta, China., 2016, 15: 2403–2416.
[64] 馮偉, 朱艷, 田永超, 姚霞, 郭天財(cái), 曹衛(wèi)星. 基于高光譜遙感的小麥籽粒產(chǎn)量預(yù)測模型研究. 麥類作物學(xué)報(bào), 2007, 27: 1076–1084. Feng W, Zhu Y, Tian Y C, Yao X, Guo T C, Cao W X. Model for predicting grain yield with canopy hyperspectal remote sensing in wheat., 2007, 27: 1076–1084 (in Chinese with English abstract).
[65] 唐延林, 黃敬峰, 王人潮, 王福民. 水稻遙感估產(chǎn)模擬模式比較. 農(nóng)業(yè)工程學(xué)報(bào), 2004, 20(1): 166–171. Tang Y L, Huang J F, Wang R C, Wang F M. Comparsion of yield estimation simulated models of rice by remote sensing., 2004, 20(1): 166–171 (in Chinese with English abstract).
[66] Johnson D M. An assessment of pre- and within-season remotely sensed variables for forecasting corn and soybean yields in the United States., 2014, 141: 116–128.
[67] Magney T S, Eitel J U H, Huggins D R, Vierling L A. Proximal NDVI derived phenology improves in-season predictions of wheat quantity and quality., 2016, 217: 46–60.
[68] Ma H Y, Huang J X, Zhu D H, Liu J M, Su W, Zhang C, Fan J L. Estimating regional winter wheat yield by assimilation of time series of HJ-1 CCD NDVI into WOFOST–ACRM model with Ensemble Kalman Filter., 2013, 58: 759–770.
[69] Fang H L, Liang S L, Hoogenboom G. Integration of MODIS LAI and vegetation index products with the CSM–CERES–Maize model for corn yield estimation., 2011, 32: 1039–1065.
[70] 王紹中, 季書勤, 張德奇, 李秀民, 呂平安. 河南省小麥栽培技術(shù)的演變與發(fā)展. 河南農(nóng)業(yè)科學(xué), 2007, 36(10): 19–26. Wang S Z, Ji S Q, Zhang D Q, Li X M, Lyu P A. Evolution and development of wheat cultivation techniques in Henan Province., 2007, 36(10): 19–26.
[71] 王永華, 郭天財(cái), 朱云集, 王晨陽, 康國章. 河南省不同類型麥區(qū)小麥豐產(chǎn)高效栽培技術(shù)規(guī)程. 河南農(nóng)業(yè)科學(xué), 2006, 35(5): 14–18. Wang Y H, Guo T C, Zhu Y J, Wang C Y, Kang G Z. Regulations for high yield and high efficiency cultivation of wheat in different wheat regions of Henan province., 2006, 35(5): 14–18 (in Chinese with English abstract).
[72] Duveiller G, Lopez-Lozano R, Cescatti A. Exploiting the multi-angularity of the MODIS temporal signal to identify spatially homogeneous vegetation cover: a demonstration for agricultural monitoring applications., 2015, 166: 61–77.
Dynamic model of vegetation indices for biomass and nitrogen accumulation in winter wheat
WU Ya-Peng, HE Li, WANG Yang-Yang, LIU Bei-Cheng, WANG Yong-Hua, GUO Tian-Cai, and FENG Wei*
College of Agronomy / National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, Henan, China
Using remote sensing technology to monitor and timely promote and control wheat growth in real time may improve the yield. In this study, the water-nitrogen coupling test was set up at different locations using a high yield cultivar Zhoumai 27. The suitable vegetation indices for monitoring above ground nitrogen uptake and biomass of winter wheat were selected and the dynamic models with preferred vegetation indices at different yield levels were established. The results showed that (1) different water-nitrogen coupling patterns significantly affected the canopy spectral changes of wheat, with the opposite characteristics at 350–700 nm and 750–900 nm; (2) The modified red-edge ratio (mRER), soil-adjusted vegetation index [SAVI (825, 735)], red edge chlorophyll index (CIred-edge) and normalized difference spectral index (NDSI) were the main vegetation indices sensitive to the two agronomic growth indices and with a good compatibility, and the stages well correlated with yield were from jointing to mid-filling; (3) the double Logistic model could fit the dynamic changes of vegetation index very well, and the fitting accuracy was higher at high and super high yield levels (2> 0.825), but lower at low yield level (2= 0.608–0.736). In comparison, CIred-edgeand SAVI (825, 735) were more suitable for evaluating wheat growth. The results of this study are of great significance for evaluating crop yield faced on growing situation in the field, seedling management, and promoting or controlling plant growth according to classification in wheat production.
winter wheat; hyperspectral remote sensing; vegetation indices; yield; dynamic models
2018-11-25;
2019-04-15;
2019-05-10.
10.3724/SP.J.1006.2019.81084
馮偉, E-mail: fengwei78@126.com
E-mail: wyp18237183802@163.com
本研究由“十三五”國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFD0300604), 國家自然科學(xué)基金項(xiàng)目(31671624)和國家現(xiàn)代農(nóng)業(yè)(小麥)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)(CARS-03-01-22)資助。
This study was supported by grants from the “Thirteenth Five-year Plan” of National Key Research Project of China (2016YFD0300604), the National Natural Science Foundation of China (31671624), and the China Agricultural Research System (CARS-03-01-22).
URL:http://kns.cnki.net/kcms/detail/11.1809.s.20190509.1122.002.html