• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Intermediate Energy Reactions Versus Heavy-Ion Fusion:Light Particle Emission and Post-Saddle Friction in the Presence of Deformation effects?

    2019-07-16 12:29:34NaChen陳娜andWeiYe葉巍
    Communications in Theoretical Physics 2019年6期

    Na Chen(陳娜) and Wei Ye(葉巍)

    1School of Applied Mathematics,Nanjing University of Finance&Economics,Nanjing 210023,China

    2Department of Physics,Southeast University,Nanjing 210096,China

    AbstractA decaying nucleus undergoes a change in deformation when it fi ssions.This a ffects the particle emission in the fi ssion process.Using the dynamical Langevin model,we investigate the role of deformation in the sensitivity of post-saddle neutrons and light charged particles(LCPs)to the post-saddle friction strength(β)for heavy nuclei240Am produced with different initial conditions:(i)a low excitation energy E? and a large spin ?(provided via a fusion mechanism)and(ii)a high E? and a large ? as well as a higher E? but a small ?(provided in peripheral and near-central intermediate energy heavy-ion reactions,respectively).It is shown that deformation obviously enhances the sensitivity of post-saddle neutrons to β at intermediate-energy peripheral collisions and that for case(i),the drop of LCPs emission due to deformation makes post-saddle LCPs to be almost insensitive to β,but for case(ii)LCPs still have a signi fi cant change with β.Furthermore,we find that post-saddle LCPs display a greater sensitivity to β for near-central collisions than for peripheral collisions.These results suggest that given the deformation effects,to better probe post-saddle dissipation properties with neutrons(LCPs)in experiments,it is best to choose those excited heavy nuclear systems populated in peripheral(near-central)collisions at intermediate energies.

    Key words:post-saddle friction,deformation,excitation energy,light particles,stochastic model

    1 Introduction

    Nuclear dissipation plays an important role in the large-scale collective motion,like fusion and quasiif ssion.[1?3]Its critical influence on the fi ssion process of hot nuclei has recently attracted much attention.[4]Dissipation hinders fi ssion and hence increases pre-scission particle multiplicities with respect to the predictions by standard statistical models.[5?6]It has been demonstrated that stochastic approaches based on Langevin models[7?9]have been successfully applied to address dissipation effects in nuclear fi ssion and provided a satisfactory description of different types of fi ssion data.

    When applying the Langevin model to handle fi ssion,a key ingredient in it is the deformation dependence of nuclear friction.[10]Currently,a number of works have been made to constrain pre-saddle friction by using evaporation residue cross sections,[11]the first-chance fi ssion probability,[12?13]the widths of fi ssion-fragment charge distributions,[14]etc. As a result,the strength of pre-saddle friction is severely limited.[15]However,these observables only depend on the pre-saddle friction and thereby they are not suited for exploring the postsaddle dissipation effects.Moreover,till now,less e ff ort has been invested to constrain the post-saddle friction strength.[7,16]

    different from previously mentioned observables,light particles are evaporated along the entire fi ssion path.They are thus a ffected by post-saddle friction.Also,postsaddle multiplicities are an increasing function of size of the decaying system.So,the particle emission from heavy fi ssioning nuclei is usually used to obtain information of post-saddle dissipation properties.[17?20]Further,when a fi ssioning nucleus evolves from ground state to the scission point,it experiences the change of deformations along the fi ssion trajectory.This a ffects various particle emissions.[21?23]

    The nuclear systems formed in intermediate energy heavy-ion collisions and fusion reactions have different excitation energies and angular momenta.However,to date,few have studied the effect of deformation on the evolution of post-saddle neutrons and light charged particles(LCPs)with the post-saddle friction strength for heavy fi ssioning nuclei populated under these different initial conditions.The present work is devoted to this issue.

    Our aim is to exploit the favorable experimental condition through which the post-saddle dissipation effects can be better revealed with the particle multiplicity;that is,which experimental approach is more optimal for probing post-saddle dissipation with light particle multiplicity in the presence of deformation effects.To this end,the Langevin model[7?9,22?25]is employed here and it is successfully used to reproduce a volume of fi ssion data for many compound systems over a broad range of the excitation energy,angular momentum,and fi ssility.

    2 Theoretical Framework

    In the Langevin description of a fi ssion process,the crucial quantity is free energy,which contains a thermodynamic correction.[26]We use the following one-dimensional Langevin equation to perform the fully dynamical trajectory calculations:

    Here q is the dimensionless fi ssion coordinate and is deif ned as half the distance between the center of mass of the future fi ssion fragments divided by the radius of the compound nucleus,and p is the conjugate momentum.β and T denote the dissipation strength and temperature,respectively.The inertia parameter m is obtained under the Werner-Wheeler approximation of an incompressible irrotational flow.[27]Γ(t)is a fl uctuating force satisfying?Γ(t)?=0 and ?Γ(t)Γ(t′)?=2δ(t? t′).

    The free energy is constructed from the Fermi gas expression of the level density parameter together with a finite-range liquid-drop potential V(q)[28]that contains qdependent surface,Coulomb,and rotation energy terms;that is,

    In Eq.(2),the coefficients proposed in Ref.[29]are used to calculate the deformation-dependent level density parameter,which reads as follows:

    where A is the mass number of the compound nucleus and Bsis the dimensionless surface area of the nucleus.[30]

    In our calculation,prescission particle evaporation along Langevin fi ssion trajectories from their ground state to their scission point has been taken into account using a Monte Carlo simulation technique.The emission width of a particle of kind ν(=n,p,α)is evaluated by Blann’s parametrization[31]

    where sνis the spin of the emitted particle ν,and mνits reduced mass with respect to the residual nucleus.The level densities of the compound and residual nuclei are denoted by ρc(E?)and ρR(E?? Bν? εν).Bνare the liquid-drop binding energies.ε is the kinetic energy of the emitted particle.The inverse cross section is given by[31]

    with

    where Aνis the mass number of emitted particle ν =n,p,α.

    The barriers for the charged particles are[31]

    with Kν=1.32 for α,and 1.15 for proton.

    The massformula[32]containsthedeformationdependent surface and Coulomb energy terms.The particle binding energy Bi(i=n,p,α)is thus a function of deformation[21?22]and it can be written as

    where Mi(i=n,p,α)is the mass of the emitted particles.Mp(q)and Md(q)are the masses of the mother and daughter nuclei,respectively.

    We use the formula suggested by Fr?brich and Gontchar[7]to calculate the deformation-dependent chargedparticle emission barriers:

    Here the Coulomb energy Bc(q)is evaluated using the method in Refs.[30,33].

    When a dynamic trajectory reaches the scission point,it is counted as a fi ssion event.Prescission particles are insensitive to the definition of the scission point(i.e.,zero or a finite neck radius),as they can be emitted along the entire fi ssion trajectory.In our calculation,multiple emissions of light particles and higher-chance fi ssion are taken into account.Prescission particle multiplicities are calculated by counting the number of corresponding evaporated particle events.To accumulate sufficient statistics,107Langevin trajectories are simulated.

    3 Results and Discussion

    Due to the competition from quasi- fi ssion channels,which become stronger with increasing bombarding energy,heavy compound nuclei(CNs)populated by fusion reaction channels generally have a low excitation energy(<80 MeV)and a high angular momentum(around 40~).However,intermediate-energy(around Fermi energy domain)heavy-ion collisions can deposit more energy into the nuclear systems and yield a variety of fi ssioning nuclei with a different excitation energy and angular momentum.

    For example,in near-central collisions the generated nuclear systems have a high excitation energy(~250 MeV)and a low spin(near 10~).However,in peripheral collisions,the produced fi ssioning systems have an excitation energy over 200 MeV and a large angular momentum(~ 40~).[34?35]

    In the present work,calculations under these three different initial conditions mentioned above for the produced heavy fi ssioning system are carried out and their sensitivities to nuclear friction are compared in the presence of deformation effects.Towards that goal,a heavy240Am was chosen here to investigate post-saddle dissipation characteristics by using light particle multiplicity.To better reveal post-saddle dissipation effects,the presaddle friction strength is set to 4 × 1021s?1,in consistent with recent theoretical estimates and experimental analyses,[8,14,36?37]and dynamical calculations of postsaddle emission are performed considering different values of the post-saddle friction strength(β).

    Shown in Fig.1 are the evolution of post-saddle neutrons with β at three different initial conditions of excitation energy and angular momentum for the fi ssioning nucleus240Am with and without deformation effects.

    Fig.1(Color online)Post-saddle neutrons versus the postsaddle friction strength β in the absence(a)and in the presence(b)of deformation effects for heavy system240Am calculated for case(i)E? =80 MeV and ?=40~,case(ii)E?=250 MeV and ?=10~,and case(iii)E?=200 MeV and ?=40~.

    We first compare the results of case(i)and case(ii);that is,fusion reactions vs. intermediate-energy nearcentral collisions. Two typical features are observed.First,the calculated post-scission neutrons Mnare larger in case(ii)than in case(i),indicating a stronger effect of dissipation on Mnunder the condition of case(ii).

    Another feature is that after incorporating deformation effects into the model calculations(Fig.1(b)),Mnrises,exhibiting a larger influence of dissipation on postsaddle neutrons.A larger Mndue to deformation is that neutron binding energies drop with increasing deformation(Fig.2(a)),enhancing the neutron emission.

    A comparison on charged-particle emission(i.e.,protons and α-particles)for case(i)and case(ii)is displayed in Fig.3.First,accounting for the deformation effects decreases Mpand Mαin both cases.The reason is that though deformation lowers emission barriers of LCPs(Fig.2(b)),it increases their binding energies(Fig.2(a)),which is unfavorable for their emissions.As a result of the two opposite factors,the LCPs multiplicity decreases.

    Fig.2 (Color online)(a)A change in neutron,proton,and α-particle binding energies of240Am due to deformation with respect to their values at a spherical shape.(b)Emission barriers of protons and α particles of240Am as a function of deformation coordinate q.

    Secondly,when deformation effects are ignored(see triangles connected by blue lines in Figs.3(a)and 3(c)),a variation in Mpand Mαis still discernible as β changes from 0.5×1021s?1to 20×1021s?1,meaning a sensitivity of LCPs to β,though it is quite weak.However,in case(i),as a consequence of a reduced Mpand Mαin the presence of the deformation effects(see triangles in Figs.3(b)and 3(d)),LCPs almost do not vary with a change in β;that is,their sensitivity to friction disappears.In contrast,while deformation effects decrease Mpand Mαin case(ii)(see circles connected by red lines in Figs.3(b)and 3(d)),the LCPs multiplicity shows a signi fi cant sensitivity to the friction strength.

    This comparison clearly shows the role of excitation energy in exploring the post-saddle dissipation properties after considering the deformation effects.Further,it suggests that when using LCPs to place a stricter constraint on the post-saddle friction strength,case(ii)is a more optimal experimental condition than case(i).

    Unlike fusion reactions which form a CN,intermediate energy collisions generate a variety of excited nuclear systems having a different excitation energy and angular momentum,depending on the collision centralities.Further, fi ssion events and the corresponding information on A,Z,E?,etc.of fi ssioning sources coming from nearcentral or peripheral collisions can be identi fi ed and obtained experimentally.[34?35,38?39]In these experiments,the folding angle technique was used to measure the correlation angle of the two fi ssion fragments.

    Fig.3 (Color online)Post-saddle protons(top panel)and α particles(bottom panel)versus the post-saddle friction strength β in the absence((a)and(c))and in the presence((b)and(d))of deformation effects for heavy system240Am calculated for case(i)E? =80 MeV and ?=40~,case(ii)E?=250 MeV and ?=10~,and case(iii)E?=200 MeV and ?=40~.

    Previously,we compared the calculation concerning post-saddle particles as a function of β for case(i)and case(ii),which represents the conditions provided via fusion and near-central collisions at intermediate energy,respectively.To better employ intermediate energy reactions as a way to probe the post-saddle friction strength,we make a further calculation at E?=200 MeV and ?=40~(case(iii)),which corresponds to conditions available in peripheral collisions which generate a fi ssioning nucleus with a lower E?and a higher ? than that generated in near-central collisions.The calculated results for case(iii)are also plotted in Figs.1 and 3,which are shown by squares connected by green lines.

    We note that in the presence of deformation effects,Mndemonstrates an obvious quicker rise with increasing β in case(iii)than in case(ii).This is because while case(iii)contains a lower E?than case(ii),a higher ?in case(iii)decreases the fi ssion barrier,which shortens the transient time.Consequently,pre-saddle neutrons are decreased,and more energy is left for post-saddle evaporation,leading to a greater post-saddle multiplicity.This means that case(iii),i.e.,peripheral collisions could provide a more favorable condition to probe β using neutrons than near-central collisions.In addition,we also notice from Fig.1(b)that Mnrises more rapidly with β in case(iii)than in case(i),illustrating the effect of deformation on neutrons as an observable of the post-saddle friction strength.

    However,a picture different from neutrons is seen for LCPs;that is,LCPs have a larger value in case(ii)than in case(iii),showing that dissipation has a larger effect on LCPs in case(ii).The reason is as follows.There exists a competition among different decaying channels.A strong neutron evaporation(compare squares and circles connected by the blue and red line in Fig.1(b),respectively)suppresses charged-particle evaporation.While a higher ? in case(iii)than in case(ii)raises the multiplicity of post-saddle particles including that of LCPs,the magnitude of excitation energy has a stronger effect than that of angular momentum.This further reveals the important role of E?in using light charged particles as a tool of the post-saddle friction strength.It implies that when one uses LCPs to better limit β,it is best to choose heavy fi ssioning nuclei populated in near-central collisions.

    Putting together all the results calculated for the three cases,as shown in Figs.1 and 3,one can find that intermediate energy reactions are a more preferable experimental approach than heavy-ion fusion,which is mostly adopted in the current experiments,to explore post-saddle dissipation properties with light particle emission,in particular in the presence of deformation effects.

    4 Conclusions

    In conclusion,we have studied the influence of deformation on probing the post-saddle friction strength(β)with light particle multiplicities of heavy240Am under different excitation energies and angular momenta.It has been found that compared to the fusion approach,the high excitation energy condition provided in intermediate energy reactions apparently enhances the sensitivity of light particles(particularly for LCPs for the case with deformation effects)to β.Furthermore,it has been shown that when using neutrons to constrain β, fi ssioning systems generated in peripheral collisions at intermediate energies are more suitable than those generated in near-central collisions.For LCPs whose emission depends on excitation energy more strongly than on angular momentum,choosing those heavy fi ssioning nuclei from near-central collisions are favorable in experiments for more precisely determining the post-saddle friction strength.

    精品卡一卡二卡四卡免费| 国产亚洲精品第一综合不卡 | 成人综合一区亚洲| 老司机影院毛片| 国产熟女午夜一区二区三区 | 久久久久久久久久久免费av| 蜜臀久久99精品久久宅男| 大码成人一级视频| 国产精品熟女久久久久浪| 嘟嘟电影网在线观看| 久久精品熟女亚洲av麻豆精品| 国产有黄有色有爽视频| 看非洲黑人一级黄片| 久久人人爽av亚洲精品天堂| 婷婷色av中文字幕| 国产成人freesex在线| 日产精品乱码卡一卡2卡三| 亚洲精品乱久久久久久| 97超视频在线观看视频| 午夜激情久久久久久久| 亚洲av电影在线观看一区二区三区| 亚洲情色 制服丝袜| 欧美精品国产亚洲| 国产高清国产精品国产三级| 国产高清有码在线观看视频| 一区二区三区乱码不卡18| 简卡轻食公司| 999精品在线视频| 精品亚洲成国产av| 考比视频在线观看| 少妇高潮的动态图| 国产有黄有色有爽视频| freevideosex欧美| 少妇人妻久久综合中文| 丰满迷人的少妇在线观看| 久久久久网色| 特大巨黑吊av在线直播| 久久久久国产网址| 精品国产乱码久久久久久小说| 国产综合精华液| 久久精品国产亚洲网站| 欧美人与善性xxx| 久久99精品国语久久久| 狂野欧美激情性xxxx在线观看| 国产精品一区www在线观看| 中文字幕久久专区| 视频在线观看一区二区三区| 黑人欧美特级aaaaaa片| 飞空精品影院首页| 久久久久国产网址| 国产男女内射视频| 男男h啪啪无遮挡| 99热网站在线观看| 国产精品嫩草影院av在线观看| 久久久国产欧美日韩av| 亚洲精品aⅴ在线观看| 极品人妻少妇av视频| 中文字幕最新亚洲高清| 久久韩国三级中文字幕| 亚洲人与动物交配视频| 久久av网站| 久久99蜜桃精品久久| 中国国产av一级| 亚洲精品成人av观看孕妇| 国产精品国产av在线观看| 午夜福利在线观看免费完整高清在| 一本色道久久久久久精品综合| av卡一久久| 欧美成人午夜免费资源| videosex国产| 亚洲欧洲国产日韩| 国产在视频线精品| 成人午夜精彩视频在线观看| 欧美精品一区二区免费开放| 午夜免费鲁丝| 亚洲成人一二三区av| 久久精品国产亚洲av涩爱| 国产精品无大码| 日韩成人av中文字幕在线观看| 免费看av在线观看网站| 免费av不卡在线播放| 亚洲国产av新网站| 亚洲四区av| 国产淫语在线视频| 91aial.com中文字幕在线观看| xxxhd国产人妻xxx| 乱码一卡2卡4卡精品| 插逼视频在线观看| 亚洲欧洲日产国产| 亚洲av不卡在线观看| 岛国毛片在线播放| 一本色道久久久久久精品综合| 热99国产精品久久久久久7| 精品一区二区三卡| 国产午夜精品久久久久久一区二区三区| 久久影院123| 韩国高清视频一区二区三区| 国产探花极品一区二区| 少妇丰满av| 大片免费播放器 马上看| 久久久久久久久久久丰满| 九九在线视频观看精品| 97在线视频观看| 韩国av在线不卡| 伦精品一区二区三区| av福利片在线| 亚洲综合精品二区| 久久毛片免费看一区二区三区| 这个男人来自地球电影免费观看 | 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久狼人影院| 日韩av不卡免费在线播放| 亚洲精品国产色婷婷电影| 日本黄色片子视频| 在线天堂最新版资源| 国产一区亚洲一区在线观看| 水蜜桃什么品种好| 九草在线视频观看| 黑人高潮一二区| 国产 精品1| 亚洲无线观看免费| 日韩大片免费观看网站| 日韩一区二区三区影片| 最近中文字幕2019免费版| 啦啦啦在线观看免费高清www| 亚洲欧美中文字幕日韩二区| 97超碰精品成人国产| 中文欧美无线码| 国精品久久久久久国模美| 乱人伦中国视频| 制服丝袜香蕉在线| 国产亚洲午夜精品一区二区久久| 午夜福利影视在线免费观看| 久久这里有精品视频免费| 亚洲中文av在线| av免费观看日本| 精品少妇内射三级| 黄色欧美视频在线观看| 成人黄色视频免费在线看| 久久国产亚洲av麻豆专区| 丰满饥渴人妻一区二区三| 久久久国产欧美日韩av| 伦理电影大哥的女人| 亚洲精品日韩在线中文字幕| 日产精品乱码卡一卡2卡三| 亚洲伊人久久精品综合| 亚洲情色 制服丝袜| 国产 精品1| 日本欧美视频一区| videosex国产| 亚洲天堂av无毛| a级毛片免费高清观看在线播放| 国产亚洲精品久久久com| 亚洲图色成人| 看免费成人av毛片| 2022亚洲国产成人精品| 精品午夜福利在线看| 午夜91福利影院| 女的被弄到高潮叫床怎么办| a级片在线免费高清观看视频| 欧美日韩精品成人综合77777| 在线观看免费高清a一片| 国产色爽女视频免费观看| 男女啪啪激烈高潮av片| 国产成人a∨麻豆精品| 国产日韩欧美在线精品| 日本av免费视频播放| 久久午夜福利片| 日韩视频在线欧美| 寂寞人妻少妇视频99o| 色婷婷av一区二区三区视频| 99九九在线精品视频| 黄色欧美视频在线观看| 日韩伦理黄色片| 老司机影院成人| 国产成人一区二区在线| 中文精品一卡2卡3卡4更新| 午夜激情福利司机影院| 黄色一级大片看看| 97在线视频观看| 国产欧美日韩一区二区三区在线 | 水蜜桃什么品种好| 久久久久国产网址| av一本久久久久| 国产欧美日韩一区二区三区在线 | 亚洲成人一二三区av| 2022亚洲国产成人精品| 国产高清有码在线观看视频| 日韩精品免费视频一区二区三区 | 女人精品久久久久毛片| 最近2019中文字幕mv第一页| 看免费成人av毛片| 欧美国产精品一级二级三级| 欧美日韩亚洲高清精品| 免费大片黄手机在线观看| av免费观看日本| 最近中文字幕高清免费大全6| 女的被弄到高潮叫床怎么办| 狠狠婷婷综合久久久久久88av| av一本久久久久| 亚洲精品乱码久久久v下载方式| 国产免费一级a男人的天堂| 免费大片18禁| 国产淫语在线视频| 少妇人妻久久综合中文| 91精品国产九色| 狠狠婷婷综合久久久久久88av| 亚洲情色 制服丝袜| 在线观看人妻少妇| 国产一区二区在线观看日韩| 丝袜脚勾引网站| 九草在线视频观看| 亚洲国产精品一区三区| tube8黄色片| 亚洲精品,欧美精品| av国产久精品久网站免费入址| 99久久精品一区二区三区| 3wmmmm亚洲av在线观看| 99热这里只有是精品在线观看| 亚洲av二区三区四区| 夫妻午夜视频| 极品少妇高潮喷水抽搐| 国产熟女午夜一区二区三区 | 亚洲熟女精品中文字幕| 少妇人妻精品综合一区二区| 亚洲欧美一区二区三区黑人 | 91久久精品国产一区二区三区| 免费黄网站久久成人精品| 一级,二级,三级黄色视频| 18禁在线无遮挡免费观看视频| 两个人免费观看高清视频| 最新中文字幕久久久久| 丰满饥渴人妻一区二区三| 免费观看av网站的网址| 国产免费视频播放在线视频| 亚洲,欧美,日韩| 18禁裸乳无遮挡动漫免费视频| 婷婷色av中文字幕| 伊人亚洲综合成人网| 男男h啪啪无遮挡| 蜜桃在线观看..| 亚洲综合色惰| 久久久久久久大尺度免费视频| 99国产综合亚洲精品| 日韩大片免费观看网站| 国产精品99久久99久久久不卡 | 三级国产精品欧美在线观看| 五月玫瑰六月丁香| 国产在视频线精品| 成人午夜精彩视频在线观看| 精品久久蜜臀av无| 精品亚洲成a人片在线观看| 久久99精品国语久久久| 日韩 亚洲 欧美在线| 色网站视频免费| 日本av手机在线免费观看| 日韩一区二区视频免费看| 少妇人妻 视频| 亚洲国产精品成人久久小说| 欧美变态另类bdsm刘玥| 中文欧美无线码| 国产亚洲精品久久久com| 国产欧美亚洲国产| 青春草亚洲视频在线观看| 在线观看一区二区三区激情| 极品人妻少妇av视频| 欧美3d第一页| 国产成人精品福利久久| 一区二区三区精品91| 精品一区在线观看国产| 亚洲情色 制服丝袜| 夜夜骑夜夜射夜夜干| 夜夜爽夜夜爽视频| 纵有疾风起免费观看全集完整版| 18禁裸乳无遮挡动漫免费视频| 免费观看的影片在线观看| 国产乱来视频区| 亚洲无线观看免费| 欧美日韩在线观看h| 制服人妻中文乱码| 热re99久久精品国产66热6| 99国产精品免费福利视频| 日本av免费视频播放| 少妇猛男粗大的猛烈进出视频| av黄色大香蕉| 日韩人妻高清精品专区| 国产亚洲午夜精品一区二区久久| 99久久综合免费| 乱人伦中国视频| 久久热精品热| 性色avwww在线观看| 免费大片黄手机在线观看| av天堂久久9| 日韩视频在线欧美| 五月玫瑰六月丁香| 亚洲欧美色中文字幕在线| 少妇人妻 视频| 美女视频免费永久观看网站| 国产精品偷伦视频观看了| 丝袜脚勾引网站| 肉色欧美久久久久久久蜜桃| 人妻人人澡人人爽人人| 大陆偷拍与自拍| 久久午夜综合久久蜜桃| 中文字幕亚洲精品专区| 精品99又大又爽又粗少妇毛片| 国产日韩欧美亚洲二区| 亚洲欧美一区二区三区黑人 | 在线观看www视频免费| 精品人妻熟女毛片av久久网站| 看非洲黑人一级黄片| av卡一久久| 精品久久久噜噜| 熟女电影av网| 伦理电影免费视频| 丝袜在线中文字幕| 国产男女超爽视频在线观看| 日日撸夜夜添| 五月天丁香电影| 一级毛片aaaaaa免费看小| 国产精品成人在线| 大片免费播放器 马上看| 青春草视频在线免费观看| 91久久精品电影网| 国产日韩一区二区三区精品不卡 | 色94色欧美一区二区| 一边亲一边摸免费视频| 国产一级毛片在线| 国产成人精品福利久久| 国产成人免费观看mmmm| 久久精品国产鲁丝片午夜精品| 精品人妻在线不人妻| 午夜影院在线不卡| 男女免费视频国产| 国产亚洲最大av| 欧美成人午夜免费资源| 你懂的网址亚洲精品在线观看| 久久久国产一区二区| 晚上一个人看的免费电影| 人体艺术视频欧美日本| 大片电影免费在线观看免费| 亚洲国产欧美日韩在线播放| 久久久久久久久久人人人人人人| 国产精品人妻久久久影院| 丝袜脚勾引网站| 成年女人在线观看亚洲视频| 一级,二级,三级黄色视频| 国产高清有码在线观看视频| 久久久a久久爽久久v久久| 22中文网久久字幕| 黄色怎么调成土黄色| av线在线观看网站| 国产av精品麻豆| 免费av中文字幕在线| 欧美成人精品欧美一级黄| 99精国产麻豆久久婷婷| 黑人猛操日本美女一级片| 超碰97精品在线观看| 亚洲欧美一区二区三区黑人 | 大码成人一级视频| 久久精品熟女亚洲av麻豆精品| 大码成人一级视频| 久久婷婷青草| 97在线视频观看| 一区二区日韩欧美中文字幕 | 欧美日韩视频高清一区二区三区二| 中文字幕久久专区| 久久精品国产自在天天线| 精品一区二区三区视频在线| 午夜福利,免费看| 男女高潮啪啪啪动态图| 中国美白少妇内射xxxbb| 制服人妻中文乱码| 精品少妇黑人巨大在线播放| 久久99热这里只频精品6学生| 欧美+日韩+精品| 午夜免费鲁丝| videosex国产| 午夜福利影视在线免费观看| 在线看a的网站| 曰老女人黄片| 日产精品乱码卡一卡2卡三| 国产视频内射| 欧美日韩视频精品一区| 久久久久久人妻| 国产极品粉嫩免费观看在线 | 久久99蜜桃精品久久| 天堂俺去俺来也www色官网| 欧美日韩成人在线一区二区| 婷婷色av中文字幕| 亚洲欧美成人综合另类久久久| 国产欧美日韩一区二区三区在线 | 成年女人在线观看亚洲视频| 美女国产视频在线观看| 在线观看www视频免费| 伊人亚洲综合成人网| 欧美精品亚洲一区二区| 18在线观看网站| 秋霞在线观看毛片| 国产成人精品在线电影| 日韩强制内射视频| 大又大粗又爽又黄少妇毛片口| 欧美精品国产亚洲| 国产av一区二区精品久久| 亚洲精品国产色婷婷电影| 成人午夜精彩视频在线观看| 免费大片18禁| 国产白丝娇喘喷水9色精品| 丝袜美足系列| 成年美女黄网站色视频大全免费 | 亚洲熟女精品中文字幕| 老熟女久久久| 亚洲av福利一区| 青春草视频在线免费观看| 97在线视频观看| 日日摸夜夜添夜夜添av毛片| 国产综合精华液| 黄色配什么色好看| 亚洲综合精品二区| 中文天堂在线官网| 啦啦啦啦在线视频资源| 最新中文字幕久久久久| 又黄又爽又刺激的免费视频.| 久久久国产一区二区| 久久久精品免费免费高清| 亚洲av电影在线观看一区二区三区| 99国产精品免费福利视频| 啦啦啦视频在线资源免费观看| 免费av不卡在线播放| 99久久精品国产国产毛片| av网站免费在线观看视频| 国产日韩欧美视频二区| 欧美人与性动交α欧美精品济南到 | 全区人妻精品视频| 午夜激情av网站| 婷婷色麻豆天堂久久| 免费看av在线观看网站| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧美色中文字幕在线| 色哟哟·www| 亚洲欧美成人精品一区二区| 国产亚洲午夜精品一区二区久久| 精品亚洲乱码少妇综合久久| av网站免费在线观看视频| 亚洲欧美成人精品一区二区| av福利片在线| 亚洲欧美一区二区三区国产| 少妇人妻精品综合一区二区| 日韩欧美一区视频在线观看| 一区二区av电影网| 热re99久久精品国产66热6| 免费观看av网站的网址| 啦啦啦中文免费视频观看日本| 色哟哟·www| 久久久国产欧美日韩av| 视频区图区小说| 亚洲av综合色区一区| 视频在线观看一区二区三区| 中文乱码字字幕精品一区二区三区| 九九在线视频观看精品| av电影中文网址| 亚洲av欧美aⅴ国产| 久久99热6这里只有精品| 婷婷色综合大香蕉| av黄色大香蕉| 久久久精品94久久精品| 成年人免费黄色播放视频| 亚洲国产最新在线播放| 91午夜精品亚洲一区二区三区| 婷婷色av中文字幕| 桃花免费在线播放| 亚洲人成网站在线观看播放| av国产精品久久久久影院| 亚洲成人av在线免费| 大香蕉97超碰在线| 亚洲精品,欧美精品| 亚洲图色成人| 男女边吃奶边做爰视频| 国产精品不卡视频一区二区| 在线观看免费高清a一片| 日本黄大片高清| 99热这里只有是精品在线观看| 日韩精品有码人妻一区| 亚洲图色成人| 欧美国产精品一级二级三级| 久久鲁丝午夜福利片| 亚洲婷婷狠狠爱综合网| 天天躁夜夜躁狠狠久久av| 欧美成人精品欧美一级黄| 菩萨蛮人人尽说江南好唐韦庄| 精品久久久噜噜| 久久午夜综合久久蜜桃| 免费高清在线观看日韩| 97精品久久久久久久久久精品| 亚洲天堂av无毛| 久久久久久久大尺度免费视频| 十分钟在线观看高清视频www| 久久狼人影院| 国产精品人妻久久久久久| 国产成人免费无遮挡视频| 熟女电影av网| 51国产日韩欧美| 99热国产这里只有精品6| 精品亚洲乱码少妇综合久久| 97超视频在线观看视频| 欧美97在线视频| 久久午夜综合久久蜜桃| 久久久国产精品麻豆| 精品一区二区三区视频在线| 国产精品一国产av| 国产色爽女视频免费观看| 国产精品人妻久久久影院| 国产亚洲精品第一综合不卡 | a级毛片在线看网站| 亚洲国产成人一精品久久久| 久久久国产一区二区| 精品少妇黑人巨大在线播放| 高清欧美精品videossex| 国产精品 国内视频| 国产精品久久久久久久久免| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲久久久国产精品| 一级毛片我不卡| 超色免费av| 国产亚洲精品第一综合不卡 | 亚洲av综合色区一区| 成人国语在线视频| 少妇的逼水好多| 色哟哟·www| 蜜桃在线观看..| av国产精品久久久久影院| 亚洲欧美一区二区三区黑人 | 久久精品国产亚洲网站| 久久久久久伊人网av| 亚洲精品一二三| 一级毛片我不卡| 免费人妻精品一区二区三区视频| 在线观看人妻少妇| 色视频在线一区二区三区| 成年美女黄网站色视频大全免费 | 最近最新中文字幕免费大全7| 欧美老熟妇乱子伦牲交| 夜夜骑夜夜射夜夜干| 欧美日韩在线观看h| 国产成人精品一,二区| 人人澡人人妻人| 欧美xxⅹ黑人| 婷婷成人精品国产| 一级片'在线观看视频| 人妻制服诱惑在线中文字幕| 国产精品一区www在线观看| 人人妻人人澡人人看| 午夜免费观看性视频| 99久久综合免费| 国产极品天堂在线| 在线观看人妻少妇| 日本av手机在线免费观看| 人妻夜夜爽99麻豆av| 在线亚洲精品国产二区图片欧美 | 日韩,欧美,国产一区二区三区| 男人爽女人下面视频在线观看| 69精品国产乱码久久久| 国产成人精品一,二区| 日本爱情动作片www.在线观看| 纵有疾风起免费观看全集完整版| 免费黄网站久久成人精品| a级毛片免费高清观看在线播放| 久久久久久久久久人人人人人人| 韩国高清视频一区二区三区| 在线观看三级黄色| 女人久久www免费人成看片| 少妇人妻精品综合一区二区| 色吧在线观看| 伊人久久精品亚洲午夜| 丝袜脚勾引网站| 精品久久久久久电影网| 亚洲性久久影院| 老司机影院成人| 人人妻人人澡人人看| 在线播放无遮挡| 春色校园在线视频观看| 3wmmmm亚洲av在线观看| 另类亚洲欧美激情| 中文字幕精品免费在线观看视频 | 热re99久久国产66热| 超色免费av| 欧美一级a爱片免费观看看| 91精品国产国语对白视频| 最新的欧美精品一区二区| 久久久久久久亚洲中文字幕| 黄色毛片三级朝国网站| 这个男人来自地球电影免费观看 | 国产综合精华液| 亚洲精品aⅴ在线观看| 久久精品国产鲁丝片午夜精品| 免费大片18禁| 伊人亚洲综合成人网| av在线app专区| 久久精品久久精品一区二区三区| 22中文网久久字幕| 91成人精品电影| 国产av国产精品国产| 男女啪啪激烈高潮av片| 国产高清三级在线| 国产免费视频播放在线视频| 超色免费av| 日韩精品免费视频一区二区三区 | 亚洲五月色婷婷综合| 亚洲精品色激情综合| 伦理电影大哥的女人| 国产亚洲一区二区精品| 有码 亚洲区| 全区人妻精品视频| 亚洲人成网站在线播| 18禁在线播放成人免费|