• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Highly crystalline,highly stable n-type ultrathin crystalline films enabled by solution blending strategy toward organic single-crystal electronics

    2023-02-18 01:55:24YngLiuShuyuLiYihnZhngXiotingZhuFngxuYngFeiJioWenpingHu
    Chinese Chemical Letters 2023年12期

    Yng Liu ,Shuyu Li ,Yihn Zhng ,Xioting Zhu ,Fngxu Yng,? ,Fei Jio,? ,Wenping Hu,b

    a Tianjin Key Laboratory of Molecular Optoelectronic Sciences,Department of Chemistry,School of Science,Tianjin University,Tianjin 300072,China

    b Haihe Laboratory of Sustainable Chemical Transformations,Tianjin 300192,China

    Keywords:n-type organic field effect transistors Ultrathin film High-performance Composites

    ABSTRACT The development of n-type semiconductor is still far behind that of p-type semiconductor on account of the challenges in enhancing carrier mobility and environmental stability.Herein,by blending with the polymers,n-type ultrathin crystalline thin film was successfully prepared by the method of meniscusguided coating.Remarkably,the n-type crystalline films exhibit ultrathin thickness as low as 5 nm and excellent mobility of 1.58 cm2 V?1 s?1,which is outstanding in currently reported organic n-type transistors.Moreover,the PS layer provides a high-quality interface with ultralow defect which has strong resistance to external interference with excellent long-term stability,paving the way for the application of n-type transistors in logic circuits.

    Large area single crystal thin films are the best candidate materials for high-performance integrated plastic electronics,on account of the advantages of eliminating the interference of grain boundaries,defects,impurities and charge traps [1–4].Up to now,large area preparation of organic single crystal film has become a hot research field due to the inherent unique characteristics of organic molecules [5–7].On the one hand,they have good selfcrystallization and tend to aggregate crystallization in solution processing [8,9].On the other hand,because of the development of meniscus-guided coating (MGC) method,the orientation-inducing force can induce organic molecules to assemble in the same direction,enabling the formation of large-area highly crystalline films[10,11].For an organic field effect transistor (OFET),carrier transport channels are considered to be located within several molecular layers at the interface between the organic semiconductor and the insulating layer [12,13].At present,it has been reported that the monolayer molecular crystal can achieve the same performance as the bulk single crystal [14,15].Moreover,the ultrathin crystal film also has inherent incomparable unique advantages.On the one hand,the ultrathin feature can greatly reduce the bulk resistance of the semiconductor,facilitating the carrier injection[16,17].On the other hand,the carriers in the ultrathin channel can be efficiently regulated by the gate,and thus the carriers can be completely depleted in the depletion region to achieve ultra-low off-state current [18,19].Currently,the methods of preparing ultrathin single crystals mainly include liquid surface substrate method and the MGC method.Despite the liquid substrate method can prepare two-dimensional organic crystals with a controllable number of layers based on spatial confinement,it cannot be fabricated on a large scale [20].By contrast,the MGC method can be fabricated in a large area.However,in order to ensure the continuity of the film,the thickness of the film is often increased,resulting in a challenge of achieving ultrathin thickness.Although there are a few reports on p-type ultrathin single crystal films [21],investigation on largearea n-type ultrathin crystalline films is scarce.

    In addition,the long-term storage and operational stability of n-type ultrathin semiconductor films is another formidable challenge that needs to be addressed.There are two main reasons for the morphological evolution of organic thin films after long-term storage.Firstly,molecular films are assembled by weak van der Waals interactions between organic molecules [22,23].Secondly,the heterointerface is generally accompanied by the existence of interfacial stress [24].Moreover,this phenomenon will be more pronounced for ultrathin films.To overcome this problem,it has been reported that increasing the thickness of the film can improve the stability [25,26].Even worse,the stability of n-type semiconductor thin films is a long-term problem in the field,mainly because the electronic properties of organic semiconductors are easily affected by water and oxygen [27,28].Thus,the stability of n-type ultrathin films will be a huge challenge,which needs to be solved by developing sophisticated strategies.

    Herein,we develop a polymer blending strategy to realize the preparation of n-type ultrathin films,obtaining high-performance n-type organic field effect transistors with excellent stability.Choosing 4,4'-(2λ4δ2-benzo[1,2-c:4,5-c’]bis[1,2,5]thiadiazole-4,8-diyldi-5,2-thiophenediyl)bis[2-dodecylbenzonitrile] (TU-3) as the n-type semiconductor,we obtained n-type ultrathin films owing to the properties of the continuous film formation and efficient crystallization of the polymer polystyrene (PS) in TU-3/PS composite.The electron mobility of the corresponding device is as high as 1.58 cm2V?1s?1,which is the highest value for n-type ultrathin films.More importantly,the n-type ultrathin film achieves good long-term stability due to the addition of PS to stabilize the heterointerfacial stress,and the low defect system also enables the film to obtain good resistance to external interference.This study lays a solid foundation for the development of high-performance n-type ultrathin films for large area integrated electronics.

    For the solution shearing method,ultra-low solution concentration or fast shear rate are generally required to prepare ultrathin films [29].Small molecules are not easy to form films due to their low viscosity,so we tend to increase the shear rate to reduce the thickness of the film,which often results in discontinuity and inhomogeneity of the film [10].However,the addition of polymers can significantly increase the viscosity and improve the wettability of the solution,thereby improving the growth kinetics,which is more favorable for the growth of thin films [30,31].In terms of molecular selection,we chose small molecule TU-3 and polymer PS with good solubility and high stability [32,33].In film preparation,we chose the strategy of polymer blending to assist solution shearing (Fig.1a).By using the method of meniscus-guided coating,an orientation force is applied to small molecules to induce crystallization toward the dominant direction.The uniform solidification of PS with long-chain structure at the bottom layer provides a favorable platform for the deposition of TU-3 small molecules,thereby obtaining continuous and uniform ultrathin films by adjusting the appropriate shear rate (Fig.1b).Optical micrographs reveal ultrathin films with centimeter-scale dimensions and smooth,flat surfaces,and atomic force microscopy (AFM) images indicate a thickness of 5.5 nm (Fig.S1 in Supporting information).The microstructure of the ultrathin film is revealed by AFM,and it is found that the blend film has a more continuous and flatter surface than the single-component film,and the root mean square roughness (RMS) is reduced from 1.49 nm to 0.48 nm due to the introduction of polymers,which reflects that the blending strategy improves the uniformity and continuity of the ultrathin films (Figs.1c and d).In order to further analyze the crystallinity and structure of the ultrathin film,it is first observed under a polarizing microscope (POM).When the polarization angle is rotated by 45°,the film shows a uniform color change and a significant extinction phenomenon,indicating that it has a long-range ordered internal structure (Figs.1e and f).Meanwhile,the out-of-plane X-ray diffraction pattern shows that the blend film had sharper diffraction peaks,indicating that the introduction of PS effectively improves the crystallinity of TU-3 (Fig.S2 in Supporting information).Besides,the selected-area electron diffraction (SAED) image shows that the ultrathin film has periodically arranged diffraction spots,further proving its single-crystal structure (Fig.1g).

    Fig.1. (a) Chemical structure of TU-3 and PS and schematic diagram of ultrathin film preparation.(b) Schematic diagram of small molecule deposition process.(c,d) AFM images of a pure TU-3 film and a TU-3/PS blend ultrathin film on Si/SiO2 substrate.(e,f) POM images of an ultrathin film.(g) An SAED image of an ultrathin film.Inset: a transmission electron microscope image (TEM) of the ultrathin film.

    We transferred Ag (80 nm)/Au (80 nm) as source and drain electrodes on the ultrathin films,and constructed bottom-gate topcontact (BGTC) OFETs to study its electrical properties (Fig.2a and Fig.S3 in Supporting information).All experiments were performed at room temperature and in air environment.The transfer characteristic curves of ultrathin film-based OFETs are shown in Fig.2b,and the corresponding output curves are shown in Fig.2c.An electron mobility of 1.58 cm2V?1s?1is obtained under optimal conditions with an on-off ratio greater than 107.Moreover,we systematically studied the effect of different annealing temperatures on the mobility,and found that the mobility of the device was the highest when annealing at 100°C for 1 h (Fig.2d),which is attributed to the volatilization of impurities such as organic solvents and water in the ultra-thin film,as well as the enhancement of film crystallinity (Fig.S4 in Supporting information).In addition,the effect of different mixing ratios on the mobility is also crucial,and the performance of the device is the best when the mixing ratio is 3:1 (Fig.S5 in Supporting information).It is worth mentioning that with the increase of shear rate,the thickness of the film will decrease inversely proportional,and the thickness of the ultra-thin film can be as low as 5 nm.When the shear rate is 0.25 mm/s,the mobility of the ultrathin films reaches the maximum value.However,continuing to increase the shear rate significantly increases the defects of the film,thereby reducing its electrical transport capacity (Fig.2e and Fig.S6 in Supporting information).The mobilities of 30 devices under the optimal conditions are counted as shown in Fig.2f,which is a normal distribution.The average electron mobility is 1.09 cm2V?1s?1,and the maximum electron mobility is 1.58 cm2V?1s?1,which is the highest value reported so far in OFETs used TU-3 as the n-type semiconductor.

    Fig.2. (a) Schematic diagram of OFET device based on ultrathin films.Representative transfer (b) and output (c) curves of OFETs based on ultrathin films.(d) OFET mobility as a function of annealing temperature,the error bars were calculated from the standard deviations over 10 devices in each annealing temperature.(e) Film thickness and average mobility at different shear rates,the error bars were calculated from the standard deviations over 5 devices at each shear rate.(f) Histogram of mobility distribution of 30 devices,with average value of 1.09 cm2 V?1 s?1.

    Long-term operational stability and environmental stability are one of the most important application metrics for n-type organic field effect transistors.We measured the output current of the device under a constant gate voltage of 20 V,and found that the device prepared based on the blending strategy showed better stability than the single-component device.After 8.5 h of continuous bias operation,the output current of the device still did not decay(Fig.3a).At the same time,the device was switched on and off 20 times within 2 h,and its transfer curve did not change distinctly(Fig.S7 in Supporting information).In order to explore its intrinsic mechanism,we tested the UV–vis absorption spectrum of the ultrathin film within six months,and the curve basically did not change,proving its good chemical stability (Fig.3b).The devices were then tested for photostability,and the OFETs exhibited good photostability to all wavelengths of light,which was attributed to the high molecular order in the conducting channel and the highquality interface between the dielectric layer and the semiconductor (Figs.3c-e) [34].It is worth noting that when the incident light is 365 nm,the off current of the device significantly increases,which is due to the generation of a large number of photo generated charge carriers in the active layer.However,the threshold voltage did not significantly shift,because there were few defects in the system and almost no hole trapping occurred,demonstrating the photostability of the transistor (Fig.3c).In the blend film,there is a more favorable enthalpy interaction between PS and SiO2,PS will preferentially deposit on the SiO2substrate [35,36],while the more hydrophobic TU-3 small molecules crystallize at the interface of air and film,which can be confirmed in scanning electron micrographs (SEM,as shown in Fig.3i).We also used X-ray photoelectron spectroscopy (XPS) to analyze the atomic ratios of C/S and C/N on the surfaces of blend and single-component films,and the phase separation result was confirmed by their equality (Fig.3j and Fig.S8 in Supporting information).Actually,PS layer passivates the electron traps on the surface of SiO2,provides a high-quality interface,and the whole system is a low-defect system with strong resistance to external interference,thus obtaining perfect stability (Figs.3k and l).Subsequently,we stored the device in air and tracked its mobility and threshold voltage over time.The introduction of PS also significantly improved the environmental stability of the device,and the change in threshold voltage after 9 months was only about 5 V (Fig.3f).Moreover,the mobility of the device is only reduced by about 10% after 4 months of storage.After 8 months,the mobility of the device can still be as high as 1 cm2V?1s?1(Fig.3g).Compared with the previously reported stability of n-type OFETs [37–46],our work is at the cutting edge (Fig.3h).

    Fig.3. (a) The I-t curves of OFETs based on single-component and blend ultrathin films under applied constant voltage VG of 20 V at VD of 40 V.(b) Time-dependent UV–vis spectra of a blend ultrathin film under ambient air.Transfer curves of OFETs based on blend ultrathin films in dark and under different illumination intensities at (c)365 nm,(d) 450 nm and (e) 735 nm.(f) Time-dependent threshold voltage shift of single-component and blend OFETs stored in air at room temperature,the error bars were calculated from the standard deviations over 10 devices.(g) Time-dependent electron mobility of 10 OFETs based on blend ultrathin films stored in air at room temperature.(h) Comparison of n-type OFET stability.(i) Cross-sectional SEM image of a blend ultrathin film.(j) Atomic ratios of the surfaces of single-component and blend ultrathin films.(k,l) The possible mechanism for the stability of ultrathin films.

    To demonstrate the universality of this strategy for different substrates,a high-quality alumina dielectric layer was prepared by template stripping method [47],and then grew a blend ultrathin film on the dielectric (Fig.S9 in Supporting information).Optical microscope and polarized optical microscope images prove that the thin film has a flat surface and good crystallinity (Figs.4ac).Moreover,the morphology and thickness of the thin film did not significantly change with the substrate (Fig.S10 in Supporting information).Subsequently,we thermally evaporated 2 nm 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) as a buffer layer,and then deposited 30 nm Ag as the top electrode to prepare a large-area transistor array (Fig.S11 in Supporting information),and the schematic diagram of the devices structure is shown in Fig.4d.Figs.4e and f show the transfer and output curves of the devices,respectively.The highest mobility can reach 0.53 cm2V?1s?1,which is one of the best performance n-type low voltage transistors at present (Table S2 in Supporting information).The mobility of 6× 6 transistors is counted,and it has a relatively uniform distribution (Fig.4i).Likewise,low-voltage devices exhibit good operational stability and environmental stability (Figs.4g and h),which provides a favorable guarantee for the development of organic logic circuits in the future.

    Fig.4. (a) OM and (b,c) POM images of an ultrathin film on Al/AlOx substrate.(d) Schematic diagram of low-voltage transistors based on ultrathin films.(e) Representative transfer and (f) output curves of OFETs based on ultrathin films.(g) The I-t curve of OFETs under applied constant voltage VG of 2 V at VD of 4 V.(h) Time-dependent I-V curves of OFETs under ambient air.(i) The distribution of OFET mobilities of a 6× 6 low-voltage transistor array.

    In conclusion,we have fabricated large-area ultrathin n-type crystalline filmsviausing the polymer blending strategy.Through the introduction of the polymer and the regulation of the shear rate,the electron mobility of the ultrathin film can be as high as 1.58 cm2V?1s?1when the thickness can be as low as 5.5 nm.In the blend system,the favorable interaction between PS and TU-3 molecules regulates the arrangement of TU-3 molecules,enhances the crystallinity of the film,and thus improves the electrical transport performance of the device.Moreover,PS solves the instability caused by n-type semiconductors and ultrathin film,and the lowdefect system also enables the film to obtain good resistance to external interference.Finally,we have successfully fabricated n-type OFETs with high stability and high performance,while low-voltage devices have good uniformity and stability,which has guiding significance for the development of logic circuits.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The authors are grateful to the financial support of the National Key Research and Development Program (No.2022YFF1202700),National Natural Science Foundation of China (No.52121002) and the Haihe Laboratory of Sustainable Chemical Transformations.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108764.

    国产老妇伦熟女老妇高清| 嫩草影院新地址| 国产不卡一卡二| 精品熟女少妇av免费看| 日韩一区二区视频免费看| 秋霞在线观看毛片| 亚洲精品影视一区二区三区av| 一区二区三区高清视频在线| 成人午夜精彩视频在线观看| 精品久久久噜噜| 人人妻人人看人人澡| 白带黄色成豆腐渣| av在线观看视频网站免费| 亚洲va在线va天堂va国产| 悠悠久久av| 可以在线观看的亚洲视频| 中文字幕精品亚洲无线码一区| 天美传媒精品一区二区| 国产一区二区三区在线臀色熟女| 一级毛片久久久久久久久女| 国产精品爽爽va在线观看网站| 久久久精品欧美日韩精品| 丰满人妻一区二区三区视频av| 国产一区二区三区av在线 | 亚洲丝袜综合中文字幕| 国产伦理片在线播放av一区 | 欧美变态另类bdsm刘玥| 精品久久久久久久人妻蜜臀av| 啦啦啦观看免费观看视频高清| 可以在线观看毛片的网站| 国产成人精品一,二区 | 老司机福利观看| 久久99热6这里只有精品| 欧美3d第一页| 成人鲁丝片一二三区免费| 国内精品宾馆在线| 天美传媒精品一区二区| 99热6这里只有精品| 99久久成人亚洲精品观看| 免费av观看视频| 在线观看66精品国产| 麻豆成人av视频| 亚洲人成网站在线播放欧美日韩| 只有这里有精品99| 男女边吃奶边做爰视频| 国内精品宾馆在线| 亚洲国产精品国产精品| 黄色配什么色好看| 三级国产精品欧美在线观看| 国产三级中文精品| 亚洲国产欧洲综合997久久,| 性色avwww在线观看| 美女高潮的动态| 成人美女网站在线观看视频| 麻豆成人av视频| 少妇熟女aⅴ在线视频| 国产高潮美女av| 少妇被粗大猛烈的视频| 国产精品免费一区二区三区在线| 国产高清激情床上av| 国产精品久久久久久精品电影| 国产蜜桃级精品一区二区三区| 美女国产视频在线观看| 国产av不卡久久| 亚洲av免费在线观看| 国产精品免费一区二区三区在线| 国产男人的电影天堂91| 亚洲av免费高清在线观看| 老女人水多毛片| 三级男女做爰猛烈吃奶摸视频| 成人国产麻豆网| 欧美zozozo另类| 晚上一个人看的免费电影| 精品少妇黑人巨大在线播放 | 亚州av有码| 日韩高清综合在线| 国产成人精品一,二区 | 国产精品蜜桃在线观看 | 日韩强制内射视频| 婷婷色av中文字幕| 伊人久久精品亚洲午夜| 国产蜜桃级精品一区二区三区| 嫩草影院入口| 亚洲人成网站高清观看| 又粗又爽又猛毛片免费看| 亚洲欧洲日产国产| 国产精品美女特级片免费视频播放器| 亚洲无线观看免费| 成人国产麻豆网| 美女内射精品一级片tv| 亚洲在线自拍视频| 亚洲精品自拍成人| 综合色丁香网| 欧洲精品卡2卡3卡4卡5卡区| 亚洲中文字幕日韩| 高清毛片免费看| 小蜜桃在线观看免费完整版高清| 国产精品福利在线免费观看| 91久久精品国产一区二区成人| 99热全是精品| www.av在线官网国产| 男女下面进入的视频免费午夜| 99国产精品一区二区蜜桃av| 一本精品99久久精品77| 天天躁夜夜躁狠狠久久av| 97在线视频观看| 少妇人妻精品综合一区二区 | 亚洲自偷自拍三级| 非洲黑人性xxxx精品又粗又长| 午夜视频国产福利| 免费观看a级毛片全部| 搡老妇女老女人老熟妇| 尤物成人国产欧美一区二区三区| 国产女主播在线喷水免费视频网站 | 中文字幕制服av| 婷婷亚洲欧美| 亚洲国产欧洲综合997久久,| 国产亚洲欧美98| 国产伦在线观看视频一区| 欧美日韩在线观看h| 两个人视频免费观看高清| 欧美极品一区二区三区四区| 全区人妻精品视频| 亚洲无线在线观看| 老司机福利观看| 人人妻人人澡人人爽人人夜夜 | 久久久久久久久久久免费av| 久久久久久久久久黄片| 秋霞在线观看毛片| av天堂中文字幕网| 色哟哟·www| 热99re8久久精品国产| 国产午夜精品论理片| 久久国产乱子免费精品| 卡戴珊不雅视频在线播放| 99热这里只有精品一区| 国产高潮美女av| 激情 狠狠 欧美| 久久精品国产99精品国产亚洲性色| 成人高潮视频无遮挡免费网站| 欧美bdsm另类| 免费观看的影片在线观看| 大又大粗又爽又黄少妇毛片口| 久久久久久九九精品二区国产| 91久久精品国产一区二区三区| 成年免费大片在线观看| 国产精品乱码一区二三区的特点| 亚洲精品色激情综合| 午夜爱爱视频在线播放| 九草在线视频观看| 九色成人免费人妻av| 午夜激情欧美在线| .国产精品久久| 亚洲av免费在线观看| 熟女人妻精品中文字幕| 婷婷亚洲欧美| 日日撸夜夜添| 久久午夜福利片| 亚洲人与动物交配视频| 国产精品99久久久久久久久| 99国产极品粉嫩在线观看| 床上黄色一级片| 国产视频内射| 中文亚洲av片在线观看爽| 哪里可以看免费的av片| 99久国产av精品| 插逼视频在线观看| 国产一区二区三区在线臀色熟女| 中文字幕制服av| 国产精品久久久久久久电影| or卡值多少钱| 欧美成人免费av一区二区三区| 精品不卡国产一区二区三区| 嫩草影院精品99| 亚洲久久久久久中文字幕| 国产精品久久久久久久电影| 精品久久久久久久久av| 九九爱精品视频在线观看| 免费观看在线日韩| 日本免费a在线| 日韩欧美国产在线观看| 亚洲精品自拍成人| 一个人观看的视频www高清免费观看| 国产久久久一区二区三区| 亚洲欧美日韩东京热| 伊人久久精品亚洲午夜| 精品久久久久久成人av| av黄色大香蕉| 国产 一区 欧美 日韩| 欧美日本视频| 日产精品乱码卡一卡2卡三| 精品久久国产蜜桃| 嫩草影院入口| 国产麻豆成人av免费视频| 国产真实乱freesex| 精品人妻熟女av久视频| 亚洲在线自拍视频| 三级国产精品欧美在线观看| 国产精品人妻久久久影院| 一级毛片久久久久久久久女| 啦啦啦啦在线视频资源| 欧美潮喷喷水| 亚洲精品久久久久久婷婷小说 | 只有这里有精品99| 亚洲国产欧美在线一区| 亚洲人与动物交配视频| 免费观看精品视频网站| 精品熟女少妇av免费看| 国产精品免费一区二区三区在线| 日韩欧美精品免费久久| 高清毛片免费看| 国产精品.久久久| 少妇丰满av| 一区二区三区四区激情视频 | 精品人妻视频免费看| 久久久精品欧美日韩精品| 三级毛片av免费| 亚洲av中文字字幕乱码综合| 国产精品一区二区性色av| 黑人高潮一二区| 久久午夜亚洲精品久久| 国产亚洲av片在线观看秒播厂 | 嫩草影院入口| 久久久久久久久久久丰满| 搞女人的毛片| 22中文网久久字幕| 亚洲一级一片aⅴ在线观看| 国产精品久久视频播放| 亚洲欧美精品综合久久99| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲精品亚洲一区二区| 国产精品日韩av在线免费观看| 午夜精品在线福利| 又黄又爽又刺激的免费视频.| 国产精品久久久久久久电影| 国产精品国产三级国产av玫瑰| 最后的刺客免费高清国语| 又爽又黄a免费视频| 国产精品一区二区在线观看99 | 特大巨黑吊av在线直播| 精品少妇黑人巨大在线播放 | 国产成人精品婷婷| 能在线免费看毛片的网站| av黄色大香蕉| 夜夜看夜夜爽夜夜摸| 国产私拍福利视频在线观看| 成人无遮挡网站| av在线老鸭窝| 亚洲中文字幕日韩| 国产一区亚洲一区在线观看| 美女内射精品一级片tv| 国产精品蜜桃在线观看 | 亚洲精品成人久久久久久| 青青草视频在线视频观看| 欧美丝袜亚洲另类| 欧美变态另类bdsm刘玥| 免费看a级黄色片| 亚洲精品国产成人久久av| 精品无人区乱码1区二区| 国产精品不卡视频一区二区| 欧美又色又爽又黄视频| 青春草亚洲视频在线观看| 热99re8久久精品国产| 人人妻人人看人人澡| 神马国产精品三级电影在线观看| 天堂√8在线中文| 国产一级毛片在线| 国产av在哪里看| 国产亚洲av嫩草精品影院| av在线亚洲专区| 99久久中文字幕三级久久日本| 久久久国产成人精品二区| 亚洲中文字幕一区二区三区有码在线看| 九九热线精品视视频播放| 国产久久久一区二区三区| 日本五十路高清| 免费观看的影片在线观看| 欧美激情国产日韩精品一区| 久久久精品欧美日韩精品| 国产成人a区在线观看| 国产不卡一卡二| 99热全是精品| 日韩av不卡免费在线播放| 一边摸一边抽搐一进一小说| 网址你懂的国产日韩在线| 日韩强制内射视频| 看片在线看免费视频| 亚洲一级一片aⅴ在线观看| 成人亚洲精品av一区二区| 2022亚洲国产成人精品| 久久精品夜色国产| 午夜福利高清视频| 国产淫片久久久久久久久| 国产精品1区2区在线观看.| 综合色丁香网| 国产伦一二天堂av在线观看| 黄色视频,在线免费观看| 亚洲人成网站高清观看| 高清日韩中文字幕在线| 99久久成人亚洲精品观看| av国产免费在线观看| 国产麻豆成人av免费视频| 亚洲国产高清在线一区二区三| 69av精品久久久久久| 中国美白少妇内射xxxbb| 国产黄a三级三级三级人| 国产综合懂色| 国产私拍福利视频在线观看| 99久久成人亚洲精品观看| 亚洲成人中文字幕在线播放| 99热这里只有是精品在线观看| av在线蜜桃| 在线观看午夜福利视频| 国产精品一区二区在线观看99 | 欧美日韩在线观看h| 日韩 亚洲 欧美在线| av.在线天堂| 国产精品女同一区二区软件| 九九爱精品视频在线观看| 国产女主播在线喷水免费视频网站 | 又爽又黄无遮挡网站| 日本成人三级电影网站| 一边亲一边摸免费视频| 韩国av在线不卡| 女同久久另类99精品国产91| 国产av不卡久久| 少妇人妻一区二区三区视频| 国产精品久久视频播放| 国产在线男女| 97人妻精品一区二区三区麻豆| 一个人免费在线观看电影| 国产一级毛片在线| 夜夜看夜夜爽夜夜摸| 青春草亚洲视频在线观看| 精品久久久久久久久久久久久| 色哟哟哟哟哟哟| 床上黄色一级片| 男人狂女人下面高潮的视频| 日韩国内少妇激情av| 在线免费观看的www视频| 欧美xxxx性猛交bbbb| 特级一级黄色大片| 亚洲美女视频黄频| 亚洲国产精品成人久久小说 | 日韩中字成人| 边亲边吃奶的免费视频| 成人漫画全彩无遮挡| 老女人水多毛片| 此物有八面人人有两片| 插阴视频在线观看视频| 国产免费男女视频| 中文精品一卡2卡3卡4更新| 国产v大片淫在线免费观看| 夜夜看夜夜爽夜夜摸| 国产精品爽爽va在线观看网站| 精品日产1卡2卡| 精品不卡国产一区二区三区| 97在线视频观看| 欧美另类亚洲清纯唯美| 精品熟女少妇av免费看| 国产精品三级大全| 一级av片app| 欧美三级亚洲精品| 精品免费久久久久久久清纯| 久久久久久久久久久丰满| 一区二区三区高清视频在线| 嫩草影院新地址| 亚洲av成人精品一区久久| 在线观看av片永久免费下载| 综合色丁香网| 91狼人影院| 亚洲精品粉嫩美女一区| 啦啦啦韩国在线观看视频| 国产高清视频在线观看网站| 一级毛片aaaaaa免费看小| 国产男人的电影天堂91| 啦啦啦韩国在线观看视频| 99在线人妻在线中文字幕| 亚洲av成人精品一区久久| 亚洲精品色激情综合| 亚洲人成网站高清观看| 亚洲内射少妇av| 免费人成在线观看视频色| 天堂√8在线中文| 国产色婷婷99| 国国产精品蜜臀av免费| 亚洲成av人片在线播放无| 激情 狠狠 欧美| 亚洲国产日韩欧美精品在线观看| 免费观看人在逋| 国产午夜精品论理片| 青青草视频在线视频观看| 伦精品一区二区三区| 少妇裸体淫交视频免费看高清| 中国美白少妇内射xxxbb| 18禁在线播放成人免费| 亚洲最大成人中文| 亚洲高清免费不卡视频| 国产亚洲精品久久久久久毛片| 女人十人毛片免费观看3o分钟| 国产成人一区二区在线| 精品免费久久久久久久清纯| 国产黄片美女视频| 男人的好看免费观看在线视频| 天堂中文最新版在线下载 | 久久久精品大字幕| 国产一区二区激情短视频| 乱码一卡2卡4卡精品| 自拍偷自拍亚洲精品老妇| 国产 一区精品| АⅤ资源中文在线天堂| 久久精品夜色国产| 国产毛片a区久久久久| 九色成人免费人妻av| 高清在线视频一区二区三区 | videossex国产| 欧美激情久久久久久爽电影| 久久精品国产清高在天天线| 99热全是精品| 不卡一级毛片| 夜夜爽天天搞| 中文资源天堂在线| 久久婷婷人人爽人人干人人爱| 久久久国产成人免费| 日韩国内少妇激情av| 99热只有精品国产| 久久久国产成人精品二区| 国内精品美女久久久久久| 免费看美女性在线毛片视频| 国产 一区 欧美 日韩| 国产乱人视频| 黄色视频,在线免费观看| 欧美一级a爱片免费观看看| 久久精品夜夜夜夜夜久久蜜豆| 国产黄色视频一区二区在线观看 | 少妇猛男粗大的猛烈进出视频 | 夜夜夜夜夜久久久久| 国产熟女欧美一区二区| 狂野欧美激情性xxxx在线观看| 午夜久久久久精精品| 久久99精品国语久久久| 欧美色视频一区免费| 看十八女毛片水多多多| 又粗又硬又长又爽又黄的视频 | 国语自产精品视频在线第100页| 淫秽高清视频在线观看| 直男gayav资源| 亚洲乱码一区二区免费版| 久久午夜亚洲精品久久| 岛国毛片在线播放| 亚洲国产欧美人成| 国产色爽女视频免费观看| 最新中文字幕久久久久| 国产精品一二三区在线看| 人体艺术视频欧美日本| 亚洲aⅴ乱码一区二区在线播放| av在线亚洲专区| 久久久久久大精品| 听说在线观看完整版免费高清| 国产人妻一区二区三区在| 亚洲中文字幕一区二区三区有码在线看| 51国产日韩欧美| 亚洲av中文字字幕乱码综合| 久久久久久久久久黄片| 性欧美人与动物交配| 日本-黄色视频高清免费观看| 免费不卡的大黄色大毛片视频在线观看 | 一卡2卡三卡四卡精品乱码亚洲| 村上凉子中文字幕在线| 亚洲成a人片在线一区二区| 精品人妻偷拍中文字幕| 国产精品嫩草影院av在线观看| 成人特级黄色片久久久久久久| 一本久久中文字幕| 伊人久久精品亚洲午夜| 我要搜黄色片| 日韩成人伦理影院| 亚洲国产欧洲综合997久久,| 午夜久久久久精精品| 国产蜜桃级精品一区二区三区| 欧美xxxx性猛交bbbb| 人妻夜夜爽99麻豆av| 亚洲av免费高清在线观看| 亚洲成人av在线免费| 91久久精品国产一区二区成人| 午夜免费男女啪啪视频观看| 欧美一区二区国产精品久久精品| 老女人水多毛片| 日本五十路高清| 亚洲人与动物交配视频| 免费无遮挡裸体视频| avwww免费| 男人和女人高潮做爰伦理| av专区在线播放| 亚洲精品色激情综合| 国产一级毛片在线| 亚洲乱码一区二区免费版| 久久久久久久午夜电影| 老司机福利观看| 精品人妻偷拍中文字幕| 国产日韩欧美在线精品| 亚洲精品久久久久久婷婷小说 | 色哟哟哟哟哟哟| 日本爱情动作片www.在线观看| 午夜激情欧美在线| 国产伦在线观看视频一区| 国产蜜桃级精品一区二区三区| 久久久国产成人精品二区| 成人毛片a级毛片在线播放| 免费大片18禁| 国产久久久一区二区三区| 2022亚洲国产成人精品| 高清毛片免费观看视频网站| 日本一本二区三区精品| 欧美精品一区二区大全| av视频在线观看入口| 国产精品麻豆人妻色哟哟久久 | av卡一久久| 国产成人freesex在线| 色哟哟·www| 99热这里只有精品一区| 99国产极品粉嫩在线观看| 51国产日韩欧美| 欧美三级亚洲精品| 超碰av人人做人人爽久久| 亚洲欧美日韩高清在线视频| 免费观看a级毛片全部| 校园春色视频在线观看| www.色视频.com| 精品久久久久久久久久免费视频| 99热只有精品国产| 免费观看精品视频网站| 国产一区二区在线av高清观看| 麻豆一二三区av精品| 午夜亚洲福利在线播放| 国产欧美日韩精品一区二区| 中文精品一卡2卡3卡4更新| 一级毛片aaaaaa免费看小| 99在线人妻在线中文字幕| 国产探花在线观看一区二区| 国产成人福利小说| 18+在线观看网站| 国产一区二区三区在线臀色熟女| 国产免费男女视频| 综合色av麻豆| 91精品一卡2卡3卡4卡| a级毛片a级免费在线| 亚洲久久久久久中文字幕| av国产免费在线观看| 国内久久婷婷六月综合欲色啪| 国产蜜桃级精品一区二区三区| 中出人妻视频一区二区| 精品一区二区免费观看| 国产av一区在线观看免费| 99热网站在线观看| 老女人水多毛片| 亚州av有码| 日本一本二区三区精品| 菩萨蛮人人尽说江南好唐韦庄 | 高清毛片免费观看视频网站| 在线天堂最新版资源| 国产成人影院久久av| 全区人妻精品视频| 精品久久久久久久末码| av天堂中文字幕网| 一个人观看的视频www高清免费观看| 免费无遮挡裸体视频| 一级毛片我不卡| 精品不卡国产一区二区三区| 一级毛片我不卡| 日韩欧美 国产精品| 午夜爱爱视频在线播放| 22中文网久久字幕| 久99久视频精品免费| 亚洲自拍偷在线| 色视频www国产| 18禁黄网站禁片免费观看直播| 一卡2卡三卡四卡精品乱码亚洲| 91麻豆精品激情在线观看国产| 99热精品在线国产| av在线天堂中文字幕| 日韩国内少妇激情av| 日日摸夜夜添夜夜爱| 亚洲经典国产精华液单| 最近手机中文字幕大全| 99久久久亚洲精品蜜臀av| 最近2019中文字幕mv第一页| 亚洲av中文av极速乱| 色视频www国产| 亚洲精品成人久久久久久| 亚洲精品乱码久久久v下载方式| 五月伊人婷婷丁香| av黄色大香蕉| 亚洲18禁久久av| 久久这里有精品视频免费| 丰满乱子伦码专区| 亚洲最大成人中文| 免费搜索国产男女视频| 免费无遮挡裸体视频| 好男人视频免费观看在线| 亚洲成人av在线免费| 99在线视频只有这里精品首页| 亚洲精品自拍成人| 国产精品一二三区在线看| 男女下面进入的视频免费午夜| 天堂影院成人在线观看| 国产一区二区亚洲精品在线观看| 欧美高清成人免费视频www| 亚洲av一区综合| 国产精品一区二区在线观看99 | 乱码一卡2卡4卡精品| 亚洲18禁久久av| 99久久精品一区二区三区| 亚洲av一区综合| 国语自产精品视频在线第100页|