• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Non-adiabatic quantum dynamical studies of Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction?

    2019-06-18 05:42:22YuePeiWen溫月佩BayaerBuren布仁巴雅爾andMaoDuChen陳茂篤
    Chinese Physics B 2019年6期
    關(guān)鍵詞:雅爾

    Yue-Pei Wen(溫月佩),Bayaer Buren(布仁巴雅爾),and Mao-Du Chen(陳茂篤)

    Key Laboratory of Materials Modi fication by Laser,Electron,and Ion Beams(Ministry of Education),School of Physics,Dalian University of Technology,Dalian 116024,China

    Keywords:time-dependent wave packet method,non-adiabatic reaction,integral cross section,differential cross section

    1.Introduction

    The reactions of excited-state alkali atoms with hydrogen molecule have received much attention because of their unique advantages for studying non-adiabatic processes in reaction dynamics.[1-17]As the most intriguing characteristic,the alkali-hydrogen reactions are highly endoergic in their ground state.The energy to initiate the reaction is easily achieved via electronic excitation of the alkali atom,therefore the transitions of electronic states necessarily occur when the reaction proceeds from the excited entrance valley to the ground exit valley.[13]

    For the Na+H2→NaH+H reaction,several excited states(32P,42S,42P,32D,and 62S)of sodium atom were considered in previous studies.Regarding the collision of Na(32P)+H2,both quenching[17-24](Na(3p)+H2→Na(3s)+H2)and reactive[15-20](Na(3p)+H2→NaH+H)processes were investigated.Motzkus et al.[15]demonstrated twostep collision process for the formation of sodium hydride from the collision of Na(3p)+H2,where the vibrationally excited hydrogen molecule from first quenching process plays a signi ficant role.The rate for NaH formation was determined by rate-equation-model based on the two-step reaction model,and other reaction schemes were ruled out.Regarding the Na(4p)+H2→NaH+H reaction,Bililign et al.[1,2]observed a bimodal rotational state distribution for the NaH products,which was attributed to the two different reaction pathways.The side-on-attack mechanism leads to highly rotationally excited products,while the end-on-attack mechanism generates products with low-rotational excitation.Motzkus et al.[17]performed comparative studies for the two previous reactions using several nonlinear techniques.Consequently,vibrational state distributions of NaH from two reactions were determined.The time scale of NaH formation revealed that the Na(4p)+H2→NaH+H reaction is direct.Chang et al.[4]obtained rotational and vibrational state distributions of NaH from the reactions of Na(42S,32D and 62S)plus H2.A bimodal rotational feature was found in the 42S and 32D reaction,which is similar to the 42P reaction.However,rotationally cold but vibrationally hot product population was found in the 62S reaction which was explained by the collinear abstraction mechanism.The results conclude that the increasing atomic size of Na may hinder the insertion reaction mechanism.

    In this work,we intend to investigate the dynamics of the Na(3p)+HD(ν =1,j=0)→ NaH/NaD+D/H reaction.The reaction involves two coupled potential energy surfaces(PESs),thus diabatic PESs should be considered in the dynamical calculations.Recently,a new set of highly accurate diabatic PESs(called WYYC[16]PESs)of the NaH2system was developed by Wang et al.[16]and the dynamic studies were carried out for the Na(3p)+H2(ν =0,j=0)→ NaH+H reaction.For dynamical calculations of state-to-state reactions,the quasi-classical-trajectory[25-28]method and timedependent wave packet[29-37](TDWP)method have been used widely.The TDWP method has unique advantage for the dynamical study of non-adiabatic reactions.In the present work,the dynamical calculations of the Na(3p)+HD(ν=1,j=0)→NaH/NaD+D/H reaction are carried out by using TDWP method based on the WYYC diabatic PESs.The rest of this paper is organized as follows.A brief description regarding TDWP method is presented in Section 2.Dynamic results and detailed discussion are performed in Section 3.Fi-nally,some conclusions are drawn from the present study in Section 4.

    2.TDWP method

    The TDWP method is particularly powerful for studying the dynamics of state-to-state reactions and has been used to study many atom-diatom reactions[29-32]and reactions involving polyatom.[33-37]This method is also effective to study the dynamic of non-adiabatic reactions,[10,16,32]which involve several coupled PESs.The basic principle of the TDWP method is to solve the time-dependent Schr¨odinger equation.The initial wave packet containing all the information about reactants propagates on the PES,and the dynamic information can be extracted from total wave function after propagating for enough time.The solution of wave function at time t is given by

    For an atom-diatom reaction of A+BC→AB+C,the timeindependent Hamiltonian operator in the body- fixed reactant Jacobi coordinates R(distance of A from the center of mass of BC),r(bond length of BC)and γ(the angle between R and r)can be written as

    The initial wave function ψ(t=0)can be written as

    where|JMj0l0ε〉ε isthespace- fixed rotational basis,G(R)isa Gaussian wave packet,and φv0j0(r)is the rovibrational eigenfunction of the BC molecule.

    The second order split operator[38]is used to propagate the wave packet.During the propagation of the wave packet,the absorbing potential expressed by the R and r coordinate is used to avoid the re flection of the wave packet from the boundaries.The absorbing potential used in the TDWP calculations is in the following form:

    where x represents the R or r coordinate;xa,xb,and xendare the positions of absorbing potentials;Ca,Cb,and n determines the strength of the absorbing potential.

    After propagating for enough time,the state-to-state S-matrix SJεvjK←v0j0K0(E)is obtained by using the reactant coordinate-based(RCB)[40]method.

    The state-to-state reaction probability is obtained by using

    The state-to-state integral cross section(ICS)is calculated from

    where kυ0j0is the momentum in the entrance channel.The state-to-state differential cross section(DCS)is obtained from

    where θ is the scattering angle,and dJKK0(θ )is the reduced Wigner rotation matrix.

    For a non-adiabatic reaction correlated with two electronic states,diabatic PESs should be considered in the TDWP calculations.The,r,γ)in Eq.(2)can be written as a 2×2 Hermitian matrix

    In this work,the WYYC[16]diabatic PESs are employed in the TDWP dynamical calculations for the Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction.A more detailed description regarding the TDWP method can be found in the relevant literature.[39-42]

    3.Results and discussion

    In this work,state-to-state quantum dynamical calculations of the Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H re-action are carried out by using the TDWP method.The initial rotational-vibrational states of reagent are set to be v0=1,and j0=0.The full Coriolis-coupling is involved in the TDWP calculations.A lot of tests were carried out on the reaction probability of different total angular momentum values to obtain appropriate numerical parameters for the TDWP calculations,which are listed in Table 1.The state-to-state reaction probabilities,ICSs and DCSs are calculated for two reaction channels.

    For the non-adiabatic Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction,electronic states of reactants and products correlate with the first excited and ground electronic states of NaH2system,respectively.This indicates that the transition between two electronic states occurs along the reaction path.In the present work,the WYYC[16]diabatic PESs are used in the TDWP calculations.Regarding the WYYC[16]PESs,the ab initio single-point energy is calculated by the multi-reference con figuration interaction method with large basis sets(cc-pw-CVQZ for Na atom and aug-cc-PVQZ for H atom),and the neural network method is used to fit the PESs.The V22surface of WYYC[16]PESs connects elecelectronicstates of reactant and products of the Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction.Therefore,the initial wave packet is constructed on the V22surface and product information was collected at the V22surface after propagating for enough time in the TDWP calculations.For a better description of the non-adiabatic dynamics in the Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction,a schematic energy diagram of the reactants and products is shown in Fig.1 based on the WYYC[16]PESs.Blue and red lines represent V11and V22surface of WYYC[16]diabatic PESs,respectively.The cross of V11and V22curves indicates the transition between two electronic states along the reaction path.As seen from product energy diagram,the product channel of NaD+H opens easier than that of NaH+D,because vibrational constant of NaD molecule is smaller than that of NaH.There still exists a threshold in reaction when HD is excited to v=1 state;however,the threshold disappears when HD is excited above the v=2 state.Moreover,it should be noted that there is a potential well along the reaction path,which may generate a longlived complex.A more detailed description regarding WYYC diabatic PESs could be found in Ref.[16].

    Table 1.Numerical parameters used in TDWP calculations.

    Fig.1.Energy diagram of reactants,products,and the most possible reaction path on WYYC diabatic PESs.Blue and red line represent V11 andV22elements of WYYC PESs,respectively.

    The reaction probabilities of two reaction channels from the Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction are shown in Fig.2 each as a function of collision energy at several selected J values.Many oscillation peaks are found in reaction probability curves,which can be attributed to the dynamical resonances.The reaction threshold becomes larger and the values of reaction probabilities decrease as the J value increases,which is attributed to the increasing centrifugal potential energy in the total Hamiltonian.Due to the fact that the increased centrifugal potential energy can reduce the depth of potential well in the reaction path,the oscillations in the reaction probabilities gradually subside as the J value increases.In addition to these similarities,there are also some differences in reaction probability between two reaction channels.The reaction threshold of NaD+H channel(almost 0.186 eV)is lower than that of NaH+D channel(almost 0.206 eV)because of the difference in zero-energy point between NaD(almost 0.057 eV)and NaH(almost 0.077 eV)molecule.This is consistent with the energy diagram as shown in Fig.1.Moreover,the threshold of the J=60 partial wave for the NaD+H product channel is approximately 0.45 eV,which is higher than that of NaH+D product channel(approximately 0.4 eV).The convergence of reaction probability for the NaD+H channel is faster than that of NaH+D channel,which may be attributed to the different reduced mass in centrifugal potential at product Jacobi coordinates.

    Fig.2.The reaction probabilities of the two reaction channels for Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction at several selected J values.

    The state-to-state ICSs and DCSs are calculated for collision energy up to 0.4 eV based on the convergence of reaction probability at the maximum value of J.The total and product vibrationally state-resolved ICSs of two product channels from the Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction are shown in Fig.3.The ICS curves are very smooth and increase monotonically as the collision energy increases.The vibrationally excited products rise with the increase of collision energy.Due to the vibrational constant of NaD being smaller than that of NaH,the opened channels for NaD+H are more than for NaH+D.Thresholds of ICSs are consistent with those shown in the reactant and product energy diagram.From the product’s vibrational state-resolved ICSs,the NaD and NaH products both prefer to form in the vibrational ground state in the whole range of the calculated collision energy.As seen from total ICSs,the NaD+H reaction channel opens easier than the NaH+D reaction channel.However,the NaH+D channel gradually overtakes the dominant position as collision energy increases.To clarify this competition,the cross-section branching ratio ICS(NaH)/ICS(NaD) is shown in Fig.4as a function of collision energy. At low collision energy(<0.227 eV),branching ratio is lower than 1.0 and increases monotonically with collision energy increasing.For high collision energy(>0.227 eV),branching ratio is larger than 1.0 and fluctuates around 1.3.Therefore,the NaD+H product channel is dominant in the Na(3p)+HD(v=1)reaction at low collision energy(<0.227 eV),and it is surpassed by NaH+D channel as collision energy increases.A similar competition between two reaction channels was found in the Au+HD reaction[43]anditwas explainedas thefactthattheDatomcan easily get away from the potential well because of its larger mass than that of the H atom.This explanation is also applicable to the Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction.

    Fig.3.Total and product vibrational state-resolved ICSs of two reaction channels for Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction.

    Fig.4.The cross-section branching ratio ICS(NaH)/ICS(NaD)of the Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction versus collision energy.

    To obtain more details regarding energy distribution of products from the Na(3p)+HD(v=1)reaction,rotational state distributions of products at some values of selected collision energy are shown in Fig.5.Only vibrational ground state products are depicted in Fig.5 because products primarily form in the vibrational ground state,as mentioned above.As seen from Fig.5,products of two reaction channels both prefer to form in rotationally excited states that are different from the vibrationally exited states.The product rotational states’distributions become broader and the maximum populations of j′become larger as collision energy increases.The rotational state distribution of NaD is broader than that of NaH and the maximum population of j′in the NaD is larger than that in the NaH at the same collision energy.This is attributed to fact that the rotational constant of NaD is smaller than that of NaH,therefore,the more the channels are opened for NaD,the larger the product rotational state density will be than that of NaH at the same collision energy.

    Fig.5. Rotational state distributions of products from the Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction respectively at four values of collision energy(0.25,0.30,0.35,and 0.40 eV).

    The three-dimensional total DCSs of two reaction channels from the Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction are shown in Fig.6.There are many peaks at extreme angles 0°and 180°which are corresponding to forward and backward scattering,respectively.The products of two reaction channels both prefer forward scattering,especially at low collision energy.Signi ficant forward scattering peaks reveal that the reaction is dominated by the direct reaction mechanism.Small backward scattering peaks rise as the collision energy increases,which may be attributed to the opening collinear abstraction reaction channel.To understand the information regarding product scattering direction in depth,the product state-resolved angular distributions of two product channels at several values of selected collision energy are shown in Fig.7.The forward scattering products from the NaH+D channel are mainly at lower rotational states(j′< 5).However,the forward scattering products from the NaD+H channel each have a wide rotational state distribution.The forward scattering products from two reaction channels both can be excited to higher rotational excited states as the collision energy increases,which is consistent with the above discussion.Moreover,many oscillations are found along the scattering angle.A similar phenomenon was observed in the H+HD→H2+D reaction,[44]and the observed forward angular oscillations were explained by the contribution of partial waves.The period Δθ in the angular oscillation can be used to estimate which J partial wave has primary contribution by using J=180°/Δθ -1/2.[44]As seen from Fig.7,the period Δθ decreases as the collision energy increases.This indicates that the J value of partial wave contributing to the oscillations increases as the collision energy increases.

    Fig.6. Three-dimensional DCSs of two reaction channels for Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction versus collision energy and scattering angle.

    Fig.7.State-to-state DCSs of two reaction channels for Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction at three collision energies(0.3,0.35,and 0.4 eV).

    4.Conclusions

    In this work,the dynamics of the non-adiabatic Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction are investigated using the TDWP method.The state-to-state reaction probabilities,ICSs and DCSs of two product channels from the Na(3p)+HD(v=1,j=0)reaction are calculated.The threshold of the NaD+H product channel is lower than that of NaH+D because of the difference in zero-point energy between NaD and NaH.The product vibrational-state resolved ICSs show that the products of two reaction channels both prefer to form in vibrational ground state.However,distributions of product rotational states have peaks at excited states.The curves of total ICS indicate that there is a competition between the two product channels with collision energy changing.From the cross-section branching ratio it follows that the NaD+Hchannel dominates the Na(3p)+HD(v=1)reactionat the collision energy lower than 0.227 eV,and then the NaH+D channel gradually becomes dominant as the collision energy increases.Total DCSs show that the products of two reaction channels both prefer forward scattering.The forward scattering NaH products mainly populate at lower rotational excited sates,while NaD products have a broad rotational state distribution.

    猜你喜歡
    雅爾
    腹腔鏡手術(shù)與開放手術(shù)治療急性闌尾炎的經(jīng)驗
    簡論蒙古族與星星有關(guān)的傳說
    《吉祥三寶》歌者布仁巴雅爾:用鏡頭記錄百位百歲老人
    文苑(2018年21期)2018-11-09 01:23:00
    莫·浩斯巴雅爾小說集《人參姑娘》題材的探究
    讓“科爾沁的琴聲”響徹世界——記蒙古族馬頭琴演奏家陳巴雅爾
    草原歌聲(2017年4期)2017-04-28 08:20:39
    落花成冢
    沒有特長的兒子
    巴雅爾吐胡碩地區(qū)50多年氣溫變化特征分析
    吉祥三寶
    琴童(2006年6期)2006-06-06 09:32:02
    黄网站色视频无遮挡免费观看| 亚洲人成电影观看| 成人国产av品久久久| 如日韩欧美国产精品一区二区三区| 亚洲成国产人片在线观看| 一级毛片女人18水好多 | 在线观看免费午夜福利视频| 国精品久久久久久国模美| 97精品久久久久久久久久精品| 天天影视国产精品| 亚洲欧美一区二区三区黑人| 亚洲免费av在线视频| 9色porny在线观看| 一区二区三区激情视频| 一区福利在线观看| 日韩av不卡免费在线播放| 国产麻豆69| av一本久久久久| 99国产精品一区二区三区| 另类精品久久| 午夜免费成人在线视频| 男女之事视频高清在线观看 | 中文字幕另类日韩欧美亚洲嫩草| 一二三四社区在线视频社区8| 国产成人一区二区在线| 国产精品二区激情视频| 成在线人永久免费视频| 天天操日日干夜夜撸| 电影成人av| 国产黄色免费在线视频| 一区二区三区精品91| 国产精品成人在线| 少妇人妻久久综合中文| 又大又黄又爽视频免费| 国产一区二区三区av在线| 国产精品偷伦视频观看了| 欧美日韩亚洲综合一区二区三区_| 久久精品人人爽人人爽视色| 91麻豆精品激情在线观看国产 | 久久久久国产一级毛片高清牌| av在线播放精品| 亚洲五月色婷婷综合| 美女午夜性视频免费| 久久人妻福利社区极品人妻图片 | 美女午夜性视频免费| 男女之事视频高清在线观看 | 在线亚洲精品国产二区图片欧美| 亚洲av电影在线进入| 精品熟女少妇八av免费久了| 日本av手机在线免费观看| 久久久精品区二区三区| www.999成人在线观看| 丝袜人妻中文字幕| 制服人妻中文乱码| 悠悠久久av| 久久精品国产亚洲av涩爱| 丝袜人妻中文字幕| 一级毛片女人18水好多 | 女人精品久久久久毛片| 国产精品久久久久成人av| 十八禁高潮呻吟视频| 亚洲精品美女久久av网站| 国产成人影院久久av| 大片电影免费在线观看免费| 黄色视频在线播放观看不卡| 熟女av电影| 久久精品亚洲av国产电影网| 亚洲 欧美一区二区三区| 狂野欧美激情性bbbbbb| 久久精品国产亚洲av涩爱| 亚洲美女黄色视频免费看| 中文字幕最新亚洲高清| 亚洲欧美日韩另类电影网站| 精品少妇黑人巨大在线播放| 别揉我奶头~嗯~啊~动态视频 | 婷婷成人精品国产| 99re6热这里在线精品视频| 中国美女看黄片| 亚洲欧洲日产国产| 韩国高清视频一区二区三区| 欧美变态另类bdsm刘玥| 国产伦人伦偷精品视频| 色综合欧美亚洲国产小说| 日日夜夜操网爽| 国产av国产精品国产| 少妇人妻 视频| 麻豆av在线久日| 精品人妻熟女毛片av久久网站| 国产成人精品在线电影| 99re6热这里在线精品视频| 久久人妻福利社区极品人妻图片 | 九色亚洲精品在线播放| 中文字幕制服av| 久久狼人影院| 国产亚洲欧美在线一区二区| 国产高清不卡午夜福利| 国产成人影院久久av| 少妇的丰满在线观看| 高清不卡的av网站| 一边摸一边做爽爽视频免费| 人人妻人人爽人人添夜夜欢视频| 18禁黄网站禁片午夜丰满| 国产成人a∨麻豆精品| 亚洲国产精品国产精品| 免费观看av网站的网址| 国产亚洲欧美精品永久| 亚洲三区欧美一区| 亚洲成av片中文字幕在线观看| 最新的欧美精品一区二区| 又大又黄又爽视频免费| 欧美日韩亚洲综合一区二区三区_| 80岁老熟妇乱子伦牲交| 欧美变态另类bdsm刘玥| 满18在线观看网站| 日韩一卡2卡3卡4卡2021年| 国产成人av激情在线播放| 人妻人人澡人人爽人人| 成人影院久久| 亚洲一区中文字幕在线| 国产精品99久久99久久久不卡| 中国国产av一级| 亚洲熟女精品中文字幕| 大陆偷拍与自拍| 在线看a的网站| 国产福利在线免费观看视频| 成人手机av| 日韩一卡2卡3卡4卡2021年| 国产精品欧美亚洲77777| 激情五月婷婷亚洲| 国产一区二区 视频在线| 日本91视频免费播放| 美女午夜性视频免费| 国产一区二区三区综合在线观看| 少妇裸体淫交视频免费看高清 | 成人国产av品久久久| 欧美人与善性xxx| 精品国产乱码久久久久久男人| 免费高清在线观看视频在线观看| 欧美成狂野欧美在线观看| 成人国产av品久久久| 国产一卡二卡三卡精品| 国产成人精品在线电影| 日韩大码丰满熟妇| 成人国语在线视频| 久久精品久久精品一区二区三区| 中文乱码字字幕精品一区二区三区| 天天躁夜夜躁狠狠躁躁| 人妻 亚洲 视频| 五月开心婷婷网| 国产精品久久久久久人妻精品电影 | 天天添夜夜摸| 亚洲国产日韩一区二区| 欧美激情 高清一区二区三区| 永久免费av网站大全| 亚洲成国产人片在线观看| 人人妻人人添人人爽欧美一区卜| 日本av手机在线免费观看| 老司机深夜福利视频在线观看 | 国产一区二区 视频在线| 欧美久久黑人一区二区| 中文字幕高清在线视频| 日韩伦理黄色片| 人人妻人人爽人人添夜夜欢视频| 91成人精品电影| 黄色 视频免费看| 午夜激情av网站| 亚洲色图综合在线观看| 国产精品人妻久久久影院| 亚洲av片天天在线观看| 中文字幕制服av| 欧美老熟妇乱子伦牲交| 日韩一本色道免费dvd| av又黄又爽大尺度在线免费看| www.精华液| 久久综合国产亚洲精品| 少妇 在线观看| 国产又爽黄色视频| 亚洲国产看品久久| 免费看不卡的av| 亚洲,欧美,日韩| 美女高潮到喷水免费观看| 亚洲精品一区蜜桃| 一本一本久久a久久精品综合妖精| 久久精品国产亚洲av涩爱| 亚洲国产日韩一区二区| 高清黄色对白视频在线免费看| 国产精品一国产av| 99久久精品国产亚洲精品| 欧美精品av麻豆av| 亚洲欧美日韩高清在线视频 | 啦啦啦视频在线资源免费观看| 久久青草综合色| 午夜日韩欧美国产| 一二三四在线观看免费中文在| 亚洲av成人不卡在线观看播放网 | 成人国产一区最新在线观看 | 菩萨蛮人人尽说江南好唐韦庄| 国产高清videossex| 亚洲 欧美一区二区三区| 高清欧美精品videossex| 一区二区三区激情视频| 国产真人三级小视频在线观看| 国产精品二区激情视频| 成人亚洲欧美一区二区av| 久久精品国产亚洲av高清一级| 纵有疾风起免费观看全集完整版| 国产精品 国内视频| 婷婷色麻豆天堂久久| 亚洲精品日韩在线中文字幕| 久久九九热精品免费| 国产精品秋霞免费鲁丝片| 大片电影免费在线观看免费| 午夜免费鲁丝| 中文字幕制服av| 国产成人精品在线电影| 美女主播在线视频| 亚洲国产精品一区三区| 精品少妇内射三级| 午夜激情av网站| 热99国产精品久久久久久7| 久久热在线av| 在线观看免费高清a一片| 国产主播在线观看一区二区 | 国产成人欧美在线观看 | 国产av国产精品国产| 亚洲专区国产一区二区| 精品一区二区三卡| 久久久久精品人妻al黑| 国产在线视频一区二区| 精品福利永久在线观看| 日本一区二区免费在线视频| 欧美国产精品一级二级三级| 午夜福利视频精品| 天堂8中文在线网| 精品高清国产在线一区| 精品久久久精品久久久| 一级黄片播放器| videos熟女内射| 久久天堂一区二区三区四区| 精品福利永久在线观看| 国产精品人妻久久久影院| 亚洲午夜精品一区,二区,三区| 亚洲成av片中文字幕在线观看| 亚洲人成电影免费在线| 老司机深夜福利视频在线观看 | av天堂在线播放| 欧美黄色片欧美黄色片| 国产精品国产三级专区第一集| 国产成人欧美在线观看 | 国产熟女午夜一区二区三区| 国产精品秋霞免费鲁丝片| 啦啦啦视频在线资源免费观看| 欧美日韩亚洲高清精品| 亚洲,欧美,日韩| 别揉我奶头~嗯~啊~动态视频 | 啦啦啦中文免费视频观看日本| 飞空精品影院首页| 亚洲男人天堂网一区| 国产成人欧美| 成人午夜精彩视频在线观看| 99国产综合亚洲精品| 两人在一起打扑克的视频| 国产成人啪精品午夜网站| 2021少妇久久久久久久久久久| 免费黄频网站在线观看国产| 大话2 男鬼变身卡| 亚洲欧美成人综合另类久久久| 亚洲av片天天在线观看| 人人妻,人人澡人人爽秒播 | 国产伦人伦偷精品视频| 男女边吃奶边做爰视频| netflix在线观看网站| 韩国精品一区二区三区| 欧美日韩综合久久久久久| 亚洲国产欧美在线一区| 国产精品99久久99久久久不卡| a级片在线免费高清观看视频| 国产熟女午夜一区二区三区| 中文字幕高清在线视频| 丁香六月天网| 国产成人精品久久二区二区91| svipshipincom国产片| 侵犯人妻中文字幕一二三四区| 国产主播在线观看一区二区 | 99热全是精品| 亚洲国产精品999| 在线观看免费午夜福利视频| 国产免费一区二区三区四区乱码| 亚洲成人免费av在线播放| 一级片免费观看大全| 黑人欧美特级aaaaaa片| 欧美日韩av久久| 欧美老熟妇乱子伦牲交| 一区二区三区精品91| 亚洲国产精品一区三区| 老司机深夜福利视频在线观看 | 精品人妻1区二区| 免费观看av网站的网址| 国产精品免费大片| 亚洲中文字幕日韩| 亚洲久久久国产精品| 亚洲一卡2卡3卡4卡5卡精品中文| 91精品伊人久久大香线蕉| 天天躁狠狠躁夜夜躁狠狠躁| 交换朋友夫妻互换小说| 国产精品一区二区免费欧美 | 亚洲少妇的诱惑av| 久久精品国产亚洲av高清一级| av一本久久久久| 在线观看人妻少妇| 精品国产一区二区久久| 国产精品久久久久久精品古装| 欧美在线一区亚洲| 丰满少妇做爰视频| 日本黄色日本黄色录像| 久久ye,这里只有精品| 巨乳人妻的诱惑在线观看| 欧美日韩福利视频一区二区| 国产黄色视频一区二区在线观看| 满18在线观看网站| 欧美国产精品va在线观看不卡| 国产成人精品在线电影| 日日夜夜操网爽| 国产成人一区二区在线| 丰满迷人的少妇在线观看| 国产精品麻豆人妻色哟哟久久| av福利片在线| 晚上一个人看的免费电影| 超色免费av| 国产精品99久久99久久久不卡| 叶爱在线成人免费视频播放| 精品少妇内射三级| 国产高清不卡午夜福利| 一本综合久久免费| 久久人妻福利社区极品人妻图片 | 国产福利在线免费观看视频| 一边摸一边抽搐一进一出视频| 久久人妻福利社区极品人妻图片 | 久久久亚洲精品成人影院| 中文乱码字字幕精品一区二区三区| 肉色欧美久久久久久久蜜桃| 亚洲欧美清纯卡通| 性色av乱码一区二区三区2| 午夜福利影视在线免费观看| 免费女性裸体啪啪无遮挡网站| 美国免费a级毛片| 成人免费观看视频高清| 久久精品久久精品一区二区三区| 国产精品九九99| 一区二区三区精品91| 国产亚洲av高清不卡| av网站免费在线观看视频| a级毛片黄视频| 久久99一区二区三区| 亚洲自偷自拍图片 自拍| 最近中文字幕2019免费版| av国产久精品久网站免费入址| 国产成人精品在线电影| 美国免费a级毛片| 人体艺术视频欧美日本| 日本欧美国产在线视频| 精品福利永久在线观看| 亚洲五月色婷婷综合| 中国美女看黄片| 一级黄色大片毛片| 成人手机av| 久久精品久久久久久久性| 久久精品成人免费网站| 在线观看www视频免费| 国产精品成人在线| 悠悠久久av| 欧美日韩一级在线毛片| 伊人久久大香线蕉亚洲五| 午夜老司机福利片| av在线app专区| 两人在一起打扑克的视频| 男女午夜视频在线观看| 精品久久蜜臀av无| 精品一品国产午夜福利视频| 伦理电影免费视频| 国产91精品成人一区二区三区 | 亚洲av成人精品一二三区| 国产精品秋霞免费鲁丝片| 欧美日韩视频精品一区| 日日夜夜操网爽| 大香蕉久久成人网| 国产日韩一区二区三区精品不卡| 久久精品熟女亚洲av麻豆精品| 国产熟女午夜一区二区三区| 久久青草综合色| 久久久欧美国产精品| 在线观看免费日韩欧美大片| av国产精品久久久久影院| 亚洲av美国av| 久久人人爽av亚洲精品天堂| 一二三四社区在线视频社区8| 天堂8中文在线网| 人妻一区二区av| 欧美久久黑人一区二区| 波多野结衣av一区二区av| 亚洲成人国产一区在线观看 | 美女主播在线视频| 老司机深夜福利视频在线观看 | 狂野欧美激情性bbbbbb| 国产熟女午夜一区二区三区| 亚洲国产最新在线播放| 看十八女毛片水多多多| 亚洲欧洲日产国产| 麻豆乱淫一区二区| 1024视频免费在线观看| 一区二区三区精品91| 久久久亚洲精品成人影院| h视频一区二区三区| 19禁男女啪啪无遮挡网站| 亚洲人成77777在线视频| 免费观看a级毛片全部| 老司机午夜十八禁免费视频| 欧美日韩精品网址| 久久久精品区二区三区| 日本欧美视频一区| 熟女av电影| 在线观看免费日韩欧美大片| 91精品国产国语对白视频| 成人免费观看视频高清| 色播在线永久视频| 国产精品一区二区在线观看99| 免费久久久久久久精品成人欧美视频| 精品一区二区三卡| 亚洲色图 男人天堂 中文字幕| 亚洲国产欧美日韩在线播放| 国产精品久久久久久人妻精品电影 | 青春草亚洲视频在线观看| 午夜福利视频在线观看免费| 久久精品久久久久久噜噜老黄| 纯流量卡能插随身wifi吗| 51午夜福利影视在线观看| 亚洲一区中文字幕在线| 国产一区二区激情短视频 | 精品第一国产精品| 亚洲久久久国产精品| 久久精品久久久久久噜噜老黄| 精品人妻一区二区三区麻豆| 国产成人欧美在线观看 | 亚洲欧美激情在线| 国产色视频综合| 色婷婷久久久亚洲欧美| 老司机影院毛片| 婷婷色综合www| 性高湖久久久久久久久免费观看| 精品高清国产在线一区| 在线精品无人区一区二区三| 一级毛片电影观看| 亚洲一区二区三区欧美精品| 亚洲国产欧美网| kizo精华| av又黄又爽大尺度在线免费看| 咕卡用的链子| 在线亚洲精品国产二区图片欧美| 1024视频免费在线观看| 高清不卡的av网站| 久久精品熟女亚洲av麻豆精品| 欧美成狂野欧美在线观看| 夜夜骑夜夜射夜夜干| 美女视频免费永久观看网站| 亚洲精品久久成人aⅴ小说| 久久亚洲精品不卡| 高清视频免费观看一区二区| 国产欧美亚洲国产| 欧美亚洲 丝袜 人妻 在线| 777米奇影视久久| 国产精品久久久久成人av| 美女视频免费永久观看网站| 日韩,欧美,国产一区二区三区| 久久久久视频综合| 女性被躁到高潮视频| 日韩视频在线欧美| 欧美精品一区二区大全| 美女扒开内裤让男人捅视频| 亚洲精品日本国产第一区| 久久精品国产a三级三级三级| 免费看十八禁软件| www.熟女人妻精品国产| 国产成人一区二区在线| 国产精品 欧美亚洲| 国产精品二区激情视频| 一级片免费观看大全| 色综合欧美亚洲国产小说| 欧美精品人与动牲交sv欧美| 极品人妻少妇av视频| 亚洲成人手机| 精品亚洲成国产av| av网站免费在线观看视频| 欧美精品一区二区免费开放| 国产成人免费观看mmmm| 色婷婷久久久亚洲欧美| 波多野结衣av一区二区av| 久久九九热精品免费| 亚洲精品国产av成人精品| 国产精品一二三区在线看| 国产精品av久久久久免费| 欧美精品av麻豆av| 亚洲人成网站在线观看播放| 久久精品久久精品一区二区三区| 午夜免费观看性视频| 黄色a级毛片大全视频| 成人免费观看视频高清| 一区二区三区四区激情视频| 肉色欧美久久久久久久蜜桃| 91精品伊人久久大香线蕉| 中文字幕人妻丝袜制服| 秋霞在线观看毛片| 十八禁人妻一区二区| 成年av动漫网址| 国产精品成人在线| 亚洲少妇的诱惑av| 欧美国产精品一级二级三级| 精品国产一区二区三区四区第35| 精品一区在线观看国产| 精品亚洲成a人片在线观看| 国产精品欧美亚洲77777| 天天躁狠狠躁夜夜躁狠狠躁| 久久午夜综合久久蜜桃| 免费看不卡的av| 国产1区2区3区精品| kizo精华| 国产免费一区二区三区四区乱码| 亚洲人成77777在线视频| 久久久久国产精品人妻一区二区| 中文字幕另类日韩欧美亚洲嫩草| 国产成人a∨麻豆精品| 高清视频免费观看一区二区| 99国产精品一区二区三区| 欧美激情高清一区二区三区| 精品一区在线观看国产| 免费高清在线观看日韩| 久久久久精品国产欧美久久久 | 老司机深夜福利视频在线观看 | 国产男女超爽视频在线观看| 亚洲欧美中文字幕日韩二区| 国产精品一区二区在线观看99| 亚洲欧美精品综合一区二区三区| 国产女主播在线喷水免费视频网站| 欧美日韩黄片免| 男女下面插进去视频免费观看| 蜜桃国产av成人99| 色精品久久人妻99蜜桃| 91字幕亚洲| 一级片免费观看大全| 成人国产一区最新在线观看 | 999久久久国产精品视频| 国产黄色免费在线视频| 18禁观看日本| 美女主播在线视频| 中文乱码字字幕精品一区二区三区| 婷婷色麻豆天堂久久| 午夜激情av网站| 99热国产这里只有精品6| 美女国产高潮福利片在线看| 精品熟女少妇八av免费久了| 搡老岳熟女国产| 色综合欧美亚洲国产小说| 黄色一级大片看看| 一区二区三区四区激情视频| 国产女主播在线喷水免费视频网站| 亚洲精品日本国产第一区| 黄频高清免费视频| 99热全是精品| 女人精品久久久久毛片| 97在线人人人人妻| 国产精品一区二区在线不卡| 考比视频在线观看| netflix在线观看网站| 久久女婷五月综合色啪小说| 建设人人有责人人尽责人人享有的| 美女大奶头黄色视频| 伊人久久大香线蕉亚洲五| 别揉我奶头~嗯~啊~动态视频 | 久久精品国产亚洲av涩爱| 色综合欧美亚洲国产小说| 国产精品.久久久| 亚洲中文日韩欧美视频| 1024视频免费在线观看| 激情视频va一区二区三区| 中文字幕色久视频| 啦啦啦啦在线视频资源| av又黄又爽大尺度在线免费看| 一二三四社区在线视频社区8| 亚洲色图综合在线观看| 男女之事视频高清在线观看 | 搡老岳熟女国产| 亚洲色图综合在线观看| 1024视频免费在线观看| 在线 av 中文字幕| 久久99精品国语久久久| 亚洲欧美色中文字幕在线| 日日摸夜夜添夜夜爱| 90打野战视频偷拍视频| 久久久久久免费高清国产稀缺| 大码成人一级视频| 精品一区二区三卡| 久久国产亚洲av麻豆专区| 亚洲激情五月婷婷啪啪| 亚洲欧美激情在线| 自拍欧美九色日韩亚洲蝌蚪91| 在线天堂中文资源库| 国精品久久久久久国模美| 欧美精品一区二区大全| 男女午夜视频在线观看| 在线av久久热| 五月开心婷婷网| 国产亚洲一区二区精品| 母亲3免费完整高清在线观看| 午夜免费成人在线视频| 91老司机精品| 亚洲精品美女久久av网站|