• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Reliable Stochastic Numerical Analysis for Typhoid Fever Incorporating With Protection Against Infection

    2019-06-12 01:23:08MuhammadShoaibArifAliRazaMuhammadRafiqMairajBibiRabiaFayyazMehvishNazandUmerJaved
    Computers Materials&Continua 2019年6期

    Muhammad Shoaib Arif ,Ali RazaMuhammad Rafiq,Mairaj Bibi,Rabia Fayyaz,Mehvish Naz and Umer Javed

    Abstract:In this paper,a reliable stochastic numerical analysis for typhoid fever incorporating with protection against infection has been considered.We have compared the solutions of stochastic and deterministic typhoid fever model.It has been shown that the stochastic typhoid fever model is more realistic as compared to the deterministic typhoid fever model.The effect of threshold number T* hold in stochastic typhoid fever model.The proposed framework of the stochastic non-standard finite difference scheme (SNSFD)preserves all dynamical properties like positivity,bounded-ness and dynamical consistency defined by Mickens,R.E.The stochastic numerical simulation of the model showed that increase in protection leads to low disease prevalence in a population.

    Keywords:Typhoid fever,stochastic differential equations,euler maruyama scheme,stochastic euler scheme,stochastic runge-kutta scheme,stochastic NSFD scheme.

    1 Introduction

    Typhoid is consequent of a disease with similar symptoms called typhus.The cause of this endemic disease is highly virulent bacterium Salmonella typhi.This bacterium spread through contaminated water and carrier of this bacterium.The symptoms of the typhoid are sustained fever,very poor appetite,vomiting,severe headache and fatigue.Typhoid has an incubation period of 7 to 14 days.The germ lives in the intestine of the patient which is its natural habitat.The multiple mononuclear phagocytic cells are added into the bloodstream [Cai and Li (2010);Nthiiri,Lawi,Akinyi et al.(2016)].Treatment of typhoid depends upon the blood culture of the patient.When the strain is sensitive amoxicillin,chloramphenicol is given orally.In the asymptomatic carrier,the oral dose of ciprofloxacin or norfloxacin is used to wipe out the problem.It has become difficult to treat by antibiotics throughout the world because of multi-drug resistant strain.In many countries,the goal of wiping out the disease can only be achieved by providing healthy pure water,safe,sanitary conditions,healthy food and above-mentioned medical facilities.Although it is tough to achieve this goal,these steps may minimize or blot out the disease.The public can be made conscious after having health educational programs which change the behaviour towards the precautions and treatment of the disease.Millions of people across the world are being affected by typhoid every year.According to many surveys,every year about 20 million cases are reported,and approximately 200,000 are deceased annually.According to a survey in Africa,50/100,000 people are dying because of typhoid,where 400,000 cases are reported annually [Cvjetanovic,Grab and Uemura (1971);Regan,Kelly,Korobeinikov et al.(2010)].Currently,oral and injectable vaccines are being used to treat typhoid,but these two are not enough to treat the disease.If the infected person is treated with drug-resistant strain,then it can reduce the duration of illness.Many mathematical models designed have been used to explain and analysis the dynamics of infectious disease.Ordinary differential equations are formulated in the presence of many assumptions and parameters.

    The amount of newly infected folks is voiced as a role of the infectious and susceptible folks in a municipal within a given time in this model.The age edifices of the populace are established,which enables more detailed simulation of the upshot of various intercessions and tactics to control the disease in diverse age groups.The study indicates that once the incidence rate of the contagion has collapsed underneath the threshold quantity.It cannot be sustained in a community owed to the loss of the core source of infection long-lasting hailers as they die out unsurprisingly.The Mathematical model for transmission dynamics of typhoid is developed in demand to evaluate the budding,straight and incidental possessions of vaccination.The model is validated against randomized serum prosecutions.It is evaluated on school-based vaccination strategies,and it is discovered that typhoid vaccination is projected to lead a short-term incidental fortification and decrease in typhoid frequencies.However,vaccination alone is questionable lead to the elimination of typhoid.Mutually short and long-term shippers contribute to transmission but not necessarily at the same rate as primary infections [Cui,Tao and Zhu (2008)].

    A simple mathematical model is developed by direct and indirect protection by vaccine and the benefits of the generic vaccination program.The population is divided into vaccinated,and the unvaccinated subgroups and its effectiveness redefined.It is found that vaccination reduces the number of susceptible to infection and fewer infected individuals spread the disease among vaccinated and unvaccinated persons.A mathematical model on the influence of control strategies to successfully control the drain of the upshot of shippers on the typhoid fever in Kisii town is developed and analyzed.This model showed the dynamics of typhoid fever by verbalizing and scrutinizing the bearing of hauliers,verdict and health education on typhoid hauliers’ control in Kenya [Triampo,Baowan,Tang et al.(2007)].The model considered that exposed individuals developed the typhoid fever due to endogenous renaissance and exogenous re-infection.The investigation exertion allows the latent and infectious period to have a dispersal other than the exponential.Numerical results show that dipping the typhoid shippers by 9.5% could contribution Kisii county regime in Kenya to accomplish a typhoid free spot by 2030 [Holt,Davis and Leirs (2006)].Mathematical modelling has emerged as an effective tool to extract comprehensive insight knowledge about epidemic diseases.The formation of the model and the possible simulations allow for scrutinising the sensitivity and comparison of conjuncture patterns.As a result,the prediction of mediator,host and ecological factor affecting public health is possible,and health policymakers can scientifically suggest and implement health services [Anwar,Goldberg,Fraser et al.(2014)].Several studies have been conducted on various models of typhoid fever transmission dynamics [Cai and Li (2010);Nthiiri,Lawi,Akinyi et al.(2016)].It is well-known that nonlinear initial value problems (IVPs)do not always possess analytical solutions.The available classical explicit finite-difference schemes such as Euler Maruyama,stochastic Euler and stochastic Runge-Kutta methods can bring about perplexing chaos and deceiving oscillations for specific concentrations of the discretization parameters [Zafar,Rehan and Mushtaq (2017);Zafar,Rehan,Mushtaq et al.(2017);Zafar,Rehan and Mushtaq (2017);Bayram,Partal and Buyukoz (2018)].Due to these reasons and some other schemes dependent numerical instabilities such methods proved to be less fortunate options.

    In general,the elasticity of stochastic differential equations (SDEs)are difficult,and the solutions of stochastic differential equations do not exist explicitly.We use different numerical schemes to integrate these equations in sagacity of convergence is difficult [Mickens (1994);Mickens (2005);Cresson and Pierret (2014);Pierret (2015)].A natural question on numerical schemes can be the following despite convergence analysis:Do the numerical schemes preserve the dynamical properties of the initial system [Mickens (2005)].In the deterministic modelling,we have pragmatic usual numerical schemes Euler and Runge-Kutta do not preserve dynamical properties.However,in stochastic case,the Euler Maruyama scheme,stochastic Euler scheme and stochastic Runge-Kutta scheme do not preserve the dynamical properties.Here the question arises:Can we construct a stochastic numerical scheme which preserves all dynamical properties?

    The main theme of this paper is to introduce the idea of stochastic nonstandard finite difference scheme (SNSFD)based on the rules introduced in the deterministic case by [Mickens (1994,2005)].

    The strategy of this paper as follows:

    In Section 2,we review classical definitions and some history of stochastic differential equations (SDEs)calculus.In Section 3,we instruct the invention of stochastic epidemic models.In Section 4,we discuss the deterministic typhoid fever model and equilibrium points.In Section 5,we discover the stochastic typhoid fever model.In Section 6,we will introduce the different stochastic numerical schemes and linked their result with deterministic solutions.In Section 7,we will conclude and will give the future directions.

    2 Preliminaries

    Einstein gave the idea of stochastic differential equations (SDEs)in (1905)and a mathematical gathering between microscopic random motion of particles and the macroscopic diffusion equation [Gard (1988);Karatzas and Shreve (1991);Platen (1991);Mickens (2005);Allen (2007);Britton (2010)].Today the SDEs are fascinating many attentions due to physical expansions in real life system because the ordinary differential equations (ODEs)did not include random apprehension forcing and stochastic inputs.A stochastic calculus distributes a mathematical constituent for the manner of stochastic differential equations (SDEs).In general form,we can write the stochastic differential equation that comprises parameters.Continuous time t and variable Tt,as follows:

    moreover,the integral form is

    The differential equation (1)is also called the Ito stochastic differential equation (SDE)where u(t,Tt)and v(t,Tt)are drift and diffusion coefficients respectively.The casual variable c is called the initial value at the instant to.A solution Ttof Eqs.(1)or (2)is called a stochastic process.

    2.1 Brownian motion

    The Brownian motion can be defined as a continuous time haphazard walk with the following properties [Gard (1988);Oksendal (2003)].

    (i)B0=0.

    (ii)Btmust be continuous,the event happens with probability one.The sample trajectories t →Btare continuous with probability one.

    (iii)For any finite sequence of times t1<t2<t3…<tnthen the following paths Bt1-Bto,Bt2-Bt1,Bt3-Bt2…,Btn-Btn-1are independent.

    (iv)For any times 0 ≤s ≤t,Bt-Bsis normally distributed with mean zero and variance is t-s.In particularly we say that expectation of [Bt-Bs]=0 and variance of [Bt-Bs]=t-s.

    The stochastic process is a fundamental example of Brownian motion.The study of stochastic epidemic model based on stochastic modelling processes,but the stochastic modelling process is a grouping of random variables {Tt(S)t?T/,s?S},where T the guide is set and S is a joint sample space.The guide set may often personify time such as T={0,1,2,…} or T=[0,∞).So,the time may have discrete or continuous.The study of stochastic modelling processes is based on probability theory.We will describe the stochastic epidemic modelling processes in three different ways such as DTMC (Discrete Time Markov Chain)epidemic models,CTMC (Continuous Time Markov Chain)epidemic models and SDEs (Stochastic Differential Equations)epidemic models [Shoji and Ozaki (1997);Shoji and Ozaki (1998)].We will assume the time and the state variables are discrete in discrete time Markov chain (DTMC)epidemic models and the time is continuous,and the state variables are discrete in continuous time Markov chain (CTMC)epidemic models.We will assume both time and variables as continuous in stochastic differential equations (SDEs)epidemic models.Now! We will discuss Ito stochastic differential equations (SDEs)in stochastic epidemic models.It was first introduced and developed by Ito in 1942.In order to illustrate the development of the stochastic process is almost in all sciences such as economics,mathematics,physics,chemistry and biology.Due to their non-differentiable character of realization of the Brownian motion,the solutions of stochastic differential equations (SDEs)are not given explicitly.So! The stochastic numerical approximation is used to study the properties of stochastic epidemic models [Maruyama (1955);Kloeden and Platen (1992);Kloeden,Platen and Schurz (1994);Bayram,Partal and Buyukoz (2018)].

    3 Construction of stochastic epidemic models

    Epidemics are usually twisted by non-linear systems pragmatic through patchy noisy data.The epidemic models can be divided into two main types such as deterministic epidemic models and stochastic epidemic models.The deterministic epidemic models do not preserve the natural uncertainty of disease dynamics,but the idea of stochastic epidemic models preserves all types of the uncertainty of disease dynamics.There are numerous conducts to diffuse the deterministic epidemic models to stochastic epidemic models [Allen,Allen,Arciniega et al.(2008)].The stochastic epidemic modelling has been done by discrete time Markov chain (DTMC),continuous time Markov chain (CTMC)and Ito stochastic differential equations (SDEs).Consequently! The idea of Ito stochastic differential equations gives a more opportune way to move from deterministic epidemic models to stochastic epidemic models.The idea of Ito stochastic differential equation can be pronounced by the following methods such as parametric perturbation and nonparametric perturbation methods.In parametric perturbation method,we will choose a parameter from the model and transformed into random variables of the model.In nonparametric perturbation method,we will introduce the Brownian processes in each differential equation (or introduce the extra stochasticity parameters).The non-parametric perturbation method is more useful as compared to parametric perturbation method.Another way of non-parametric perturbation method is introduced by Allen [Karatzas and Shreve (1991);Platen (1991);Allen and Burgin (2000);Holt,Davis and Leirs (2006);Allen (2007);Britton (2010)] in which any extra stochasticity parameters is not introduced in the model.Here we will frame the ways of non-parametric perturbation method in deterministic epidemic models and use different numerical methods to prompt them and check the efficiency of numerical methods on stochastic epidemic models.We will observe the association between the solutions of deterministic epidemic models and stochastic epidemic models.

    4 Deterministic typhoid fever model

    Figures and tables should be inserted in the text of the manuscript.

    In this segment,we consider the deterministic typhoid fever model incorporating with protection against infection [Nthiiri,Lawi,Akinyi et al.(2016)].Let at any arbitrary time t,the variables are stated as T1(t)exemplifies protected humans’ fraction,T2(t)exemplifies susceptible humans’ fraction,T3(t)exemplifies infected humans’ fraction and T4(t)exemplifies treated humans’ fraction.The communication dynamics of typhoid fever model as shown in Fig.1.

    Figure 1:Flow diagram of typhoid fever model

    The model parameters are pronounced as β (pronounces rate of treated humans from infected humans fraction),α (pronounces the enrolment rate into the conference of protected humans against typhoid),(1-α)(pronounces the rate of those humans who have chances to get virus),δ (pronounces the transience rate of humans by typhoid fever),θ (pronounces the susceptible humans acquire typhoid fever infection at per capita rate),μ (pronounces the natural rate of death/birth of humans).

    The governing equations of the typhoid fever model are given below as

    where the constant size of total humans under as

    4.1 Steady states of the typhoid fever model

    The steady state of typhoid fever model (3)can be categorized into two ways of equilibrium points under as

    Disease-free equilibrium is

    Note that T?is the reproductive number of the typhoid fever model (3).The reproductive number has a vital role in disease dynamics.If the reproductive number T?<1 then this strategy helps us to control the disease and if T?>1 then this will be an alarming situation of disease in the population.

    5 Stochastic typhoid fever model

    Let T(t)=[T1(t),T2(t),T3(t),T4(t),T5(t)]Tto form the stochastic differential equations (SDEs)of typhoid fever model (1).We want to calculate the expectations E?[ΔT] and E?[ΔTΔTT] to find these expectations the possible changes along with their associated transition probabilities are listed in the following (see Tab.1).

    Table 1:Possible changes in the process for the typhoid fever model (3)

    The expectation of typhoid fever model (3)is defined as

    The variance of typhoid fever model is defined as Var=E?[ΔTΔTT]=

    where,

    The stochastic differential equation satisfies the diffusion processes,So

    If we define drift=G(T(t),t)=and diffusion=H(T(t),t)=then the stochastic differential equation of typhoid fever model (3)is

    with initial conditions T(0)=To=[0.2,0.4,0.3,0.1]T,0 ≤t ≤T and B(t)is the Brownian motion.

    5.1 Euler maruyama scheme

    Here we use Euler Maruyama scheme [Maruyama (1955)] to find the numerical solution of SDEs (5)by using the parameters values given in literature [Nthiiri,Lawi,Akinyi et al.(2016)] (see Tab.2).

    Table 2:Values of Parameter

    We can write the Euler Maruyama scheme of SDEs (5)is

    Tn+1=Tn+f(Tn,t)Δt+L(Tn,t)dB(t).

    where ‘Δt’ is time step size.The solution of SDEs lies in confidence interval for both disease-free equilibrium and endemic equilibrium as shown in numerical experiments.The solution of deterministic typhoid fever model for the disease-free equilibrium D1?=(0.0332,0.9663,0,0)and the reproductive number helps us to control this infection in human’s population.The endemic equilibrium E1?=(0.0332,0.09094,0.004235,0.8666)and the reproductive number shows that disease is endemic in human’s population.The graphical behaviour of Euler Maruyama scheme for both disease-free equilibrium and endemic equilibrium at different sub populations as shown in figures.

    Figure 2:Comparison in solutions of euler maruyama and deterministic (a)Susceptible humans fraction at DFE Point for h=0.01 (b)Susceptible humans fraction at DFE Point for h=4 (c)Protected humans fraction at EE Point for h=0.01 (d)Protected humans fraction at EE Point for h=20

    5.2 Non-parametric perturbation of stochastic typhoid fever model

    Another way to construct the stochastic differential equations (SDEs)from the deterministic ordinary differential equations (ODEs)is to introduce the non-parametric perturbation in each differential equation of typhoid fever model (3)as

    with initial conditions T(0)=[T1(0),T2(0),T3(0),T4(0)]T=[0.2,0.4,0.3,0.1]T,where σ1,σ2,σ3and σ4is stochasticity of each compartment of the typhoid fever model and Bj(t),(j=1,2,3,4)are the independent Brownian motions.The non-parametric perturbation of stochastic typhoid fever model does not have the explicit solution due to a non-differentiability term of Brownian motion.So,we introduced some new stochastic numerical methods to find the solution of stochastic typhoid fever model (6).

    5.2.1 Stochastic euler scheme

    The stochastic Euler scheme can be derived from the above non-parametric perturbation of stochastic typhoid fever model (6)as

    where “h” is any time step size.We pretend the solution of stochastic Euler scheme by using the Matlab program and parameters values given in Nthiiri et al.[Nthiiri,Lawi,Akinyi et al.(2016)] (see Tab.2).

    Figure 3:Comparison in solutions of stochastic euler and deterministic (a)Susceptible humans fraction at DFE Point for h=0.01 (b)Susceptible humans fraction at DFE Point for h=3 (c)Protected humans fraction at EE Point for h=0.01 (d)Protected humans fraction at EE Point for h=5 (e)Infected humans fraction at EE Point for h=0.01 (f)Infected humans fraction at EE Point for h=0.6

    5.2.2 Stochastic runge-kutta scheme

    The stochastic Runge-Kutta scheme can be derived from the above non-parametric perturbation of stochastic typhoid fever model (6)as

    First Stage

    Second Stage

    Third Stage

    Fourth Stage

    Final Stage

    where “h” is any time step size.We pretend the solution of stochastic Runge Kutta scheme by using Mat-lab program and parameters values given in Nthiiri et al.[Nthiiri,Lawi,Akinyi et al.(2016)] (see Tab.2).

    Figure 4:Comparison in solutions of stochastic runge kutta and deterministic (a)Susceptible humans fraction at DFE Point for h=0.01 (b)Susceptible humans fraction at DFE Point for h=0.4 (c)Protected humans fraction at EE Point for h=0.01 (d)Protected humans fraction at EE Point for h=11 (e)Infected humans fraction at EE Point for h=0.01 (f)Infected humans fraction at EE Point for h=5

    5.2.3 Stochastic NSFD scheme

    The proposed frame work of stochastic nonstandard finite difference scheme (SNSFD)can be derived from the above non-parametric perturbation of stochastic typhoid fever model (6)as

    where φ(h)=1-exp(-h)and "h" is any time step size.We pretend the solution of proposed frame work of stochastic nonstandard finite difference (SNSFD)scheme by using the Matlab program and parameters values given in Nthiiri et al.[Nthiiri,Lawi,Akinyi et al.(2016)] (see Tab.2).

    Figure 5:Comparison in solutions of stochastic NSFD and deterministic (a)Susceptible humans fraction at DFE Point for h=0.01 (b)Susceptible humans fraction at DFE Point for

    h=1000 (c)Protected humans fraction at EE Point for h=0.01 (d)Protected humans fraction at EE Point for h=1000 (e)Infected humans fraction at EE Point for h=0.01 (f)Infected humans fraction at EE Point for h=1000

    6 Results and discussion

    In Fig.2,it is observed that the Euler Maruyama scheme converges the steady states of the typhoid fever model while the deterministic solution is the mean of Euler Maruyama solution for descritezation h=0.01 at different sub population fractions.When the time step size is increased,the Euler Maryuama scheme fails to maintain positivity and boundedness for both disease free equilibrium and endemic equilibrium at different sub population fractions.Consequently,Euler Maryuama scheme does not work for any time step size.

    In Fig.3,it is observed that the stochastic Euler scheme converges the steady states equilibrium while the deterministic solution is the mean of stochastic Euler solution for descritezation h=0.01 at different sub population fractions.When the time step size has been increased,the stochastic Euler scheme fails to maintain positivity and boundedness for both disease free equilibrium and endemic equilibrium at different sub population fractions.So,the stochastic Euler scheme is not a reliable technique to find the solutions of stochastic typhoid model.

    Fig.4 shows that the stochastic Runge-Kutta scheme converges the disease free equilibrium and endemic equilibrium while the deterministic solution is the mean of stochastic Runge-Kutta solution for descritezation h=0.01 at different sub population fractions respectively.When the time step size is increased as shown in Fig.4,the stochastic Runge-Kutta scheme fails to maintain boundedness and positivity for both disease free equilibrium and endemic equilibrium at different sub population fractions.So,the stochastic Runge-Kutta scheme does not work for any time step size.Thus,the aforasaid stochastic schemes do not preserve all dynamical properities [Mickens (1994,2005)].

    In Fig.5,it has been shown that the stochastic NSFD scheme converges both disease free equilibrium and endemic equilibrium while the deterministic solution is the mean of stochastic NSFD solution for any descritezation such as h=0.01 and h=1000 at different sub population fractions respectively.So,the stochastic NSFD scheme preserves all dynamical properties such as positivity,boundedness and dynamical consistency defined by R.E.Mickens in a stochastic context.The proposed frame work stochastic NSFD scheme works for any time step size.

    7 Conclusion and future frame work

    The numerical analysis for the stochastic epidemic model is a more convenient strategy as compare to deterministic epidemic model to understand the typhoid dynamics incorporating with protection against infection.The Euler Maruyama scheme,stochastic Euler scheme and stochastic Runge-Kutta scheme converges the true equilibrium points for very small-time step size,after increasing the time step size these schemes diverge and lose the dynamical properties such as positivity,bounded-ness and dynamical consistency.The proposed frame work of stochastic nonstandard finite difference scheme (SNSFD)of typhoid fever model works for any time step size defined by Mickens [Mickens (1994,2005)] in the stochastic framework.The above-mentioned frame work (SNSFD)is suitable for all types of non-linear and complicated stochastic epidemic models.The stochastic solutions are very close to the deterministic ODEs solutions.The study of stochastic epidemic models plays a most important role in disease dynamics.We have observed that stochastic epidemic models are more realistic as compared to deterministic epidemic models.For future work,the proposed (SNSFD)can be implemented to the complicated stochastic delay epidemic models and stochastic diffusion epidemic models.The numerical analysis proposed in this work could also be extended to fractional order dynamical system [Jajarmi and Baleanu (2018);Jajarmi,Baleanu,Bonyah et al.(2018)].Our future plan is to construct a reliable numerical scheme for the fractional order stochastic epidemic model for various infectious diseases.

    Acknowledgement:We would like to thank the referees for their valuable comments and also the authors are grateful to Vice Chancellor,Air vice Marshal Faaiz Amir (Retd.),Air University,Islamabad and Dr Raheel Qamar,Rector COMSATS University,Islamabad,Pakistan for providing excellent research environment and facilities.

    Declaration of conflicting interests:The author(s)declared no potential conflicts of interest with respect to the research,authorship,and/or publication of this article.

    ORCID ID:Muhammad Shoaib Arif http://orcid.org/0000-0002-6009-5609.

    亚洲人成网站在线播| 国产久久久一区二区三区| 成人一区二区视频在线观看| 国产精品1区2区在线观看.| 神马国产精品三级电影在线观看| 亚洲内射少妇av| 免费观看的影片在线观看| 亚洲精品456在线播放app| 在线国产一区二区在线| 久久久午夜欧美精品| 深夜精品福利| 老司机影院成人| 又黄又爽又刺激的免费视频.| 成人永久免费在线观看视频| 亚洲精品一区av在线观看| 男女边吃奶边做爰视频| 亚洲成人久久爱视频| 欧美一级a爱片免费观看看| 欧美日韩综合久久久久久| 午夜福利18| 91久久精品国产一区二区三区| 男人和女人高潮做爰伦理| 尤物成人国产欧美一区二区三区| 在线观看66精品国产| 欧美bdsm另类| 日韩av在线大香蕉| 成年av动漫网址| 久久久久免费精品人妻一区二区| 国产 一区精品| 99九九线精品视频在线观看视频| 午夜激情福利司机影院| 亚洲丝袜综合中文字幕| 日韩,欧美,国产一区二区三区 | 久久午夜亚洲精品久久| 成人综合一区亚洲| 男人舔奶头视频| 五月玫瑰六月丁香| 一进一出抽搐动态| 日韩在线高清观看一区二区三区| 国内少妇人妻偷人精品xxx网站| 国产高清视频在线观看网站| 一进一出抽搐动态| 搞女人的毛片| 国产伦精品一区二区三区视频9| 两个人视频免费观看高清| 蜜桃亚洲精品一区二区三区| 黄色日韩在线| 亚州av有码| 久久久久九九精品影院| 免费观看精品视频网站| 两个人的视频大全免费| 亚洲性夜色夜夜综合| 最近的中文字幕免费完整| 中文字幕久久专区| 神马国产精品三级电影在线观看| 欧美一区二区亚洲| 欧美极品一区二区三区四区| 精品不卡国产一区二区三区| АⅤ资源中文在线天堂| 亚洲欧美中文字幕日韩二区| 免费av观看视频| 97碰自拍视频| 男女之事视频高清在线观看| 日本在线视频免费播放| 亚洲一区二区三区色噜噜| 亚州av有码| 亚洲欧美日韩高清专用| 日韩欧美在线乱码| 成人三级黄色视频| av卡一久久| 日本在线视频免费播放| 成人av一区二区三区在线看| 99九九线精品视频在线观看视频| 一卡2卡三卡四卡精品乱码亚洲| 看免费成人av毛片| avwww免费| 亚洲欧美日韩卡通动漫| 别揉我奶头 嗯啊视频| 三级男女做爰猛烈吃奶摸视频| 国产成人91sexporn| 欧美xxxx黑人xx丫x性爽| 久久精品国产鲁丝片午夜精品| 亚洲专区国产一区二区| 麻豆国产97在线/欧美| 精品人妻熟女av久视频| 欧美激情国产日韩精品一区| www.色视频.com| 在线观看午夜福利视频| 国产激情偷乱视频一区二区| 少妇人妻一区二区三区视频| 69av精品久久久久久| 国产久久久一区二区三区| 欧美日韩综合久久久久久| 亚洲一级一片aⅴ在线观看| 一本一本综合久久| 亚洲国产日韩欧美精品在线观看| 热99在线观看视频| 久久久国产成人免费| 99久久精品一区二区三区| 亚洲av中文av极速乱| 黄色视频,在线免费观看| 亚洲成a人片在线一区二区| 亚洲,欧美,日韩| 少妇被粗大猛烈的视频| 精品欧美国产一区二区三| 久久婷婷人人爽人人干人人爱| 天天躁日日操中文字幕| 联通29元200g的流量卡| 成人三级黄色视频| 一边摸一边抽搐一进一小说| 国产av一区在线观看免费| 欧美日韩一区二区视频在线观看视频在线 | 全区人妻精品视频| 亚洲精品国产成人久久av| 国产视频内射| 亚洲精品一卡2卡三卡4卡5卡| 国产一区二区在线观看日韩| 给我免费播放毛片高清在线观看| 国产精品不卡视频一区二区| 国产伦精品一区二区三区视频9| 男人的好看免费观看在线视频| 成人综合一区亚洲| www日本黄色视频网| 一个人观看的视频www高清免费观看| 久久精品国产鲁丝片午夜精品| 国产午夜福利久久久久久| 精品久久久久久久久av| 老司机午夜福利在线观看视频| 三级经典国产精品| 99热只有精品国产| 国产精品美女特级片免费视频播放器| 欧美日韩国产亚洲二区| 高清日韩中文字幕在线| 免费在线观看成人毛片| 欧美最新免费一区二区三区| 亚洲无线在线观看| 久久精品国产亚洲av天美| 亚洲中文字幕一区二区三区有码在线看| 国产av不卡久久| 成年免费大片在线观看| 白带黄色成豆腐渣| 免费高清视频大片| 性欧美人与动物交配| 亚洲av五月六月丁香网| 欧美性猛交黑人性爽| 久久久国产成人精品二区| 亚洲色图av天堂| 日韩三级伦理在线观看| 简卡轻食公司| 波野结衣二区三区在线| 91久久精品国产一区二区三区| 国产v大片淫在线免费观看| 亚洲人成网站在线播放欧美日韩| 色哟哟·www| 欧美丝袜亚洲另类| 国产毛片a区久久久久| 日韩三级伦理在线观看| 晚上一个人看的免费电影| 高清午夜精品一区二区三区 | 国产精品一区www在线观看| 欧美日本视频| 日韩欧美三级三区| 又爽又黄无遮挡网站| 免费av不卡在线播放| 国产av不卡久久| 又爽又黄无遮挡网站| 在线观看免费视频日本深夜| 国产国拍精品亚洲av在线观看| 99热6这里只有精品| 日本熟妇午夜| 有码 亚洲区| 女人被狂操c到高潮| 国产精品1区2区在线观看.| 国产高清视频在线观看网站| 99热这里只有精品一区| 此物有八面人人有两片| 欧美zozozo另类| 亚洲在线自拍视频| 亚洲精品成人久久久久久| 最后的刺客免费高清国语| 波多野结衣巨乳人妻| 一区福利在线观看| 夜夜夜夜夜久久久久| 黄色日韩在线| 欧美性猛交黑人性爽| 欧美极品一区二区三区四区| 久久久午夜欧美精品| 嫩草影院入口| 亚洲人成网站在线观看播放| 搡老岳熟女国产| 久久久久九九精品影院| 不卡视频在线观看欧美| 麻豆国产97在线/欧美| 亚洲av不卡在线观看| 日本黄色视频三级网站网址| 国产黄色小视频在线观看| 老师上课跳d突然被开到最大视频| 在线观看av片永久免费下载| 久久天躁狠狠躁夜夜2o2o| 成人欧美大片| 国产精品一及| 久久草成人影院| 精品熟女少妇av免费看| 亚洲av一区综合| 男女那种视频在线观看| 美女大奶头视频| 最后的刺客免费高清国语| 国产亚洲精品综合一区在线观看| 91麻豆精品激情在线观看国产| 亚洲人与动物交配视频| 婷婷精品国产亚洲av| 麻豆国产97在线/欧美| 欧美另类亚洲清纯唯美| 神马国产精品三级电影在线观看| 在现免费观看毛片| 一级黄色大片毛片| 久久综合国产亚洲精品| 啦啦啦观看免费观看视频高清| 91av网一区二区| 午夜福利视频1000在线观看| 白带黄色成豆腐渣| 俄罗斯特黄特色一大片| 天堂网av新在线| 国产真实伦视频高清在线观看| 男插女下体视频免费在线播放| 欧美日本视频| 天堂动漫精品| 国产乱人偷精品视频| 嫩草影视91久久| 毛片一级片免费看久久久久| 国产亚洲精品av在线| 久久99热这里只有精品18| 热99re8久久精品国产| 欧美最新免费一区二区三区| а√天堂www在线а√下载| 黄色欧美视频在线观看| 最新中文字幕久久久久| 欧美丝袜亚洲另类| ponron亚洲| 国产精品久久久久久av不卡| 精品少妇黑人巨大在线播放 | 久久精品夜夜夜夜夜久久蜜豆| 简卡轻食公司| 午夜福利在线观看免费完整高清在 | 一级毛片久久久久久久久女| 亚洲丝袜综合中文字幕| 我的女老师完整版在线观看| 国产精品伦人一区二区| 国产高潮美女av| 亚洲高清免费不卡视频| 搞女人的毛片| 国产精品日韩av在线免费观看| 99久久成人亚洲精品观看| 神马国产精品三级电影在线观看| 成人av在线播放网站| h日本视频在线播放| 一个人观看的视频www高清免费观看| 中文字幕av在线有码专区| 99热网站在线观看| 又爽又黄无遮挡网站| 1000部很黄的大片| 日韩高清综合在线| 国产精品1区2区在线观看.| 成人漫画全彩无遮挡| 精品久久久久久久久久免费视频| 婷婷六月久久综合丁香| 蜜桃亚洲精品一区二区三区| 国产精品久久久久久久电影| 毛片一级片免费看久久久久| 看免费成人av毛片| 在线观看美女被高潮喷水网站| 成人综合一区亚洲| 久久久久久久久久黄片| 亚洲图色成人| 国内揄拍国产精品人妻在线| 晚上一个人看的免费电影| 亚洲av中文av极速乱| 99久久精品国产国产毛片| 成人永久免费在线观看视频| 亚洲av成人av| 最近最新中文字幕大全电影3| 美女免费视频网站| 麻豆精品久久久久久蜜桃| 国产成人精品久久久久久| 女人十人毛片免费观看3o分钟| 波多野结衣巨乳人妻| 久久中文看片网| 女的被弄到高潮叫床怎么办| 无遮挡黄片免费观看| 亚洲国产色片| 免费在线观看影片大全网站| 亚洲欧美清纯卡通| 99视频精品全部免费 在线| 校园人妻丝袜中文字幕| 久久亚洲国产成人精品v| 亚洲内射少妇av| 国产aⅴ精品一区二区三区波| 日本色播在线视频| 夜夜夜夜夜久久久久| 天天躁夜夜躁狠狠久久av| 高清毛片免费观看视频网站| 国产精品一区二区三区四区免费观看 | 蜜桃久久精品国产亚洲av| 午夜影院日韩av| 国产人妻一区二区三区在| 高清午夜精品一区二区三区 | 日本在线视频免费播放| avwww免费| 性欧美人与动物交配| 97碰自拍视频| av女优亚洲男人天堂| av福利片在线观看| 亚洲五月天丁香| 人妻制服诱惑在线中文字幕| 国产精品日韩av在线免费观看| 精品午夜福利视频在线观看一区| 插逼视频在线观看| 香蕉av资源在线| 久久九九热精品免费| 又黄又爽又刺激的免费视频.| 亚洲激情五月婷婷啪啪| 色播亚洲综合网| 久久久精品大字幕| 成人毛片a级毛片在线播放| 噜噜噜噜噜久久久久久91| 国产精品久久久久久久久免| 精品一区二区三区视频在线观看免费| 国产一区二区三区在线臀色熟女| 在线播放国产精品三级| 色哟哟哟哟哟哟| 亚洲最大成人av| 欧美国产日韩亚洲一区| 天天躁夜夜躁狠狠久久av| 校园人妻丝袜中文字幕| 男女那种视频在线观看| 日韩av不卡免费在线播放| 嫩草影院精品99| 成人鲁丝片一二三区免费| 亚洲专区国产一区二区| 国产成人福利小说| 蜜桃亚洲精品一区二区三区| 亚洲电影在线观看av| 狂野欧美激情性xxxx在线观看| 直男gayav资源| 日韩精品青青久久久久久| 少妇猛男粗大的猛烈进出视频 | 午夜激情欧美在线| 少妇的逼水好多| 国语自产精品视频在线第100页| 国产私拍福利视频在线观看| 久久人人爽人人片av| 国产精品1区2区在线观看.| av免费在线看不卡| 久久人人爽人人片av| 免费无遮挡裸体视频| 亚洲欧美精品自产自拍| 一级毛片久久久久久久久女| 亚洲人成网站高清观看| 日本与韩国留学比较| 久久九九热精品免费| 欧美激情久久久久久爽电影| 亚洲最大成人av| 久久久久久久亚洲中文字幕| 97碰自拍视频| 色吧在线观看| 99在线人妻在线中文字幕| 美女高潮的动态| 人人妻人人澡人人爽人人夜夜 | 国产一区二区在线观看日韩| 毛片一级片免费看久久久久| 日韩一区二区视频免费看| 男女下面进入的视频免费午夜| 亚洲成人久久爱视频| 成年版毛片免费区| 久久久久久国产a免费观看| 麻豆精品久久久久久蜜桃| 三级国产精品欧美在线观看| 观看美女的网站| 久久草成人影院| 精品一区二区三区人妻视频| 日本免费a在线| 成人一区二区视频在线观看| 亚洲av免费在线观看| 精品99又大又爽又粗少妇毛片| 嫩草影视91久久| 午夜免费激情av| av福利片在线观看| 成人漫画全彩无遮挡| 国产色婷婷99| 日韩制服骚丝袜av| 免费观看的影片在线观看| 国产成人一区二区在线| 国产成人福利小说| 国产大屁股一区二区在线视频| 午夜影院日韩av| 男人的好看免费观看在线视频| 久久久久国产网址| 九色成人免费人妻av| 亚洲av电影不卡..在线观看| 久久精品人妻少妇| 亚洲五月天丁香| 亚洲无线观看免费| av免费在线看不卡| 最近的中文字幕免费完整| 97超碰精品成人国产| 亚洲av免费在线观看| 亚洲国产精品国产精品| 人妻夜夜爽99麻豆av| 国产成人a∨麻豆精品| 亚洲无线观看免费| 国产精品一区二区三区四区免费观看 | 国产伦精品一区二区三区视频9| 日韩欧美精品免费久久| 国产伦在线观看视频一区| 亚洲自偷自拍三级| 久久久国产成人精品二区| 在线观看av片永久免费下载| 18禁在线无遮挡免费观看视频 | 日韩强制内射视频| 丝袜喷水一区| 亚洲欧美日韩无卡精品| 麻豆成人午夜福利视频| 三级男女做爰猛烈吃奶摸视频| 超碰av人人做人人爽久久| 午夜精品一区二区三区免费看| 久久精品夜夜夜夜夜久久蜜豆| 非洲黑人性xxxx精品又粗又长| 三级男女做爰猛烈吃奶摸视频| 国国产精品蜜臀av免费| 国产91av在线免费观看| 婷婷精品国产亚洲av在线| 在线观看午夜福利视频| 在线播放无遮挡| 少妇的逼好多水| 国产aⅴ精品一区二区三区波| 欧美日韩精品成人综合77777| 午夜激情福利司机影院| 日本成人三级电影网站| 免费人成视频x8x8入口观看| 看黄色毛片网站| 黑人高潮一二区| 日本在线视频免费播放| 亚洲乱码一区二区免费版| 国产精品美女特级片免费视频播放器| 国产毛片a区久久久久| 中国国产av一级| 久久久久久久亚洲中文字幕| 草草在线视频免费看| 女人被狂操c到高潮| 欧美一区二区精品小视频在线| 中文在线观看免费www的网站| 12—13女人毛片做爰片一| 午夜福利在线观看吧| 欧美人与善性xxx| 嫩草影院精品99| a级一级毛片免费在线观看| 亚洲av美国av| 欧美国产日韩亚洲一区| 搡老岳熟女国产| 免费在线观看成人毛片| 国产高潮美女av| 99久久精品国产国产毛片| 欧美最新免费一区二区三区| av在线播放精品| 欧美日韩国产亚洲二区| 久久精品综合一区二区三区| 午夜精品一区二区三区免费看| 日韩欧美一区二区三区在线观看| 中出人妻视频一区二区| 日韩精品青青久久久久久| 可以在线观看的亚洲视频| 日韩精品青青久久久久久| 啦啦啦啦在线视频资源| 91麻豆精品激情在线观看国产| 黄色欧美视频在线观看| 日韩强制内射视频| 老熟妇乱子伦视频在线观看| 亚洲最大成人手机在线| 成人特级黄色片久久久久久久| 岛国在线免费视频观看| 亚洲精品一卡2卡三卡4卡5卡| 俺也久久电影网| 欧美不卡视频在线免费观看| 欧美性感艳星| 亚洲av五月六月丁香网| 亚洲国产色片| 97人妻精品一区二区三区麻豆| 欧美高清性xxxxhd video| 国产精品人妻久久久影院| 人人妻人人看人人澡| 91在线精品国自产拍蜜月| 成人亚洲欧美一区二区av| 日韩 亚洲 欧美在线| 五月伊人婷婷丁香| 成人美女网站在线观看视频| 亚洲av一区综合| 国产老妇女一区| 人妻少妇偷人精品九色| 国产 一区精品| 乱码一卡2卡4卡精品| 淫秽高清视频在线观看| 黄色一级大片看看| 99久久精品国产国产毛片| 亚洲精品一区av在线观看| 精品99又大又爽又粗少妇毛片| 国产精品一区二区三区四区久久| 欧美激情国产日韩精品一区| 一边摸一边抽搐一进一小说| 亚洲色图av天堂| 一个人观看的视频www高清免费观看| 日韩,欧美,国产一区二区三区 | 国产探花极品一区二区| 99九九线精品视频在线观看视频| 成人精品一区二区免费| 波多野结衣高清作品| 中文字幕人妻熟人妻熟丝袜美| 久久精品夜夜夜夜夜久久蜜豆| 中文字幕免费在线视频6| 久久国产乱子免费精品| 特大巨黑吊av在线直播| 欧美bdsm另类| 欧美成人免费av一区二区三区| 亚洲国产精品sss在线观看| 欧美成人精品欧美一级黄| 美女免费视频网站| 亚洲av不卡在线观看| 久久精品夜夜夜夜夜久久蜜豆| 久久久久精品国产欧美久久久| 久久精品国产清高在天天线| 淫妇啪啪啪对白视频| 久久综合国产亚洲精品| 亚洲第一区二区三区不卡| 欧美3d第一页| 深夜精品福利| 不卡视频在线观看欧美| 欧美色视频一区免费| 午夜福利高清视频| 国产精品美女特级片免费视频播放器| av中文乱码字幕在线| 午夜激情福利司机影院| 男人舔奶头视频| 美女 人体艺术 gogo| av天堂在线播放| 97超级碰碰碰精品色视频在线观看| 免费看a级黄色片| 久久草成人影院| 男女下面进入的视频免费午夜| 亚洲精品乱码久久久v下载方式| 成人国产麻豆网| 别揉我奶头 嗯啊视频| 色综合亚洲欧美另类图片| 精品人妻一区二区三区麻豆 | 插阴视频在线观看视频| 午夜福利在线观看免费完整高清在 | 欧美一区二区国产精品久久精品| 在线国产一区二区在线| 欧美一区二区亚洲| 看免费成人av毛片| 97热精品久久久久久| 日本-黄色视频高清免费观看| 最近在线观看免费完整版| 22中文网久久字幕| 桃色一区二区三区在线观看| 日本色播在线视频| 免费黄网站久久成人精品| av免费在线看不卡| 国产色婷婷99| 欧美性猛交黑人性爽| 亚洲性久久影院| 免费搜索国产男女视频| 欧美日韩综合久久久久久| 精品欧美国产一区二区三| 欧美+亚洲+日韩+国产| 又爽又黄无遮挡网站| 一级a爱片免费观看的视频| 国产精品一区二区免费欧美| 岛国在线免费视频观看| 国产乱人视频| 直男gayav资源| 18禁在线播放成人免费| 亚洲一区二区三区色噜噜| 99热这里只有精品一区| 露出奶头的视频| 夜夜看夜夜爽夜夜摸| 国产v大片淫在线免费观看| 国产一区二区亚洲精品在线观看| 国产成人aa在线观看| 亚洲综合色惰| 国内精品久久久久精免费| 露出奶头的视频| 看免费成人av毛片| 一区二区三区免费毛片| 悠悠久久av| 精品无人区乱码1区二区| 国产一区二区三区av在线 | 尤物成人国产欧美一区二区三区| 亚洲熟妇中文字幕五十中出| 在线播放无遮挡| 少妇猛男粗大的猛烈进出视频 | 免费av观看视频| 狠狠狠狠99中文字幕| 亚洲成人av在线免费| 国产精品嫩草影院av在线观看| 久久欧美精品欧美久久欧美| 午夜精品国产一区二区电影 | 久久鲁丝午夜福利片| 插阴视频在线观看视频| 国产乱人视频| 亚洲一区高清亚洲精品| 久久久久久伊人网av| 成人综合一区亚洲| 成人漫画全彩无遮挡| 小说图片视频综合网站| 亚洲一区高清亚洲精品| 国产一区二区激情短视频|