• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of C-terminal amidation and heptapeptide ring on the biological activities and advanced structure of amurin-9KY,a novel antimicrobial peptide identif ied from the brown frog,Rana kunyuensis

    2019-06-28 09:13:24FenZhangZhiLaiGuoYanChenLiLiHaiNingYuYiPengWang
    Zoological Research 2019年3期

    Fen Zhang,Zhi-Lai Guo,Yan Chen,Li Li,Hai-Ning Yu,Yi-Peng Wang,*

    1 Department of Pharmaceutical Sciences,College of Pharmaceutical Sciences,Soochow University,Suzhou Jiangsu 215123,China

    2 Department of Bioscience and Biotechnology,Dalian University of Technology,Dalian Liaoning 116023,China

    3 School of Life Sciences,Guizhou Normal University,Guiyang Guizhou 550001,China

    ABSTRACT Rana kunyuensis is a species of brown frog that lives exclusively on Kunyu Mountain,Yantai,China.In the currentstudy,a 279-bp cDNAsequence encoding a novel antimicrobial peptide(AMP),designated as amurin-9KY,was cloned from synthesized double-strand skin cDNA of R.kunyuensis. The amurin-9KY precursor was composed of 62 amino acid(aa)residues,whereas the mature peptide was composed of 14 aa and contained two cysteines forming a C-terminal heptapeptide ring(Rana box domain)and an amidated C-terminus.These structural characters represent a novel amphibian AMP family.Although amurin-9KY exhibited high similarity to the already identified amurin-9AM from R.amurensis,little is known about the structures and activities of amurin-9 family AMPs so far.Therefore,amurin-9KYand its three derivatives(amurin-9KY1-3)were designed and synthesized.The structures and activities were examined to evaluate the influence of C-terminal amidation and the heptapeptide ring on the activities and structure of amurin-9KY.Results indicated that C-terminal amidation was essential for antimicrobial activity,whereas both C-terminal amidation and the heptapeptide ring played roles in the low hemolytic activity.Circular dichroism(CD)spectra showed that the four peptides adopted an α-helical conformation in THF/H2O(v/v 1:1)solution,but a random coil in aqueous solution.Elimination of the C-terminal heptapeptide ring generated two free cysteine residues with unpaired thiol groups,

    Keywords:Antimicrobial peptides;Rana kunyuensis;Amurin-9KY;Heptapeptide ring;C-terminal amidation;Structure activity relationship

    INTRODUCTION

    Antimicrobial peptides(AMPs),which are small,cationic and amphipathic peptides widely distributed throughout organisms,are evolutionarily ancient weapons against environmental pathogens(Zasloff,2002).They are important components of innate immune systems and play key roles in the anti-infective immune responses of organisms(Radek&Gallo,2007).According to previous studies,AMPs possess strong and diverse antimicrobial activities against bacteria,fungi,viruses and even protozoa.The activities and specificities of AMPs can be affected by various factors such as molecular weight,sequence,charge,conformation,hydrophobicity and amphipathicity (Brogden,2005). The antimicrobial mechanisms are diverse among different AMPs.However,most AMPs are thought to function by forming pores in the membranes of target microorganisms,ultimately leading to disruption of cellular integrity(Nicolas,2009).

    Frogs belonging to the family Ranidae are widely distributed around the world,except for the Polar Regions,southern South America and most of Australia(Conlon et al.,2004).So far,347 ranid species have been identif ied worldwide,with most living in moist environments surrounded by diverse pathogens. As a result,they are continuously threatened by pathogenic invasions and have therefore evolved effective immune systems(Conlon et al.,2004;Zasloff,2002).Among these systems,AMPs play key roles in the anti-infective immune response of ranid frogs(Kreil,1994). To date,hundreds of AMPs have been characterized from various ranid species.According to their primary structures,they are divided into dozens of different families,including gaegurins,brevinins(1 and 2),ranalexins,ranatuerins(1 and 2),esculentins(1 and 2),palustrins,japonicins(1 and 2),nigrocin-2,tigerinins,temporins and odorranains(A-W)(Conlon,2004;Duda et al.,2002;He et al.,2012;Liet al.,2007;Matutte et al.,2000).

    Brown frogs,also known as wood frogs,are a group of ranid species belonging to Rana. Currently,there are 14 recognized brown frogs in China distributed in 30 provinces.Rana kunyuensis,an endemic brown frog species in China,exclusively lives on Kunyu Mountain,Yantai,Shandong Province.In the present study,we identif ied a novel AMPfamily member,named amurin-9KY,from the skin secretions of R.kunyuensis.The structure-function relationship of amurin-9KY was clarif ied to establish the effect of C-terminal amidation and the heptapeptide ring on the biological activities and advanced structures of amphibian AMPs.

    MATERIALS AND METHODS

    Frog collection

    Adult specimens of R.kunyuensis(n=5,weight range 5-10 g)were captured on Kunyu Mountain,Yantai,Shandong Province,China.The frogs were housed in plastic box and fed with yellow mealworms in the lab for one week until the experiment.

    Total RNA extraction,c DNA synthesis and amurin-9KYencoding c DNA screening

    An individual frog(female,8 g)was washed with distilled water twice and anaesthetized with ice before being euthanized with a needle.The dorsal skin was quickly removed with a small pair of scissors and placed into a pre-cooling homogenizer.The skin was then immediately homogenized into powder in liquid nitrogen and mixed with Trizol reagent(Invitrogen,CA,USA).The subsequent procedures were carried out according to the manufacturer’s instructions and the extracted total RNA was preserved in liquid nitrogen until use.All animal experimental protocols in the present study were approved by the Animal Care and Use Ethics Committee of Soochow University.

    Double-strand cDNA was synthesized using an In-Fusion SMARTerTMDirectional c DNA Library Construction Kit(Clontech,USA).The primers used for f irst strand synthesis were 3'In-Fusion SMARTer CDS Primer,5'-CGGGGTACG ATGAGACACCA(T)20VN-3'(N=A,C,G,or T;V=A,G,or C)and SMARTer V Oligonucleotide,5'-AAGCAGTGGTATCAA CGCAGAGTACXXXXX-3'(X=undisclosed base in the proprietary SMARTer oligo sequence). The enzyme used for f irst strand synthesis was SMARTScribeTMReverse Transcriptase and was supplied by the kit. The second strand was amplif ied by 50×Advantage 2 Polymerase Mix using 5'PCR Primer II A and 3'In-Fusion SMARTer PCR Primer,5'-CGGGGTACGATGAGACACCA-3'.The synthesized double-strand c DNA was stored at-80°C until use.

    The synthesized double-strand c DNA was used as a template to screen the c DNAs encoding the AMPs of R.kunyuensis. A sense degenerate oligonucleotide primer(RanaAMP,5'-CCAAAGATGTTSMCCWYGAAG-3',M=A or C;W=A or T;Y=C or T),designed according to the conserved signal peptide domain sequences of previously characterized AMPs from the skin of ranid frogs,and a 3'-antisense primer(3'-PCR,5'-CGGGGTACGATGAGACACCAT-3')were used for PCR analysis.The PCR procedure was as follows:4 min of denaturation at 95°C;30 cycles:denaturation at 95°C for 30 s,annealing at 57°C for 30 s,extension at 72°C for 1 min;f inal extension at 72°C for 10 min.The PCR product was purif ied by agarose gelelectrophoresis,cloned into p MDTM19-T vector(Takara,Dalian,China)and transformed into E.coli for sequencing.

    Peptide synthesis

    Amurin-9KY and its derivatives (amurin-9KY1-3)were chemically synthesized on an Applied Biosystems model 433A peptide synthesizer(ABI,USA)according to the manufacturer’s standard protocols. The crude peptides were purif ied by reversed-phase high performance liquid chromatography(RP-HPLC)to a f inal purity higher than 95%and their identities were conf irmed by automated Edman degradation and matrix-assisted laser desorption/ionization-time-of-f light mass spectrometry(MALDI-TOF-MS).The intra-peptide disulf ide bridge and N-terminal amidation were accurately formed in the synthesis process.

    Antimicrobial assay

    In total, eight microbial strains, including gram-positive bacteria,gram-negative bacteria and fungi,were used for the antimicrobial assay. The assays included inhibition zone examination and minimum inhibitory concentration(MIC)determination and were conducted as described in our previous papers(He et al.,2012;Lu et al.,2010).Briefly,microbes were inoculated in Mueller-Hinton broth(MH)and incubated at 37°C to the exponential phase.The inoculum was then diluted with fresh MH broth to 106CFU/mL,and 50-μL bacterial dilutions were mixed with serial dilutions of peptides(50μL)in 96-well microtiter plates.The plates were incubated at 37°C for 18 h and the minimum concentrations at which no visible growth of bacteria occurred were recorded as MIC values.

    Hemolytic assay

    Hemolytic assay was conducted as previously reported(Wang et al.,2011).Fresh human erythrocytes were collected from a healthy donor and washed with 0.9%saline.The erythrocytes were re-suspended with 0.9%saline and incubated with serial peptide dilutions at 37°C for 30 min.The mixtures were then centrifuged at 2 000 r/min at room temperature for 5 min,after which the supernatants were removed and their absorbance was measured at 540 nm.We used 1%(v/v)Triton X-100 to determine the 100%hemolysis,with 0.9%saline used as the negative control.

    Anti-oxidant assay

    As a stable nitrogen radical,2,2-diphenyl-1-picrylhydrazyl(DPPH,Sigma,USA)has been widely used to examine the anti-oxidant activities of biological samples,drugs and foods.In the present study,the DPPH radical scavenging activities of the peptides were determined according to our previously described method(Zhang et al.,2012). Brief ly,92μL of 6×10-5mol/L DPPH radical dissolved in methanol was mixed with 8μL of peptide solution(2 mg/mL,mass ratio of peptide to DPPH of~3:1).The mixture was kept in the dark for 30 min at room temperature and then the amount of reduced DPPH was quantif ied by measuring the decrease in absorbance at 520 nm. The DPPH radical scavenging percentage(S%)of the peptides was calculated according to the formula:S%=(Ablank-Asample)×100/Ablank.Deionized water was used as the negative control.

    Circular dichroism(CD)spectroscopy

    To investigate the secondary structure of amurin-9KY and its derivatives(amurin-9KY1-3),CD spectroscopy was performed using a Jasco J-810 spectrophotometer(JASCO,Japan).Samples with a constant peptide concentration of 0.12 mg/mL were prepared in two different solvents,i.e.,water and 50%(v/v)trif luoroethanol(TFE)-water,and added to a quartz optical cell with a path length of 0.1 cm at 25°C.The spectra were averaged over three consecutive scans,followed by subtraction of the CD signal of the solvent.

    Scanning electron microscopy(SEM)

    The surface morphologies of the AMP-treated microbes were observed by SEM,which can partly reveal the antimicrobial mechanisms of AMPs. In the present study,S.aureus ATCC25923 was used to evaluate the potential antimicrobial mechanism of amurin-9KY.The experiment was carried out according to the method described by Lu et al.(2010).The concentration of amurin-9KY used in the experiment was 1×MIC.The treatment conditions of the bacterial and amurin-9KY mixture were 37°C for 30 min.After that,samples were prepared,and photographs were taken.Ampicillin was used as the positive control in the experiment.

    RESULTS

    c DNA cloning and characterization of amurin-9KY

    A 279-bp c DNA sequence (GenBank accession No.:JX421759)encoding a 62-aa precursor was cloned from the constructed skin c DNA library of R.kunyuensis. The nucleotide sequence of the c DNA and the deduced amino acid sequence are shown in Figure 1. To conf irm the existence and accuracy of the cloned cDNA sequence,two antisense specif ic primers, that is, RKAMP-R1(5'-GCCAAGACACCCGATGTGTATTTAG-3')and RKAMP-R2(5'-CCCTTTTCCACATTTTCTGGTAATT-3'),were designed according to the cloned cDNA sequence and coupled with the sense specif ic primer RanaAMP for PCR(synthesized skin cDNA library of R.kunyuensis was used as a template).The PCR products were sequenced and verif ied the identity of the cDNA sequence above(data not shown).

    Figure 1 Nucleic acid sequence of c DNA encoding the precursor of amurin-9KYThe signal peptide domain is indicated in italics,the putative mature peptide is boxed and the stop codon is indicated by an asterisk(*).

    The 62-aa AMP precursor deduced from the cDNA sequence included an N-terminal signal peptide domain of 22 aa,an acidic amino acid residue-rich(Asp and Glu)spacer peptide domain and a mature peptide domain of 16 aa residues.There was a conserved dibasic cleavage site Lys-Arg(K-R)between the spacer peptide domain and mature peptide domain,which was likely cleaved by trypsin-like proteases followed by mature peptide release.Sequence alignment of the mature peptide with the NCBIprotein database revealed that it possessed highest primary structure similarity with amurin-9AM(GenBank accession No.:AEP84587).Hence,it was designated amurin-9KYaccording to the origin of R.kunyuensis.

    Amurin-9KY was also found to possess high sequence similarity to the temporin AMP family,especially the C-terminal Gly-Lys(G-K)di-residue,which is regarded as an amidation site(Figure 2).However,unlike the temporin family,amurin-9KY exhibited two cysteine residues forming an intra-molecular disulfide bridge,which appeared as a C-terminal heptapeptide ring(Rana box domain).The physical and chemical parameters of amurin-9KY were computed by ProtParam(http://web.expasy.org/protparam/),demonstrating a molecular weight of 1 584.97,theoretical pIof 8.96 and net charge of+2.

    To evaluate the influence of C-terminal amidation and the heptapeptide ring on the biological activities of the peptide in vitro,three derivatives(amurin-9KY1-3)were designed and chemically synthesized,with their biological functions then examined(Table 1).

    Antimicrobial and hemolytic assays

    As listed in Table 2,amurin-9KY was active against the tested gram-positive bacteria S.aureus ATCC25923,S.aureus 090223+(IS)and N.asteroids 090312+(IS),and showed the strongest potency against S.aureus ATCC25923,with an MIC of 4.68μg/mL.However,amurin-9KY did not show any antimicrobial activity against the tested gram-negative bacteria or fungi,consistent with the features of the temporin family(Conlon,2004).The derivative amurin-9KY1 exhibited less potent activities against all three gram-positive bacteria.Interestingly,unlike amurin-9KY,amurin-9KY1 was able to kill the eukaryotic microbe Slime mold 090413(IS)with an MIC value of 75μg/mL.However,derivatives amurin-9KY2 and amurin-9KY3 exhibited no activities against any of the tested microbes.

    The hemolytic activities of amurin-9KY and the three derivatives were also examined. All four peptides showed slight hemolytic activity against fresh human erythrocytes at concentrations of 100μg/mL,with hemolytic rates of 2%,15.4%,17.9%and 20.8%,respectively.

    Figure 2 Amino acid sequence comparison of amurin-9KY with amurin-9AM from R.amurensis and temporin family AMPs from other ranid frogsAll AMP sequences used were derived from the NCBIprotein database.The two cysteine residues of amurin-9KY are indicated in gray shadow.The length of the AMPs is shown and species from which the AMPs are derived are on the right.Asterisks(*)indicate identical residues.

    Table 1 Structural parameters of amurin-9KY and its derivatives

    Table 2 Antimicrobial activities of amurin-9KY and its derivatives

    Anti-oxidant activity

    To date,many peptides exhibiting anti-oxidant activity have been identif ied from several species of ranid frogs,which constitute the excellent skin anti-radiation defense system of ranid frogs(He et al.,2012;Liu et al.,2010;Lu et al.,2010;Yang et al.,2009).Most are dual-functional peptides,possessing both anti-oxidant and antimicrobial activities(He et al.,2012;Liu et al.,2010;Lu et al.,2010;Yang et al.,2009).In the present study,the anti-oxidant activities of amurin-9KY and the three derivatives were also evaluated(Figure 3).Amurin-9KY exhibited slight concentration-dependent DPPH radical scavenging activity,with an optimal S%value of 30.6%at a concentration of 400μg/mL.In contrast,the derivatives amurin-9KY1 and amurin-9KY3 exhibited strong anti-oxidant activities,with S%values exceeding 60%at concentrations as low as 50μg/mL.Compared to the other three peptides,amurin-9KY2 exhibited the lowest anti-oxidant activity,with an S%value of 20%at a concentration of 400μg/mL.

    Solution structures of amurin-9KYs

    The CD spectra of amurin-9KY in water showed a negative band at 200 nm,indicating a random-coil conformation.In the membrane-mimetic solvent(50%TFE-water)the presence of one positive band(190 nm)and two large negative dichroic bands at 208 and 222 nm(-50 mdeg)in amurin-9KY was consistent with theα-helical conformations(Figure 4A).For amurin-9KY1-3,the negative dichroic bands at 208 and 222 nm were much smaller,about-10 mdeg. Theα-helical structure of most active AMPs is thought to be responsible for the formation of pores in the membranes of target organisms,thus disrupting metabolic activity(Brogden,2005).The CD results support the concept that amurin-9KY most likely killed the bacteria through membrane disruption.In addition,the much smaller negative 208 and 222 nm dichroic bands were in good agreement with the antimicrobial activity data for amurin-9KY1-3.

    Effects of amurin-9KYon microbial membrane morphology by SEM

    Previous studies have demonstrated that AMPs achieve antimicrobial activity by disrupting various key microorganism cell processes, with some AMPs possessing multiple mechanisms(Brogden,2005;Nguyen et al.,2011).There are many specif ic targets in microbial cells for AMPs,including externalproteins,outer surface lipids,outer membrane proteins(gram-negative bacteria),inner membrane,integral membrane proteins,nucleic acids and intracellular proteins(Liu et al.,2017,2018;Nguyen et al.,2011).Among them,disrupting the integrity of the microbial inner membrane is the most common mode for AMPs(Liu et al.,2017,2018;Nguyen et al.,2011),the disruption of which results in obvious morphological alteration. Here,the antimicrobial results showed that S.aureus ATCC25923 was most sensitive to amurin-9KY,and therefore it was selected to examine the induced membrane morphological alterations by SEM.As illustrated in Figure 5,the untreated S.aureus cells exhibited normal shape and smooth surfaces(Figure 5A).In contrast,after treatment with amurin-9KY for 30 min,the cellular shape and surface of S.aureus exhibited obvious alterations(Figure 5B).The bacterial cells showed rough surfaces,prevalent membrane vesicles,and cellular fragments,implying that amurin-9KY might act on the bacterial membrane and induce disruption of membrane integrity.Ampicillin-treated S.aureus exhibited no signif icant morphological alteration compared with the untreated bacteria(Figure 5C),except for the appearance of many granules on the surfaces.Ampicillin usually kills bacteria by disturbing the synthesis of the cell wall.

    Figure 3 Anti-oxidant activity of amurin-9KY and derivatives(amurin-9KY1-3)Different concentrations of peptides were incubated with DPPH solution at room temperature for 30 min,and then the amount of reduced DPPH was quantif ied by measuring the decrease in absorbance at 520 nm.Results represent mean values of three independent experiments.

    Figure 4 CD spectra of the four peptides in different solutionsA:Amurin-9KY;B-D:Amurin-9KY1-3.

    Figure 5 Scanning electron micrographs of S.aureus treated with amurin-9KYA:S.aureus ATCC25923 control;B:Amurin-9KY-treated S.aureus ATCC25923;C:Ampicillin-treated S.aureus ATCC25923.

    DISCUSSION

    Among the AMP families identif ied from ranid species,the C-terminal heptapeptide ring(Rana box domain,two cysteine residues connected by a disulf ide bridge)is a common structural feature,which broadly exists in families such as brevinin-1,brevinin-2,esculentin-1,esculentin-2,ranatuerin-1,ranalexin,japonicin-1,nigrocin-2,odorranain-C,odorranain-D,odorranain-F,odorranain-G,odorranain-H,odorranain-P1 and hainanenin (Conlon,2004; Duda et al.,2002; He et al.,2012; Li et al.,2007; Matutte et al.,2000). In addition,other cyclic ranid AMPs have also been identif ied,including those with a C-terminal octapeptide ring(japonicin-2),C-terminal hexapeptide ring(ranatuerin-2,amolopin-6),middle heptapeptide ring(palustrin-2)or ring formed by more than seven amino acids(odorranain-A,odorranain-B,odorranain-J,odorranain-P2,odorranain-T,odorranain-U and ranacyclins)(Conlon,2004;Duda et al.,2002;He et al.,2012;Lietal.,2007;Matutte et al.,2000).To date,three AMP families characterized with C-terminal amidation have been identif ied from ranid frogs,including temporins,ranacyclins and tiannanenin(Conlon,2004;He et al.,2012;Liet al.,2007).Among the AMP families identif ied from ranid frogs so far,ranacyclin is a unique family possessing both a disulf ide bridge-formed ring and amidated C-terminus(Mangoni et al.,2003). The ring structure of ranacyclins is composed of 11 residues and is located in the middle of the sequences.Comparatively,the novel AMP in the present study(amurin-9KY)is the f irst reported to have both a C-terminal heptapeptide ring and amidated C-terminus.

    The three derivatives(amurin-9KY1-3)were designed here to evaluate the inf luence of C-terminal amidation and the C-terminal heptapeptide ring on the biological activities of amurin-9KY.The four peptides were chemically synthesized and their in vitro functions were subsequently examined.The antimicrobial assay results indicated that C-terminal amidation played an important role in the antimicrobial activity of amurin-9KY,whereas the heptapeptide ring contributed no obvious inf luence.SEM demonstrated that amurin-9KY induced obvious bacterial membrane morphological alteration,indicating that it might act through the disruption of bacterial membrane integrity.

    Amurin-9KY possessed strong antimicrobial activity against gram-positive bacteria and low hemolytic activity,consistent with the features of temporin family AMPs.Previous study of temporin-1Od from the Japanese mountain brown frog R.ornativentris demonstrated that it possessed high antimicrobial potency towards S.aureus due to a positive charge associated with the free N-terminal amino group(Kim et al.,2001).The current study further conf irmed that the free amino group is essential for the antimicrobial activity of AMPs,no matter at which terminus(N or C)it is located.Previous structure-activity analysis of brevinin 1E,a brevinin-1 family AMP identif ied from R.esculenta,demonstrated that the elimination of the intra-disulf ide bridge did not greatly affect the antimicrobial activity(Kwon et al.,1998),which was further verif ied in the present result.

    Regarding hemolytic activity,both C-terminal amidation and the heptapeptide ring signif icantly reduced the hemolytic activity of amurin-9KY compared with the derivatives without these two structural features. Elimination of the C-terminal heptapeptide ring greatly increased the anti-oxidant activity of amurin-9KY,whereas elimination of C-terminal amidation did not affect it at all.These results are likely because the unpaired thiol group of cysteine generated after elimination of the heptapeptide ring acted as an electron donator to the radical,which is crucial for the anti-oxidant activity of peptides(Akerstr?m et al.,2007;Liu et al.,2010).

    COMPETING INTERESTS

    The authors declare that they have no competing interests.

    AUTHORS’CONTRIBUTIONS

    F.Z.and Z.L.G.performed the experiments.Y.C.performed the CD and SEM analyses.Y.P.W.and L.L.designed the study and analyzed the data.Y.P.W.and H.N.Y.wrote and revised the paper.All authors read and approved the f inal version of the manuscript.

    最近最新免费中文字幕在线| 亚洲精华国产精华精| 亚洲国产欧美一区二区综合| 久久久久久亚洲精品国产蜜桃av| 成人欧美大片| 久久久久久久久中文| 久久久久九九精品影院| 国内精品一区二区在线观看| 成人18禁高潮啪啪吃奶动态图| 国产97色在线日韩免费| 日本 欧美在线| 欧美日韩亚洲综合一区二区三区_| 亚洲无线在线观看| 久久久水蜜桃国产精品网| 欧美午夜高清在线| 久久精品国产清高在天天线| 人人妻,人人澡人人爽秒播| 精品人妻1区二区| 国产av在哪里看| 波多野结衣高清无吗| 91字幕亚洲| 亚洲成人中文字幕在线播放| 18禁黄网站禁片免费观看直播| 精华霜和精华液先用哪个| 亚洲国产精品999在线| 久久精品人妻少妇| 精品乱码久久久久久99久播| av超薄肉色丝袜交足视频| aaaaa片日本免费| 观看免费一级毛片| 又紧又爽又黄一区二区| avwww免费| 免费高清视频大片| 好男人在线观看高清免费视频| 国产精品久久电影中文字幕| 成人永久免费在线观看视频| 女人高潮潮喷娇喘18禁视频| 久久久国产精品麻豆| 在线观看午夜福利视频| 久久久精品大字幕| 97碰自拍视频| 最近视频中文字幕2019在线8| 午夜老司机福利片| 精品高清国产在线一区| 欧美av亚洲av综合av国产av| 夜夜爽天天搞| 亚洲人成网站高清观看| 大型黄色视频在线免费观看| 国产伦人伦偷精品视频| 国产麻豆成人av免费视频| 一本精品99久久精品77| 白带黄色成豆腐渣| 美女免费视频网站| 亚洲国产欧美人成| 日韩有码中文字幕| 可以在线观看毛片的网站| 亚洲欧美精品综合一区二区三区| 99re在线观看精品视频| 亚洲性夜色夜夜综合| 国产成人影院久久av| 国产亚洲欧美98| 久久热在线av| 在线观看免费视频日本深夜| 欧美黑人精品巨大| 在线观看美女被高潮喷水网站 | 看片在线看免费视频| 精品福利观看| 一级a爱片免费观看的视频| 亚洲精品美女久久久久99蜜臀| 亚洲片人在线观看| 欧美性长视频在线观看| 色老头精品视频在线观看| 精品福利观看| 国内少妇人妻偷人精品xxx网站 | 国产精品美女特级片免费视频播放器 | 亚洲一区中文字幕在线| 国产亚洲精品久久久久久毛片| 国产精品综合久久久久久久免费| 99国产极品粉嫩在线观看| 国产一区在线观看成人免费| 亚洲片人在线观看| 99久久精品热视频| 国产精品,欧美在线| 亚洲成人国产一区在线观看| 精品乱码久久久久久99久播| 国产一区二区在线av高清观看| 中文字幕人妻丝袜一区二区| 1024香蕉在线观看| 午夜免费观看网址| 国产亚洲欧美在线一区二区| 精品免费久久久久久久清纯| 日韩av在线大香蕉| 日本一二三区视频观看| 久久午夜亚洲精品久久| 亚洲人成伊人成综合网2020| 国产精品久久电影中文字幕| 欧美中文日本在线观看视频| 高清在线国产一区| 亚洲av成人精品一区久久| 国产aⅴ精品一区二区三区波| svipshipincom国产片| 欧美日本视频| 国产精品影院久久| 叶爱在线成人免费视频播放| 在线看三级毛片| 淫妇啪啪啪对白视频| 成人欧美大片| 一进一出抽搐gif免费好疼| 久久久久久久久久黄片| 男插女下体视频免费在线播放| √禁漫天堂资源中文www| 亚洲自偷自拍图片 自拍| 全区人妻精品视频| 日韩欧美国产一区二区入口| 嫩草影院精品99| 嫁个100分男人电影在线观看| 国产精品久久电影中文字幕| 国产精品1区2区在线观看.| av国产免费在线观看| 亚洲无线在线观看| 久久久国产成人免费| 在线播放国产精品三级| 日韩中文字幕欧美一区二区| 丰满的人妻完整版| 男插女下体视频免费在线播放| 精品久久久久久成人av| 欧美不卡视频在线免费观看 | 十八禁人妻一区二区| 午夜成年电影在线免费观看| 日本成人三级电影网站| 久久精品国产亚洲av香蕉五月| 俄罗斯特黄特色一大片| 制服诱惑二区| 日韩大尺度精品在线看网址| 亚洲国产高清在线一区二区三| 香蕉av资源在线| 狠狠狠狠99中文字幕| 最新在线观看一区二区三区| 久久久久精品国产欧美久久久| 午夜激情av网站| 日本精品一区二区三区蜜桃| 婷婷丁香在线五月| 国产爱豆传媒在线观看 | 精品久久久久久久久久久久久| 欧美精品亚洲一区二区| 久久久国产精品麻豆| 精品午夜福利视频在线观看一区| 三级国产精品欧美在线观看 | av片东京热男人的天堂| 熟女电影av网| 日本免费a在线| 正在播放国产对白刺激| 久久人人精品亚洲av| 日本 欧美在线| 脱女人内裤的视频| 一区福利在线观看| 国内精品久久久久久久电影| 久久香蕉精品热| 九九热线精品视视频播放| 午夜福利成人在线免费观看| 亚洲 欧美 日韩 在线 免费| 日本免费a在线| 亚洲欧洲精品一区二区精品久久久| 久久久久久人人人人人| 欧美在线一区亚洲| 午夜日韩欧美国产| 黄片小视频在线播放| 中文字幕精品亚洲无线码一区| 欧美激情久久久久久爽电影| 女生性感内裤真人,穿戴方法视频| www国产在线视频色| 精品少妇一区二区三区视频日本电影| 舔av片在线| 亚洲国产精品久久男人天堂| 999久久久精品免费观看国产| 国产91精品成人一区二区三区| 亚洲欧美精品综合一区二区三区| 国产高清视频在线播放一区| 久久精品夜夜夜夜夜久久蜜豆 | 日本a在线网址| 国产欧美日韩一区二区精品| 欧美大码av| 亚洲熟女毛片儿| 19禁男女啪啪无遮挡网站| 久久久国产成人精品二区| 亚洲精品一卡2卡三卡4卡5卡| 国产黄a三级三级三级人| 老司机午夜福利在线观看视频| 亚洲电影在线观看av| 极品教师在线免费播放| 国产探花在线观看一区二区| 国产主播在线观看一区二区| 最新在线观看一区二区三区| 一区二区三区高清视频在线| 免费人成视频x8x8入口观看| 欧美乱码精品一区二区三区| 美女高潮喷水抽搐中文字幕| 国产激情久久老熟女| 欧美一区二区精品小视频在线| 日日干狠狠操夜夜爽| 国内精品久久久久精免费| 亚洲乱码一区二区免费版| 日韩大码丰满熟妇| 亚洲一区中文字幕在线| 极品教师在线免费播放| 99精品在免费线老司机午夜| 免费av毛片视频| 精品一区二区三区四区五区乱码| 精品国产亚洲在线| av超薄肉色丝袜交足视频| 麻豆一二三区av精品| 男女下面进入的视频免费午夜| 99在线视频只有这里精品首页| 又黄又粗又硬又大视频| 国产精品日韩av在线免费观看| 欧美中文综合在线视频| 国产精品久久久久久亚洲av鲁大| 国产精华一区二区三区| 国产黄片美女视频| 搡老妇女老女人老熟妇| 日韩欧美在线乱码| 男女床上黄色一级片免费看| 久久伊人香网站| 亚洲av成人不卡在线观看播放网| 午夜精品在线福利| 三级男女做爰猛烈吃奶摸视频| 90打野战视频偷拍视频| 久久人妻av系列| 最好的美女福利视频网| 免费在线观看黄色视频的| av免费在线观看网站| 国产一区二区三区在线臀色熟女| 亚洲av成人精品一区久久| 国产精品久久久av美女十八| 99热6这里只有精品| 国产精品亚洲一级av第二区| 色播亚洲综合网| 久久 成人 亚洲| 在线永久观看黄色视频| 夜夜夜夜夜久久久久| 妹子高潮喷水视频| www.www免费av| 免费在线观看视频国产中文字幕亚洲| 免费高清视频大片| 国产精品久久电影中文字幕| 亚洲欧美日韩无卡精品| 热99re8久久精品国产| 变态另类成人亚洲欧美熟女| 99国产精品一区二区蜜桃av| 一本大道久久a久久精品| 国产av不卡久久| 国产成人啪精品午夜网站| 99国产极品粉嫩在线观看| 青草久久国产| 又紧又爽又黄一区二区| 日韩av在线大香蕉| 日本熟妇午夜| 久久中文字幕人妻熟女| 男男h啪啪无遮挡| 精品国产美女av久久久久小说| 亚洲一区高清亚洲精品| 久久久久亚洲av毛片大全| 国产亚洲av嫩草精品影院| 成人国产综合亚洲| 51午夜福利影视在线观看| 国产1区2区3区精品| 午夜免费观看网址| 色尼玛亚洲综合影院| 免费看a级黄色片| 亚洲色图 男人天堂 中文字幕| 激情在线观看视频在线高清| 免费观看人在逋| 黄色毛片三级朝国网站| 波多野结衣高清作品| 午夜成年电影在线免费观看| 日韩 欧美 亚洲 中文字幕| 精品无人区乱码1区二区| 亚洲人成网站在线播放欧美日韩| 日韩av在线大香蕉| 日韩精品中文字幕看吧| 亚洲精品中文字幕一二三四区| 一区二区三区国产精品乱码| 久久香蕉国产精品| 99精品在免费线老司机午夜| 亚洲18禁久久av| 国产久久久一区二区三区| 午夜免费成人在线视频| 午夜老司机福利片| 亚洲精品中文字幕在线视频| 91国产中文字幕| 国产精品99久久99久久久不卡| 俄罗斯特黄特色一大片| 韩国av一区二区三区四区| 哪里可以看免费的av片| 久久午夜综合久久蜜桃| 久久精品国产亚洲av香蕉五月| 夜夜夜夜夜久久久久| 欧美一区二区精品小视频在线| 午夜福利在线观看吧| 国产精品亚洲美女久久久| 久久久久久久午夜电影| 国产99久久九九免费精品| 97人妻精品一区二区三区麻豆| 久久这里只有精品19| 亚洲精品在线美女| 香蕉国产在线看| 在线观看免费视频日本深夜| 免费看十八禁软件| 在线观看免费视频日本深夜| 18禁裸乳无遮挡免费网站照片| 手机成人av网站| 国产伦人伦偷精品视频| 国产激情偷乱视频一区二区| 在线视频色国产色| 亚洲成av人片在线播放无| 亚洲精品在线美女| 黄片小视频在线播放| 日韩有码中文字幕| 亚洲 欧美一区二区三区| 国产亚洲精品第一综合不卡| 黄频高清免费视频| 天堂影院成人在线观看| 每晚都被弄得嗷嗷叫到高潮| 亚洲九九香蕉| 色尼玛亚洲综合影院| 日本黄色视频三级网站网址| 露出奶头的视频| 亚洲国产精品久久男人天堂| 国产激情欧美一区二区| 国产成人一区二区三区免费视频网站| 国产精品一区二区三区四区免费观看 | 精品不卡国产一区二区三区| 久久中文看片网| 国产成人av教育| 亚洲av五月六月丁香网| 国产av不卡久久| www国产在线视频色| 亚洲精品一卡2卡三卡4卡5卡| 国产精品九九99| 精品日产1卡2卡| 国产一区二区三区视频了| 国产精品av久久久久免费| 欧洲精品卡2卡3卡4卡5卡区| 久久人人精品亚洲av| 亚洲精品久久国产高清桃花| 熟妇人妻久久中文字幕3abv| 亚洲精品中文字幕一二三四区| 久久精品亚洲精品国产色婷小说| 一个人免费在线观看电影 | 久久久国产欧美日韩av| 国产69精品久久久久777片 | 亚洲性夜色夜夜综合| 久久久久久久久中文| 19禁男女啪啪无遮挡网站| 国产成人av激情在线播放| 美女高潮喷水抽搐中文字幕| 久久国产精品人妻蜜桃| 亚洲av成人av| 精品久久久久久久人妻蜜臀av| 亚洲精品国产精品久久久不卡| 国产精品电影一区二区三区| 午夜福利免费观看在线| 色综合婷婷激情| 露出奶头的视频| 午夜日韩欧美国产| 在线观看美女被高潮喷水网站 | 一个人免费在线观看的高清视频| 亚洲国产日韩欧美精品在线观看 | 黄色视频不卡| 在线国产一区二区在线| 在线观看美女被高潮喷水网站 | or卡值多少钱| 无限看片的www在线观看| 欧美日韩乱码在线| 亚洲av五月六月丁香网| 丝袜人妻中文字幕| 国产99白浆流出| 真人一进一出gif抽搐免费| 老汉色∧v一级毛片| 1024手机看黄色片| 每晚都被弄得嗷嗷叫到高潮| 热99re8久久精品国产| 国产精品影院久久| 久久草成人影院| 中文字幕人成人乱码亚洲影| www.熟女人妻精品国产| 日本精品一区二区三区蜜桃| 看片在线看免费视频| 亚洲av电影在线进入| 亚洲午夜理论影院| 日本a在线网址| 日韩精品中文字幕看吧| 欧美成人一区二区免费高清观看 | 久久精品国产清高在天天线| 午夜精品一区二区三区免费看| 老汉色av国产亚洲站长工具| 色综合婷婷激情| 久久中文字幕人妻熟女| 国产精品一区二区三区四区免费观看 | 亚洲成人中文字幕在线播放| 日本三级黄在线观看| 久久天堂一区二区三区四区| 啦啦啦观看免费观看视频高清| 亚洲精品粉嫩美女一区| 亚洲av成人一区二区三| 亚洲七黄色美女视频| 老司机在亚洲福利影院| 91国产中文字幕| 99久久久亚洲精品蜜臀av| 一进一出抽搐动态| 少妇人妻一区二区三区视频| 欧洲精品卡2卡3卡4卡5卡区| 国产成年人精品一区二区| 亚洲 欧美一区二区三区| 欧美性猛交黑人性爽| 国产熟女xx| 亚洲精品中文字幕一二三四区| 白带黄色成豆腐渣| 国产亚洲av嫩草精品影院| 少妇粗大呻吟视频| 国产区一区二久久| 色噜噜av男人的天堂激情| 亚洲第一电影网av| 国产av不卡久久| 久久久久久久久中文| 日韩欧美免费精品| 欧美精品亚洲一区二区| 后天国语完整版免费观看| 亚洲 国产 在线| 国产69精品久久久久777片 | 桃红色精品国产亚洲av| 999久久久国产精品视频| 两人在一起打扑克的视频| 亚洲国产精品999在线| av福利片在线观看| 最近最新免费中文字幕在线| 999精品在线视频| bbb黄色大片| 亚洲欧美日韩无卡精品| 国产av一区在线观看免费| 丰满人妻一区二区三区视频av | 18美女黄网站色大片免费观看| 亚洲国产精品合色在线| 久久精品综合一区二区三区| 亚洲精品国产一区二区精华液| 久久久国产欧美日韩av| 日韩欧美在线二视频| 亚洲激情在线av| 免费在线观看日本一区| 免费看美女性在线毛片视频| av免费在线观看网站| 两性夫妻黄色片| 日韩精品青青久久久久久| 免费看日本二区| 在线永久观看黄色视频| 丁香六月欧美| 日本a在线网址| 精品少妇一区二区三区视频日本电影| 久99久视频精品免费| 国产男靠女视频免费网站| 欧美另类亚洲清纯唯美| 国产精品,欧美在线| 免费一级毛片在线播放高清视频| 51午夜福利影视在线观看| 在线观看66精品国产| 久9热在线精品视频| 人人妻人人澡欧美一区二区| 日本在线视频免费播放| 国产午夜精品久久久久久| 在线观看舔阴道视频| 欧美成人性av电影在线观看| 国产精品久久久久久久电影 | 欧美成狂野欧美在线观看| www.自偷自拍.com| 亚洲男人的天堂狠狠| 宅男免费午夜| 亚洲av成人一区二区三| 一个人观看的视频www高清免费观看 | 香蕉久久夜色| 午夜福利在线观看吧| 国产精品免费视频内射| 母亲3免费完整高清在线观看| 又黄又爽又免费观看的视频| 香蕉国产在线看| 午夜视频精品福利| 黄色片一级片一级黄色片| 国产高清视频在线播放一区| 国产v大片淫在线免费观看| 国产精品,欧美在线| 精品高清国产在线一区| 一个人观看的视频www高清免费观看 | 亚洲欧美日韩东京热| 亚洲国产欧美一区二区综合| 国内少妇人妻偷人精品xxx网站 | 亚洲色图av天堂| 欧美色视频一区免费| 女人高潮潮喷娇喘18禁视频| 精品久久久久久久久久久久久| 国产一区二区激情短视频| 欧美 亚洲 国产 日韩一| 高清毛片免费观看视频网站| 99国产极品粉嫩在线观看| 久久伊人香网站| 女生性感内裤真人,穿戴方法视频| 欧美 亚洲 国产 日韩一| 午夜免费激情av| 婷婷精品国产亚洲av在线| svipshipincom国产片| 国产一区二区在线av高清观看| 国产精品乱码一区二三区的特点| 欧美成狂野欧美在线观看| 亚洲乱码一区二区免费版| 午夜久久久久精精品| 亚洲av电影在线进入| 国产精品98久久久久久宅男小说| 精品熟女少妇八av免费久了| 男人舔女人下体高潮全视频| 日日夜夜操网爽| 亚洲一码二码三码区别大吗| 精品一区二区三区av网在线观看| 亚洲狠狠婷婷综合久久图片| 麻豆成人av在线观看| 非洲黑人性xxxx精品又粗又长| 久久这里只有精品中国| 亚洲 欧美一区二区三区| 狠狠狠狠99中文字幕| 人妻夜夜爽99麻豆av| 国产v大片淫在线免费观看| 国产高清视频在线观看网站| 亚洲最大成人中文| 别揉我奶头~嗯~啊~动态视频| 国产真人三级小视频在线观看| 午夜精品一区二区三区免费看| 搡老妇女老女人老熟妇| 人妻夜夜爽99麻豆av| 精品午夜福利视频在线观看一区| 亚洲精品美女久久av网站| 欧美激情久久久久久爽电影| 欧美日韩福利视频一区二区| 午夜a级毛片| 真人做人爱边吃奶动态| 1024视频免费在线观看| 女人高潮潮喷娇喘18禁视频| 观看免费一级毛片| 精品免费久久久久久久清纯| 12—13女人毛片做爰片一| 特大巨黑吊av在线直播| 99精品欧美一区二区三区四区| 欧美 亚洲 国产 日韩一| 久久精品成人免费网站| 亚洲乱码一区二区免费版| www.精华液| 99精品欧美一区二区三区四区| 男男h啪啪无遮挡| 午夜福利欧美成人| 51午夜福利影视在线观看| 99久久99久久久精品蜜桃| 女生性感内裤真人,穿戴方法视频| 欧美一级a爱片免费观看看 | 久久精品国产99精品国产亚洲性色| 欧美在线黄色| 九色国产91popny在线| 麻豆国产97在线/欧美 | 五月伊人婷婷丁香| 99热这里只有精品一区 | 人人妻,人人澡人人爽秒播| 亚洲av电影不卡..在线观看| 精品国产美女av久久久久小说| 日日夜夜操网爽| 午夜亚洲福利在线播放| 欧美成人午夜精品| 黄色片一级片一级黄色片| 免费看a级黄色片| 日本三级黄在线观看| 国产av不卡久久| 91在线观看av| 啪啪无遮挡十八禁网站| 国产99白浆流出| 亚洲成a人片在线一区二区| 亚洲美女视频黄频| 精品国产乱子伦一区二区三区| 国产一区二区激情短视频| 久久久久免费精品人妻一区二区| 成人午夜高清在线视频| 一区二区三区激情视频| 别揉我奶头~嗯~啊~动态视频| 大型黄色视频在线免费观看| 国产日本99.免费观看| 久久国产乱子伦精品免费另类| 日韩欧美在线二视频| 国产成年人精品一区二区| 动漫黄色视频在线观看| а√天堂www在线а√下载| 亚洲专区国产一区二区| 1024手机看黄色片| 亚洲真实伦在线观看| 亚洲avbb在线观看| 美女黄网站色视频| 一级毛片高清免费大全| 亚洲av第一区精品v没综合| 久久香蕉精品热| 热99re8久久精品国产| 亚洲成人中文字幕在线播放| 天堂影院成人在线观看| 床上黄色一级片| 日本熟妇午夜| 嫁个100分男人电影在线观看| 999久久久国产精品视频| 亚洲第一欧美日韩一区二区三区| 久久天堂一区二区三区四区| 一级毛片精品| 亚洲精品中文字幕一二三四区| 全区人妻精品视频| 非洲黑人性xxxx精品又粗又长| 国产精品香港三级国产av潘金莲|