• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Intermediate Energy Reactions Versus Heavy-Ion Fusion:Light Particle Emission and Post-Saddle Friction in the Presence of Deformation effects?

    2019-07-16 12:29:34NaChen陳娜andWeiYe葉巍
    Communications in Theoretical Physics 2019年6期

    Na Chen(陳娜) and Wei Ye(葉巍)

    1School of Applied Mathematics,Nanjing University of Finance&Economics,Nanjing 210023,China

    2Department of Physics,Southeast University,Nanjing 210096,China

    AbstractA decaying nucleus undergoes a change in deformation when it fi ssions.This a ffects the particle emission in the fi ssion process.Using the dynamical Langevin model,we investigate the role of deformation in the sensitivity of post-saddle neutrons and light charged particles(LCPs)to the post-saddle friction strength(β)for heavy nuclei240Am produced with different initial conditions:(i)a low excitation energy E? and a large spin ?(provided via a fusion mechanism)and(ii)a high E? and a large ? as well as a higher E? but a small ?(provided in peripheral and near-central intermediate energy heavy-ion reactions,respectively).It is shown that deformation obviously enhances the sensitivity of post-saddle neutrons to β at intermediate-energy peripheral collisions and that for case(i),the drop of LCPs emission due to deformation makes post-saddle LCPs to be almost insensitive to β,but for case(ii)LCPs still have a signi fi cant change with β.Furthermore,we find that post-saddle LCPs display a greater sensitivity to β for near-central collisions than for peripheral collisions.These results suggest that given the deformation effects,to better probe post-saddle dissipation properties with neutrons(LCPs)in experiments,it is best to choose those excited heavy nuclear systems populated in peripheral(near-central)collisions at intermediate energies.

    Key words:post-saddle friction,deformation,excitation energy,light particles,stochastic model

    1 Introduction

    Nuclear dissipation plays an important role in the large-scale collective motion,like fusion and quasiif ssion.[1?3]Its critical influence on the fi ssion process of hot nuclei has recently attracted much attention.[4]Dissipation hinders fi ssion and hence increases pre-scission particle multiplicities with respect to the predictions by standard statistical models.[5?6]It has been demonstrated that stochastic approaches based on Langevin models[7?9]have been successfully applied to address dissipation effects in nuclear fi ssion and provided a satisfactory description of different types of fi ssion data.

    When applying the Langevin model to handle fi ssion,a key ingredient in it is the deformation dependence of nuclear friction.[10]Currently,a number of works have been made to constrain pre-saddle friction by using evaporation residue cross sections,[11]the first-chance fi ssion probability,[12?13]the widths of fi ssion-fragment charge distributions,[14]etc. As a result,the strength of pre-saddle friction is severely limited.[15]However,these observables only depend on the pre-saddle friction and thereby they are not suited for exploring the postsaddle dissipation effects.Moreover,till now,less e ff ort has been invested to constrain the post-saddle friction strength.[7,16]

    different from previously mentioned observables,light particles are evaporated along the entire fi ssion path.They are thus a ffected by post-saddle friction.Also,postsaddle multiplicities are an increasing function of size of the decaying system.So,the particle emission from heavy fi ssioning nuclei is usually used to obtain information of post-saddle dissipation properties.[17?20]Further,when a fi ssioning nucleus evolves from ground state to the scission point,it experiences the change of deformations along the fi ssion trajectory.This a ffects various particle emissions.[21?23]

    The nuclear systems formed in intermediate energy heavy-ion collisions and fusion reactions have different excitation energies and angular momenta.However,to date,few have studied the effect of deformation on the evolution of post-saddle neutrons and light charged particles(LCPs)with the post-saddle friction strength for heavy fi ssioning nuclei populated under these different initial conditions.The present work is devoted to this issue.

    Our aim is to exploit the favorable experimental condition through which the post-saddle dissipation effects can be better revealed with the particle multiplicity;that is,which experimental approach is more optimal for probing post-saddle dissipation with light particle multiplicity in the presence of deformation effects.To this end,the Langevin model[7?9,22?25]is employed here and it is successfully used to reproduce a volume of fi ssion data for many compound systems over a broad range of the excitation energy,angular momentum,and fi ssility.

    2 Theoretical Framework

    In the Langevin description of a fi ssion process,the crucial quantity is free energy,which contains a thermodynamic correction.[26]We use the following one-dimensional Langevin equation to perform the fully dynamical trajectory calculations:

    Here q is the dimensionless fi ssion coordinate and is deif ned as half the distance between the center of mass of the future fi ssion fragments divided by the radius of the compound nucleus,and p is the conjugate momentum.β and T denote the dissipation strength and temperature,respectively.The inertia parameter m is obtained under the Werner-Wheeler approximation of an incompressible irrotational flow.[27]Γ(t)is a fl uctuating force satisfying?Γ(t)?=0 and ?Γ(t)Γ(t′)?=2δ(t? t′).

    The free energy is constructed from the Fermi gas expression of the level density parameter together with a finite-range liquid-drop potential V(q)[28]that contains qdependent surface,Coulomb,and rotation energy terms;that is,

    In Eq.(2),the coefficients proposed in Ref.[29]are used to calculate the deformation-dependent level density parameter,which reads as follows:

    where A is the mass number of the compound nucleus and Bsis the dimensionless surface area of the nucleus.[30]

    In our calculation,prescission particle evaporation along Langevin fi ssion trajectories from their ground state to their scission point has been taken into account using a Monte Carlo simulation technique.The emission width of a particle of kind ν(=n,p,α)is evaluated by Blann’s parametrization[31]

    where sνis the spin of the emitted particle ν,and mνits reduced mass with respect to the residual nucleus.The level densities of the compound and residual nuclei are denoted by ρc(E?)and ρR(E?? Bν? εν).Bνare the liquid-drop binding energies.ε is the kinetic energy of the emitted particle.The inverse cross section is given by[31]

    with

    where Aνis the mass number of emitted particle ν =n,p,α.

    The barriers for the charged particles are[31]

    with Kν=1.32 for α,and 1.15 for proton.

    The massformula[32]containsthedeformationdependent surface and Coulomb energy terms.The particle binding energy Bi(i=n,p,α)is thus a function of deformation[21?22]and it can be written as

    where Mi(i=n,p,α)is the mass of the emitted particles.Mp(q)and Md(q)are the masses of the mother and daughter nuclei,respectively.

    We use the formula suggested by Fr?brich and Gontchar[7]to calculate the deformation-dependent chargedparticle emission barriers:

    Here the Coulomb energy Bc(q)is evaluated using the method in Refs.[30,33].

    When a dynamic trajectory reaches the scission point,it is counted as a fi ssion event.Prescission particles are insensitive to the definition of the scission point(i.e.,zero or a finite neck radius),as they can be emitted along the entire fi ssion trajectory.In our calculation,multiple emissions of light particles and higher-chance fi ssion are taken into account.Prescission particle multiplicities are calculated by counting the number of corresponding evaporated particle events.To accumulate sufficient statistics,107Langevin trajectories are simulated.

    3 Results and Discussion

    Due to the competition from quasi- fi ssion channels,which become stronger with increasing bombarding energy,heavy compound nuclei(CNs)populated by fusion reaction channels generally have a low excitation energy(<80 MeV)and a high angular momentum(around 40~).However,intermediate-energy(around Fermi energy domain)heavy-ion collisions can deposit more energy into the nuclear systems and yield a variety of fi ssioning nuclei with a different excitation energy and angular momentum.

    For example,in near-central collisions the generated nuclear systems have a high excitation energy(~250 MeV)and a low spin(near 10~).However,in peripheral collisions,the produced fi ssioning systems have an excitation energy over 200 MeV and a large angular momentum(~ 40~).[34?35]

    In the present work,calculations under these three different initial conditions mentioned above for the produced heavy fi ssioning system are carried out and their sensitivities to nuclear friction are compared in the presence of deformation effects.Towards that goal,a heavy240Am was chosen here to investigate post-saddle dissipation characteristics by using light particle multiplicity.To better reveal post-saddle dissipation effects,the presaddle friction strength is set to 4 × 1021s?1,in consistent with recent theoretical estimates and experimental analyses,[8,14,36?37]and dynamical calculations of postsaddle emission are performed considering different values of the post-saddle friction strength(β).

    Shown in Fig.1 are the evolution of post-saddle neutrons with β at three different initial conditions of excitation energy and angular momentum for the fi ssioning nucleus240Am with and without deformation effects.

    Fig.1(Color online)Post-saddle neutrons versus the postsaddle friction strength β in the absence(a)and in the presence(b)of deformation effects for heavy system240Am calculated for case(i)E? =80 MeV and ?=40~,case(ii)E?=250 MeV and ?=10~,and case(iii)E?=200 MeV and ?=40~.

    We first compare the results of case(i)and case(ii);that is,fusion reactions vs. intermediate-energy nearcentral collisions. Two typical features are observed.First,the calculated post-scission neutrons Mnare larger in case(ii)than in case(i),indicating a stronger effect of dissipation on Mnunder the condition of case(ii).

    Another feature is that after incorporating deformation effects into the model calculations(Fig.1(b)),Mnrises,exhibiting a larger influence of dissipation on postsaddle neutrons.A larger Mndue to deformation is that neutron binding energies drop with increasing deformation(Fig.2(a)),enhancing the neutron emission.

    A comparison on charged-particle emission(i.e.,protons and α-particles)for case(i)and case(ii)is displayed in Fig.3.First,accounting for the deformation effects decreases Mpand Mαin both cases.The reason is that though deformation lowers emission barriers of LCPs(Fig.2(b)),it increases their binding energies(Fig.2(a)),which is unfavorable for their emissions.As a result of the two opposite factors,the LCPs multiplicity decreases.

    Fig.2 (Color online)(a)A change in neutron,proton,and α-particle binding energies of240Am due to deformation with respect to their values at a spherical shape.(b)Emission barriers of protons and α particles of240Am as a function of deformation coordinate q.

    Secondly,when deformation effects are ignored(see triangles connected by blue lines in Figs.3(a)and 3(c)),a variation in Mpand Mαis still discernible as β changes from 0.5×1021s?1to 20×1021s?1,meaning a sensitivity of LCPs to β,though it is quite weak.However,in case(i),as a consequence of a reduced Mpand Mαin the presence of the deformation effects(see triangles in Figs.3(b)and 3(d)),LCPs almost do not vary with a change in β;that is,their sensitivity to friction disappears.In contrast,while deformation effects decrease Mpand Mαin case(ii)(see circles connected by red lines in Figs.3(b)and 3(d)),the LCPs multiplicity shows a signi fi cant sensitivity to the friction strength.

    This comparison clearly shows the role of excitation energy in exploring the post-saddle dissipation properties after considering the deformation effects.Further,it suggests that when using LCPs to place a stricter constraint on the post-saddle friction strength,case(ii)is a more optimal experimental condition than case(i).

    Unlike fusion reactions which form a CN,intermediate energy collisions generate a variety of excited nuclear systems having a different excitation energy and angular momentum,depending on the collision centralities.Further, fi ssion events and the corresponding information on A,Z,E?,etc.of fi ssioning sources coming from nearcentral or peripheral collisions can be identi fi ed and obtained experimentally.[34?35,38?39]In these experiments,the folding angle technique was used to measure the correlation angle of the two fi ssion fragments.

    Fig.3 (Color online)Post-saddle protons(top panel)and α particles(bottom panel)versus the post-saddle friction strength β in the absence((a)and(c))and in the presence((b)and(d))of deformation effects for heavy system240Am calculated for case(i)E? =80 MeV and ?=40~,case(ii)E?=250 MeV and ?=10~,and case(iii)E?=200 MeV and ?=40~.

    Previously,we compared the calculation concerning post-saddle particles as a function of β for case(i)and case(ii),which represents the conditions provided via fusion and near-central collisions at intermediate energy,respectively.To better employ intermediate energy reactions as a way to probe the post-saddle friction strength,we make a further calculation at E?=200 MeV and ?=40~(case(iii)),which corresponds to conditions available in peripheral collisions which generate a fi ssioning nucleus with a lower E?and a higher ? than that generated in near-central collisions.The calculated results for case(iii)are also plotted in Figs.1 and 3,which are shown by squares connected by green lines.

    We note that in the presence of deformation effects,Mndemonstrates an obvious quicker rise with increasing β in case(iii)than in case(ii).This is because while case(iii)contains a lower E?than case(ii),a higher ?in case(iii)decreases the fi ssion barrier,which shortens the transient time.Consequently,pre-saddle neutrons are decreased,and more energy is left for post-saddle evaporation,leading to a greater post-saddle multiplicity.This means that case(iii),i.e.,peripheral collisions could provide a more favorable condition to probe β using neutrons than near-central collisions.In addition,we also notice from Fig.1(b)that Mnrises more rapidly with β in case(iii)than in case(i),illustrating the effect of deformation on neutrons as an observable of the post-saddle friction strength.

    However,a picture different from neutrons is seen for LCPs;that is,LCPs have a larger value in case(ii)than in case(iii),showing that dissipation has a larger effect on LCPs in case(ii).The reason is as follows.There exists a competition among different decaying channels.A strong neutron evaporation(compare squares and circles connected by the blue and red line in Fig.1(b),respectively)suppresses charged-particle evaporation.While a higher ? in case(iii)than in case(ii)raises the multiplicity of post-saddle particles including that of LCPs,the magnitude of excitation energy has a stronger effect than that of angular momentum.This further reveals the important role of E?in using light charged particles as a tool of the post-saddle friction strength.It implies that when one uses LCPs to better limit β,it is best to choose heavy fi ssioning nuclei populated in near-central collisions.

    Putting together all the results calculated for the three cases,as shown in Figs.1 and 3,one can find that intermediate energy reactions are a more preferable experimental approach than heavy-ion fusion,which is mostly adopted in the current experiments,to explore post-saddle dissipation properties with light particle emission,in particular in the presence of deformation effects.

    4 Conclusions

    In conclusion,we have studied the influence of deformation on probing the post-saddle friction strength(β)with light particle multiplicities of heavy240Am under different excitation energies and angular momenta.It has been found that compared to the fusion approach,the high excitation energy condition provided in intermediate energy reactions apparently enhances the sensitivity of light particles(particularly for LCPs for the case with deformation effects)to β.Furthermore,it has been shown that when using neutrons to constrain β, fi ssioning systems generated in peripheral collisions at intermediate energies are more suitable than those generated in near-central collisions.For LCPs whose emission depends on excitation energy more strongly than on angular momentum,choosing those heavy fi ssioning nuclei from near-central collisions are favorable in experiments for more precisely determining the post-saddle friction strength.

    女同久久另类99精品国产91| 男人和女人高潮做爰伦理| 国产精品无大码| 亚洲精华国产精华液的使用体验 | 国产成人91sexporn| 国产精品乱码一区二三区的特点| 99热这里只有是精品在线观看| 欧美日韩乱码在线| 亚洲美女黄片视频| 99久久精品一区二区三区| 日本一二三区视频观看| 九九久久精品国产亚洲av麻豆| 国产精品人妻久久久久久| 少妇猛男粗大的猛烈进出视频 | 午夜老司机福利剧场| 亚洲成人精品中文字幕电影| 99热这里只有是精品50| av卡一久久| 日本与韩国留学比较| 国产精品野战在线观看| 99热全是精品| 我要看日韩黄色一级片| 村上凉子中文字幕在线| 亚洲,欧美,日韩| 美女高潮的动态| 国产精品三级大全| 日韩精品青青久久久久久| 联通29元200g的流量卡| 亚洲欧美日韩高清专用| 色综合亚洲欧美另类图片| 国产精品久久久久久久电影| 亚洲精品乱码久久久v下载方式| 免费搜索国产男女视频| 国产伦精品一区二区三区视频9| 一级黄色大片毛片| 亚洲欧美日韩高清在线视频| 精品无人区乱码1区二区| 欧美一区二区亚洲| 国产真实伦视频高清在线观看| 国产精品亚洲美女久久久| 老司机福利观看| 91久久精品国产一区二区成人| 一进一出好大好爽视频| 欧美日韩一区二区视频在线观看视频在线 | av福利片在线观看| 中文字幕免费在线视频6| 色播亚洲综合网| 国产不卡一卡二| 黄色一级大片看看| 成年女人毛片免费观看观看9| 亚洲最大成人手机在线| 舔av片在线| 日日啪夜夜撸| 日日摸夜夜添夜夜添av毛片| 久久久久性生活片| 久久久久九九精品影院| 久久精品影院6| 国内少妇人妻偷人精品xxx网站| 午夜日韩欧美国产| 日本在线视频免费播放| 亚洲欧美中文字幕日韩二区| 丰满乱子伦码专区| 国产男靠女视频免费网站| 伦精品一区二区三区| 国产大屁股一区二区在线视频| 久久久国产成人免费| 狂野欧美激情性xxxx在线观看| 国产 一区精品| 日韩一区二区视频免费看| 亚洲婷婷狠狠爱综合网| 有码 亚洲区| 亚洲乱码一区二区免费版| 中文资源天堂在线| 丝袜美腿在线中文| or卡值多少钱| 免费看美女性在线毛片视频| 最近中文字幕高清免费大全6| 免费观看人在逋| av在线天堂中文字幕| 色哟哟·www| 激情 狠狠 欧美| 精品久久久久久久久av| 亚洲熟妇熟女久久| 欧美精品国产亚洲| 国产精品一及| 免费不卡的大黄色大毛片视频在线观看 | 有码 亚洲区| 香蕉av资源在线| 午夜福利18| 中文亚洲av片在线观看爽| 波多野结衣巨乳人妻| 中文字幕人妻熟人妻熟丝袜美| 亚洲国产色片| 春色校园在线视频观看| videossex国产| or卡值多少钱| 最新中文字幕久久久久| 天天躁夜夜躁狠狠久久av| 九九在线视频观看精品| 国产伦精品一区二区三区四那| 亚洲不卡免费看| 美女 人体艺术 gogo| 日本欧美国产在线视频| 丝袜美腿在线中文| 18禁黄网站禁片免费观看直播| 一级黄色大片毛片| 久久久欧美国产精品| 欧美高清性xxxxhd video| 老司机午夜福利在线观看视频| 天天躁日日操中文字幕| 欧美性猛交黑人性爽| 午夜影院日韩av| 全区人妻精品视频| 久久精品国产亚洲av涩爱 | 亚洲精品国产av成人精品 | 免费无遮挡裸体视频| 中文资源天堂在线| 国产精品永久免费网站| 日日干狠狠操夜夜爽| 国产精品久久久久久精品电影| 搡老岳熟女国产| 国产一区二区三区av在线 | 国内精品一区二区在线观看| 欧美绝顶高潮抽搐喷水| 成人综合一区亚洲| 国产精品永久免费网站| 老司机福利观看| 午夜激情福利司机影院| 日韩亚洲欧美综合| 亚洲欧美清纯卡通| 激情 狠狠 欧美| 床上黄色一级片| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲欧美精品自产自拍| 伦精品一区二区三区| 亚洲av中文字字幕乱码综合| 精品人妻一区二区三区麻豆 | 国产在线精品亚洲第一网站| 亚洲人成网站在线播| 亚洲成a人片在线一区二区| 好男人在线观看高清免费视频| 在线观看午夜福利视频| 18禁裸乳无遮挡免费网站照片| 午夜福利视频1000在线观看| 午夜亚洲福利在线播放| 国产不卡一卡二| 免费看a级黄色片| 插逼视频在线观看| 亚洲性久久影院| 免费看av在线观看网站| 日日撸夜夜添| 丰满人妻一区二区三区视频av| 在线观看av片永久免费下载| 国内精品美女久久久久久| 久久久久国产精品人妻aⅴ院| 伊人久久精品亚洲午夜| 亚洲人成网站在线播放欧美日韩| 国内少妇人妻偷人精品xxx网站| 天堂网av新在线| 亚洲无线在线观看| 五月玫瑰六月丁香| 少妇猛男粗大的猛烈进出视频 | 亚洲一级一片aⅴ在线观看| 欧美精品国产亚洲| 美女内射精品一级片tv| 亚洲欧美精品综合久久99| 尾随美女入室| 美女被艹到高潮喷水动态| 乱系列少妇在线播放| 免费观看人在逋| 国产视频内射| 久久精品夜色国产| 欧洲精品卡2卡3卡4卡5卡区| 国产精品亚洲美女久久久| 精品一区二区三区人妻视频| 亚洲欧美日韩无卡精品| 亚洲av中文av极速乱| 大型黄色视频在线免费观看| 最新中文字幕久久久久| 久久精品国产亚洲av香蕉五月| 国产精品一区二区三区四区久久| 18禁裸乳无遮挡免费网站照片| 最近2019中文字幕mv第一页| 成年免费大片在线观看| 亚洲高清免费不卡视频| videossex国产| 日韩av在线大香蕉| 一夜夜www| 综合色丁香网| 少妇裸体淫交视频免费看高清| 一级毛片电影观看 | 变态另类成人亚洲欧美熟女| 日韩在线高清观看一区二区三区| 日日摸夜夜添夜夜添小说| 欧美极品一区二区三区四区| 色av中文字幕| 蜜桃亚洲精品一区二区三区| 日韩亚洲欧美综合| 亚洲国产精品成人久久小说 | 波多野结衣高清作品| 大香蕉久久网| 免费观看精品视频网站| 丝袜喷水一区| 在线天堂最新版资源| 又粗又爽又猛毛片免费看| 色哟哟·www| 国产成人影院久久av| 免费黄网站久久成人精品| 国产免费男女视频| 人人妻人人澡欧美一区二区| 在线观看av片永久免费下载| 国产精品av视频在线免费观看| 美女xxoo啪啪120秒动态图| 禁无遮挡网站| 国产亚洲av嫩草精品影院| 成人性生交大片免费视频hd| 一卡2卡三卡四卡精品乱码亚洲| 国产在线精品亚洲第一网站| 国产探花极品一区二区| 日产精品乱码卡一卡2卡三| 精品午夜福利在线看| 两个人视频免费观看高清| 国产精华一区二区三区| 麻豆国产av国片精品| 国产久久久一区二区三区| 啦啦啦观看免费观看视频高清| 三级男女做爰猛烈吃奶摸视频| 一级黄色大片毛片| 国产精品一区二区性色av| 波多野结衣高清无吗| 在线a可以看的网站| 亚洲第一区二区三区不卡| 日韩一本色道免费dvd| 一区福利在线观看| 久久久久久大精品| 夜夜爽天天搞| 禁无遮挡网站| 非洲黑人性xxxx精品又粗又长| 国产精品久久久久久久久免| 亚洲天堂国产精品一区在线| 最近最新中文字幕大全电影3| 久久久欧美国产精品| 又黄又爽又免费观看的视频| 99视频精品全部免费 在线| 国产精品综合久久久久久久免费| 村上凉子中文字幕在线| 日本成人三级电影网站| 国产探花极品一区二区| 亚洲欧美精品综合久久99| 女的被弄到高潮叫床怎么办| 国产人妻一区二区三区在| 一级毛片久久久久久久久女| 日韩欧美精品v在线| 看十八女毛片水多多多| 一个人看视频在线观看www免费| 国产伦精品一区二区三区四那| 婷婷精品国产亚洲av| 色5月婷婷丁香| 联通29元200g的流量卡| 国产色婷婷99| 亚洲欧美日韩高清在线视频| 欧美潮喷喷水| 国产在线男女| 一个人看的www免费观看视频| 我的老师免费观看完整版| 日韩精品有码人妻一区| 日日撸夜夜添| 我要搜黄色片| 美女cb高潮喷水在线观看| 欧美色欧美亚洲另类二区| 午夜久久久久精精品| 久久精品91蜜桃| 亚洲18禁久久av| 亚洲欧美日韩卡通动漫| 女人被狂操c到高潮| 国产在线精品亚洲第一网站| 尾随美女入室| 国产亚洲精品久久久久久毛片| 久久久成人免费电影| 99久久无色码亚洲精品果冻| 韩国av在线不卡| 成人一区二区视频在线观看| 国产亚洲精品久久久久久毛片| 黄片wwwwww| 欧美zozozo另类| 最近手机中文字幕大全| 乱码一卡2卡4卡精品| 97超碰精品成人国产| 12—13女人毛片做爰片一| 国产男靠女视频免费网站| 亚洲美女视频黄频| 哪里可以看免费的av片| 女人十人毛片免费观看3o分钟| 99久国产av精品国产电影| 久久精品国产99精品国产亚洲性色| 老女人水多毛片| 国产精品不卡视频一区二区| 一个人看的www免费观看视频| 亚洲真实伦在线观看| 亚洲性夜色夜夜综合| 在线免费十八禁| 国产精品永久免费网站| 欧美激情久久久久久爽电影| ponron亚洲| 91麻豆精品激情在线观看国产| 精品一区二区三区视频在线| 国产在线男女| 国产高潮美女av| 女生性感内裤真人,穿戴方法视频| 久久精品夜色国产| 亚洲av成人精品一区久久| 欧美+日韩+精品| 国内精品美女久久久久久| 亚洲国产欧美人成| 成人av在线播放网站| 国产aⅴ精品一区二区三区波| 国产av一区在线观看免费| 日韩在线高清观看一区二区三区| 亚洲欧美日韩东京热| 国产免费一级a男人的天堂| 午夜a级毛片| 成人漫画全彩无遮挡| 99久久精品国产国产毛片| 国产乱人偷精品视频| 国产精品亚洲一级av第二区| 国产男靠女视频免费网站| 国产蜜桃级精品一区二区三区| 久久久久久久午夜电影| 一级毛片我不卡| 麻豆乱淫一区二区| 亚洲精品乱码久久久v下载方式| 天堂网av新在线| 久久鲁丝午夜福利片| 91午夜精品亚洲一区二区三区| 91av网一区二区| 听说在线观看完整版免费高清| 亚洲av免费高清在线观看| 午夜久久久久精精品| 国产高清不卡午夜福利| 日韩精品有码人妻一区| 欧美激情在线99| 国产黄色视频一区二区在线观看 | 在线国产一区二区在线| 18+在线观看网站| 亚洲成人av在线免费| 精品一区二区三区人妻视频| 久久国产乱子免费精品| 我的女老师完整版在线观看| 成人漫画全彩无遮挡| 嫩草影院入口| 麻豆精品久久久久久蜜桃| 久久精品国产亚洲av天美| 午夜视频国产福利| 国产黄片美女视频| 91久久精品电影网| 日韩中字成人| 日本爱情动作片www.在线观看 | 亚洲成av人片在线播放无| 亚洲精品日韩在线中文字幕 | 亚洲激情五月婷婷啪啪| 日本色播在线视频| 国产精品精品国产色婷婷| 午夜激情福利司机影院| 99热精品在线国产| 寂寞人妻少妇视频99o| 国产探花极品一区二区| 亚洲av不卡在线观看| 亚洲av电影不卡..在线观看| 亚洲第一电影网av| 久久久精品大字幕| 成人欧美大片| 欧美最黄视频在线播放免费| 欧美成人精品欧美一级黄| 久久99热6这里只有精品| 热99re8久久精品国产| 能在线免费观看的黄片| 午夜精品在线福利| 亚洲最大成人手机在线| 99久久精品国产国产毛片| 美女cb高潮喷水在线观看| 男人的好看免费观看在线视频| 午夜老司机福利剧场| 99久久精品国产国产毛片| 国产欧美日韩一区二区精品| 一本一本综合久久| av女优亚洲男人天堂| 51国产日韩欧美| 欧美色视频一区免费| 别揉我奶头~嗯~啊~动态视频| 亚洲成人久久爱视频| 色视频www国产| 亚洲图色成人| 成人美女网站在线观看视频| 搞女人的毛片| 久久国产乱子免费精品| 日韩欧美免费精品| 99久国产av精品| 精品一区二区三区av网在线观看| 国产精品久久久久久久电影| 日本色播在线视频| 欧美激情在线99| 日本黄色片子视频| 搞女人的毛片| 日韩中字成人| 亚洲欧美日韩卡通动漫| 九九爱精品视频在线观看| 小说图片视频综合网站| 丰满的人妻完整版| 老司机影院成人| 精品国内亚洲2022精品成人| 欧美一区二区精品小视频在线| 国国产精品蜜臀av免费| 最近2019中文字幕mv第一页| 免费av观看视频| 亚洲成人久久性| 女生性感内裤真人,穿戴方法视频| 欧美xxxx性猛交bbbb| 国产色婷婷99| 91久久精品电影网| 97在线视频观看| 69av精品久久久久久| 蜜桃久久精品国产亚洲av| 内射极品少妇av片p| av国产免费在线观看| 日日摸夜夜添夜夜爱| 久久人妻av系列| 日本成人三级电影网站| 亚洲熟妇中文字幕五十中出| 国产黄色视频一区二区在线观看 | 日本黄色视频三级网站网址| 俄罗斯特黄特色一大片| 亚洲国产精品成人久久小说 | 欧美xxxx性猛交bbbb| 麻豆一二三区av精品| 成年女人看的毛片在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 久久6这里有精品| 精品99又大又爽又粗少妇毛片| 国产亚洲精品综合一区在线观看| 久久精品人妻少妇| 国产黄a三级三级三级人| 亚洲成a人片在线一区二区| 国产伦在线观看视频一区| 亚洲自拍偷在线| 性插视频无遮挡在线免费观看| 又爽又黄a免费视频| 三级国产精品欧美在线观看| 91久久精品国产一区二区三区| 老司机午夜福利在线观看视频| 少妇高潮的动态图| 日日撸夜夜添| 在现免费观看毛片| 精品久久久久久久久av| 欧美3d第一页| 国内精品一区二区在线观看| 久久精品国产清高在天天线| 禁无遮挡网站| 亚洲无线观看免费| 日本色播在线视频| 日韩强制内射视频| 久久久色成人| 亚洲性久久影院| av免费在线看不卡| 韩国av在线不卡| 国产黄片美女视频| 久久精品综合一区二区三区| 51国产日韩欧美| 亚洲成av人片在线播放无| 精品人妻视频免费看| 男插女下体视频免费在线播放| 99久久精品一区二区三区| 久久精品久久久久久噜噜老黄 | 亚洲不卡免费看| 成年女人看的毛片在线观看| 免费观看人在逋| 如何舔出高潮| 悠悠久久av| 91在线精品国自产拍蜜月| 内地一区二区视频在线| 精品少妇黑人巨大在线播放 | 亚洲va在线va天堂va国产| 99久久成人亚洲精品观看| 两个人的视频大全免费| 超碰av人人做人人爽久久| 99久久成人亚洲精品观看| 成年版毛片免费区| 久久久久久久久大av| 亚洲精品国产av成人精品 | 男女下面进入的视频免费午夜| 久久午夜亚洲精品久久| 久久亚洲国产成人精品v| 日本色播在线视频| 插阴视频在线观看视频| 欧美潮喷喷水| 国产午夜精品久久久久久一区二区三区 | 白带黄色成豆腐渣| 欧美bdsm另类| 亚洲欧美日韩高清专用| 看片在线看免费视频| 亚洲国产精品sss在线观看| 免费看美女性在线毛片视频| 亚洲美女搞黄在线观看 | 黄色视频,在线免费观看| 级片在线观看| 2021天堂中文幕一二区在线观| 99riav亚洲国产免费| 日韩成人伦理影院| 色吧在线观看| 男人狂女人下面高潮的视频| 欧美日韩综合久久久久久| 噜噜噜噜噜久久久久久91| 蜜桃久久精品国产亚洲av| 身体一侧抽搐| 成人特级av手机在线观看| a级毛色黄片| 国产精品亚洲一级av第二区| 少妇的逼好多水| 国产69精品久久久久777片| 99视频精品全部免费 在线| 97超视频在线观看视频| 成熟少妇高潮喷水视频| 在线天堂最新版资源| 97在线视频观看| 中文字幕免费在线视频6| 国产熟女欧美一区二区| 成人特级av手机在线观看| 直男gayav资源| 国产高潮美女av| а√天堂www在线а√下载| 国产成人a区在线观看| 日本五十路高清| 一区二区三区免费毛片| 99久久精品一区二区三区| 亚洲一级一片aⅴ在线观看| 美女高潮的动态| 成人特级黄色片久久久久久久| 久久人人爽人人爽人人片va| 成年av动漫网址| 日日啪夜夜撸| 亚洲av免费高清在线观看| 国产白丝娇喘喷水9色精品| 俄罗斯特黄特色一大片| 麻豆一二三区av精品| 色在线成人网| 少妇猛男粗大的猛烈进出视频 | 一级a爱片免费观看的视频| 午夜爱爱视频在线播放| 成人亚洲欧美一区二区av| 黄色视频,在线免费观看| 淫妇啪啪啪对白视频| 精品一区二区免费观看| 国产精品久久久久久久久免| 久久欧美精品欧美久久欧美| 18禁裸乳无遮挡免费网站照片| 成人永久免费在线观看视频| 日韩三级伦理在线观看| 老司机福利观看| 一区二区三区高清视频在线| 一级毛片我不卡| 特级一级黄色大片| 变态另类丝袜制服| 精品午夜福利视频在线观看一区| 久久欧美精品欧美久久欧美| 春色校园在线视频观看| h日本视频在线播放| 欧美性猛交╳xxx乱大交人| 美女被艹到高潮喷水动态| 在线免费观看的www视频| 啦啦啦啦在线视频资源| 成人毛片a级毛片在线播放| 男插女下体视频免费在线播放| 国产黄片美女视频| 亚洲av第一区精品v没综合| 国产色婷婷99| 97超视频在线观看视频| 日本在线视频免费播放| 精品久久久久久久久亚洲| 麻豆av噜噜一区二区三区| 久久久久久九九精品二区国产| 一本一本综合久久| 国产熟女欧美一区二区| 男女视频在线观看网站免费| 91在线观看av| 亚州av有码| 国内精品久久久久精免费| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲av电影不卡..在线观看| 久久欧美精品欧美久久欧美| 精品久久久久久久末码| 在线观看免费视频日本深夜| 免费搜索国产男女视频| 三级经典国产精品| 性插视频无遮挡在线免费观看| 亚洲国产精品合色在线| 亚洲av熟女| 白带黄色成豆腐渣| 精品久久久久久久末码| 成人特级黄色片久久久久久久| 免费观看的影片在线观看| av福利片在线观看| 亚洲va在线va天堂va国产| 国产精品一区二区三区四区免费观看 | 人妻少妇偷人精品九色| 国产极品精品免费视频能看的| 欧美xxxx性猛交bbbb| 一级a爱片免费观看的视频| 国内久久婷婷六月综合欲色啪| 高清日韩中文字幕在线| 久久久久久久久久久丰满| 日日撸夜夜添| 亚洲av成人精品一区久久| 国产高清视频在线观看网站| 美女被艹到高潮喷水动态| 亚洲一级一片aⅴ在线观看| 成人美女网站在线观看视频|